SPME-GC-MS and PTR-ToF-MS Techniques for the Profiling of the Metabolomic Pattern of VOCs and GC-MS for the Determination of the Cannabinoid Content of Three Cultivars of Cannabis sativa L. Pollen
Abstract
:1. Introduction
2. Results
2.1. SPME-GC-FID Chemical Composition of Pollen
2.2. GC-FID Chemical Composition of C. sativa Pollen Extracts
2.3. PTR-ToF-MS: Determination of Volatile Compounds from C. sativa Pollen
2.4. PTR-ToF-MS: Determination of Volatile Compounds from C. sativa Pollen Extracts
2.5. Multivariate Metabolomics Data Analysis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Extraction Process
4.3. SPME Sampling
4.4. GC-MS Analysis of C. sativa Pollen
4.5. GC-MS Analysis of C. sativa Pollen Extracts
4.6. PTR-ToF-MS Analysis of Pollen and Extracts
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Techen, N.; Chandra, S.; Lata, H.; ElSohly, M.A.; Khan, I.A. Genetic identification of female C. sativa plants at early developmental stage. Planta Med. 2010, 16, 1938–1939. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- De Meijer, E.P.M.; Bagatta, M.; Carboni, A.; Crucitti, P.; Moliterni, V.M.C.; Ranalli, P.; Mandolino, G. The inheritance of chemical phenotype in Cannabis sativa L. Genetics 2003, 163, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Mandolino, G.; Bagatta, M.; Carboni, A.; Ranalli, P.; De Meijer, E. Qualitative and quantitative aspects of the inheritance of chemical phenotype in Cannabis. J. Ind. Hemp 2003, 8, 51–72. [Google Scholar] [CrossRef]
- Bócsa, I.; Máthé, P.; Hangyel, L. Effect of nitrogen on tetrahydrocannabinol (THC) content in hemp (Cannabis sativa L.) leaves at different positions. J. Int. Hemp Assoc. 1997, 4, 78–79. [Google Scholar]
- Booth, J.K.; Page, J.E.; Bohlmann, J. Terpene synthases from Cannabis sativa. PLoS ONE 2017, 12, e0173911. [Google Scholar] [CrossRef] [Green Version]
- Farag, S.; Kayser, O. The cannabis plant: Botanical aspects. In Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis, and Treatment; Preedy, V.R., Ed.; Faculty of Life Sciences and Medicine, King’s College London: London, UK, 2017; pp. 3–12. [Google Scholar]
- Downs, G.M.; Barnard, J.M. Clustering methods and their uses in computational chemistry. In Reviews in Computational Chemistry; Lipkowitz, K.B., Boyd, D.B., Eds.; Wiley: New York, NY, USA, 2002; pp. 1–40. [Google Scholar]
- Steinbach, M.; Ertoz, L.; Kumar, V. The challenges of clustering high dimensional data. In New Directions in Statistical Physics; Springer: Berlin, Germany, 2004; pp. 273–309. [Google Scholar]
- Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-transfer reaction mass spectrometry. Chem. Rev. 2009, 109, 861–896. [Google Scholar] [CrossRef]
- Taiti, C.; Marone, E.; Lanza, M.; Azzarello, E.; Masi, E.; Pandolfi, C.; Giordani, E.; Mancuso, S. Nashi or Williams pear fruits? Use of volatile organic compounds, physicochemical parameters, and sensory evaluation to understand the consumer’s preference. Eur. Food Res. Technol. 2017, 243, 1917–1931. [Google Scholar] [CrossRef]
- Vita, F.; Franchina, F.A.; Taiti, C.; Locato, V.; Pennazza, G.; Santonico, M.; Purcaro, G.; De Gara, L.; Mancuso, S.; Mondello, L.; et al. Environmental conditions influence the biochemical properties of the fruiting bodies of Tuber magnatum Pico. Sci. Rep. 2018, 8, 7243. [Google Scholar] [CrossRef]
- Nezi, P.; Cicaloni, V.; Tinti, L.; Salvini, L.; Iannone, M.; Vitalini, S.; Garzoli, S. Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations 2022, 9, 204. [Google Scholar] [CrossRef]
- Vitalini, S.; Iriti, M.; Vinciguerra, V.; Garzoli, S. A Comparative Study of the Chemical Composition by SPME-GC/MS and Antiradical Activity of Less Common Citrus Species. Molecules 2021, 26, 5378. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, T.; Wojnowski, W.; Lubinska-Szczygeł, M.; Różańska, A.; Namieśnik, J.; Dymerski, T. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Anal Chim. Acta 2018, 1035, 1–13. [Google Scholar] [CrossRef]
- Rothschlid, M.; Bergstrom, G.; Wangberg, S.A. Cannabis sativa: Volatile compounds from pollen and entire male and female plants of two variants, Northern Lights and Hawaian Indica. Bot. J. Linn. Soc. 2005, 147, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Ross, S.A.; ElSohly, M.A.; Sultana, G.N.N.; Mehmedic, Z.; Hossain, C.F.; Chandra, S. Flavonoid Glycosides and Cannabinoids from the Pollen of Cannabis sativa L. Phytochem. Anal. 2005, 16, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Paris, M.; Boucher, F.; Cosson, L. The Constituents of Cannabis sativa Pollen. Econ. Bot. 1975, 29, 245–253. [Google Scholar] [CrossRef]
- Hood, L.V.S.; Dames, M.E.; Barry, G.T. Headspace volatiles of marijuana. Nature 1973, 242, 402–403. [Google Scholar] [CrossRef] [PubMed]
- Vivaldo, G.; Masi, E.; Taiti, C.; Caldarelli, G.; Mancuso, S. The network of plants volatile organic compounds. Sci. Rep. 2017, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sommano, S.R.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. The cannabis terpenes. Molecules 2020, 25, 5792. [Google Scholar] [CrossRef]
- Lee, A.; Goldstein, A.; Kroll, J.H.; Ng, N.L.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Maleknia, S.D.; Bell, T.L.; Adams, M.A. PTR-MS analysis of reference and plant-emitted volatile organic compounds. Int. J. Mass Spectrom. 2007, 262, 203–210. [Google Scholar] [CrossRef]
- Demarcke, M.; Amelynck, C.; Schoon, N.; Dhooghe, F.; Van Langenhove, H.; Dewulf, J. Laboratory studies in support of the detection of sesquiterpenes by proton-transfer-reaction-mass-spectrometry. Int. J. Mass Spectrom. 2009, 279, 156–162. [Google Scholar] [CrossRef]
- Tani, A. Fragmentation and reaction rate constants of terpenoids determined by proton transfer reaction-mass spectrometry. Environ. Control Biol. 2013, 51, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Kari, E.; Miettinen, P.; Yli-Pirilä, P.; Virtanen, A.; Faiola, C.L. PTR-ToF-MS product ion distributions and humidity-dependence of biogenic volatile organic compounds. Int. J. Mass Spectrom. 2018, 430, 87–97. [Google Scholar] [CrossRef]
- Cicaloni, V.; Salvini, L.; Vitalini, S.; Garzoli, S. Chemical Profiling and Characterization of Different Cultivars of Cannabis sativa L. Inflorescences by SPME-GC-MS and UPLC-MS. Separations 2022, 9, 90. [Google Scholar] [CrossRef]
- Zardin, E.; Tyapkova, O.; Buettner, A.; Beauchamp, J. Performance assessment of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) for analysis of isobaric compounds in food-flavour applications. LWT-Food Sci. Technol. 2014, 56, 153–160. [Google Scholar] [CrossRef]
- Fabris, A.; Biasioli, F.; Granitto, P.M.; Aprea, E.; Cappellin, L.; Schuhfried, E.; Soukoulis, C.; Märk, T.D.; Gasperi, F.; Endrizzi, I. PTR-TOF-MS and data-mining methods for rapid characterisation of agro-industrial samples: Influence of milk storage conditions on the volatile compounds profile of Trentingrana cheese. J. Mass Spectrom. 2010, 45, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
N° | Component 1 | LRI 2 | LRI 3 | SCBD 4 | SMC 5 | GEL 6 |
---|---|---|---|---|---|---|
1 | sabinene | 968 | 970 | - | - | 0.8 ± 0.02 |
2 | β-myrcene | 990 | 987 | - | 5.9 ± 0.06 | - |
3 | 1-hexanol, 2-ethyl- | 1041 | 1037 | - | 8.8 ± 0.07 | - |
4 | fenchone | 1082 | 1080 | - | 0.5 ± 0.02 | - |
5 | α-terpineol | 1186 | 1183 | - | 3.0 ± 0.06 | 0.1 ± 0.02 |
6 | β-caryophyllene | 1445 | 1440 | 44.2 ± 0.02 | 53.1 ± 0.10 | 42.4 ± 0.07 |
7 | humulene | 1476 | 1473 | 10.0 ± 0.04 | 10.1 ± 0.02 | 9.3 ± 0.04 |
8 | γ-gurjunene | 1474 | 1479 | - | - | 6.6 ± 0.02 |
9 | α-farnesene | 1490 | 1496 | - | 2.4 ± 0.02 | 2.9 ± 0.06 |
10 | β-bisabolene | 1505 | 1501 | 8.6 ± 0.04 | 6.6 ± 0.02 | 6.6 ± 0.03 |
11 | valencene | 1517 | 1515 | - | - | 3.3 ± 0.02 |
12 | selina 3,7-(11)-diene | 1543 | 1540 | 13.9 ± 0.03 | 9.6 ± 0.02 | 14.7 ± 0.02 |
13 | guaia-3,9-diene | 1560 | 1556 | 22.9 ± 0.10 | - | 9.5 ± 0.03 |
14 | guaia-1(10), 11-diene | 1580 | * | - | - | 1.5 ± 0.02 |
15 | guaiol acetate | 1715 | 1712 | - | - | 2.1 ± 0.06 |
SUM | 99.6 | 100.0 | 99.8 | |||
monoterpenes | - | 9.4 | 0.9 | |||
sesquiterpenes | 99.6 | 81.8 | 98.9 | |||
others | - | 8.8 |
N° | Component 1 | LRI 2 | LRI 3 | SCBD 4 | SMC 5 | GEL 6 |
---|---|---|---|---|---|---|
1 | linalool | 1090 | 1095 | - | - | 0.1 ± 0.02 |
2 | fenchol | 1105 | 1100 | - | - | tr |
3 | endoborneol | 1165 | 1160 | - | - | tr |
4 | α-terpineol | 1186 | 1183 | - | - | 0.1 ± 0.04 |
5 | β-caryophyllene | 1445 | 1440 | - | 0.7 ± 0.05 | |
6 | β-eudesmene | 1487 | 1483 | - | - | tr |
7 | nerolidol | 1570 | 1565 | - | - | tr |
8 | caryophyllene oxide | 1579 | 1580 | 2.8 ± 0.04 | 2.8 ± 0.02 | 0.1 ± 0.02 |
9 | humulene epoxide II | 1610 | * | 0.8 ± 0.02 | - | - |
10 | γ-eudesmol | 1625 | 1630 | - | - | 0.5 ± 0.02 |
11 | β-eudesmol | 1655 | 1652 | 2.6 ± 0.05 | 3.6 ± 0.03 | 0.9 ± 0.02 |
12 | α-bisabolol | 1671 | 1665 | 1.4 ± 0.04 | - | 1.1 ± 0.02 |
13 | hexaydrofarnesyl acetone | 1852 | 1846 | 2.2 ± 0.02 | 2.1 ± 0.02 | 0.2 ± 0.02 |
14 | phytol | 2105 | 2101 | 6.1 ± 0.06 | 6.6 ± 0.02 | 0.1 ± 0.02 |
15 | cannabichromene | 2350 | * | - | - | 0.5 ± 0.02 |
16 | cannabidiol | 2510 | * | 84.1 ± 0.04 | 84.9 ± 0.07 | 92.4 ± 0.12 |
17 | Δ-8-tetrahydrocannabidiol | 2530 | 2525 | - | - | 0.7 ± 0.03 |
18 | Δ-9-tetrahydrocannabinolo | 2550 | * | - | - | 2.0 ± 0.02 |
19 | cannabinol | 2562 | * | - | - | 0.3 ± 0.03 |
20 | cannabigerol | 2577 | * | - | - | 0.1 ± 0.02 |
SUM | 100.0 | 100.0 | 99.8 | |||
terpenoids | - | - | 0.2 | |||
sesquiterpenoids | 9.0 | 8.5 | 3.5 | |||
diterpenoids | 6.1 | 6.6 | 0.1 | |||
cannabinoids | 84.1 | 84.9 | 96.0 | |||
others | 0.8 | - | - |
m/z | Formula | Tentative Identification 1 | SCBD (%) | SMC (%) | GEL (%) |
---|---|---|---|---|---|
27.022 | C2H3+ | acetylene | 0.46 ± 0.02 | 1.75 ± 0.05 | 0.76 ± 0.03 |
31.018 | CH3O+ | formaldehyde | 23.92 ± 5.50 | 23.32 ± 4.23 | 12.58 ± 4.75 |
33.033 | CH5O+ | methanol | 22.37 ± 0.79 | 5.25 ± 0.58 | 14.81 ± 1.27 |
41.038 | C3H5+ | alkyl fragments | 2.54 ± 0.60 | 3.45 ± 0.54 | 1.30 ± 0.26 |
43.018 | C2H3O+ | alkyl fragment (e.g., terpenes and other compounds) | 3.11 ± 0.35 | 4.86 ± 0.29 | 17.93 ± 0.65 |
43.054 | C3H7+ | alkyl fragment (e.g., propene) | 0.78 ± 0.04 | 1.20 ± 0.25 | 2.30 ± 0.02 |
45.033 | C2H5O+ | acetaldehyde | 2.99 ± 0.23 | 5.63 ± 1.89 | 7.84 ± 0.46 |
47.012 | CH3O2+ | formic acid/formates | 0.14 ± 0.02 | 0.02 ± 0.01 | 0.39 ± 0.07 |
47.049 | C2H7O+ | ethanol | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 |
55.054 | C4H7+ | C4 aldehydes fragment | 0.08 ± 0.01 | 0.26 ± 0.05 | 0.36 ± 0.08 |
57.033 | C3H5O+ | alkyl fragment (e.g., hexanal/1-butanol/1-octanol) | 1.61 ± 0.25 | 4.11 ± 0.32 | 1.92 ± 0.59 |
57.069 | C4H9+ | alkyl fragment | 0.27 ± 0.07 | 0.50 ± 0.31 | 0.63 ± 0.18 |
59.049 | C3H7O+ | acetone | 38.70 ± 2.25 | 41.19 ± 7.19 | 10.80 ± 1.92 |
61.028 | C2H5O2+ | acetic acid | 0.45 ± 0.05 | 0.76 ± 0.23 | 20.25 ± 5.11 |
67.054 | C5H7+ | terpenes fragments | 0.01 ± 0.00 | 0.02 ± 0.01 | 0.03 ± 0.01 |
69.069 | C5H9+ | isoprene/terpenes fragments | 0.12 ± 0.01 | 0.12 ± 0.02 | 0.52 ± 0.04 |
71.049 | C4H7O+ | 2-butenal | 0.04 ± 0.01 | 0.06 ± 0.01 | 0.15 ± 0.04 |
71.086 | C5H11+ | 3-methyl-1-butanol/alcohol fragment | 0.01 ± 0.00 | 0.09 ± 0.01 | 0.10 ± 0.04 |
73.064 | C4H9O+ | 2-butanone/isobutyraldehyde | 0.40 ± 0.01 | 0.92 ± 0.05 | 1.63 ± 0.2 |
75.044 | C3H7O2+ | methyl acetate/propanoates | 0.86 ± 0.06 | 1.47 ± 0.21 | 1.08 ± 0.16 |
77.059 | C3H9O2+ | propylene glycol | 0.29 ± 0.10 | 2.40 ± 0.70 | 0.03 ± 0.01 |
79.054 | C6H7+ | C6 fragments | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.09 ± 0.02 |
81.069 | C6H9+ | C6 and terpenes fragments | 0.17 ± 0.05 | 0.33 ± 0.07 | 1.35 ± 0.23 |
83.086 | C6H11+ | C6 compounds/hexenol fragment | 0.07 ± 0.02 | 0.06 ± 0.01 | 0.21 ± 0.01 |
85.065 | C5H9O+ | methyl-butenal/pentenone | 0.02 ± 0.01 | 0.11 ± 0.02 | 0.11 ± 0.01 |
87.044 | C4H7O2+ | 2,3-butandione/diacetyl | 0.05 ± 0.01 | 0.30 ± 0.01 | 0.30 ± 0.05 |
87.080 | C5H11O+ | pentanal | 0.03 ± 0.01 | 0.23 ± 0.01 | 0.23 ± 0.01 |
89.059 | C4H9O2+ | ethyl acetate/methyl-propanoate | 0.06 ± 0.03 | 0.23 ± 0.02 | 0.23 ± 0.05 |
93.069 | C7H9+ | terpenes fragments | 0.01 ± 0.00 | 0.07 ± 0.01 | 0.07 ± 0.01 |
95.086 | C7H11+ | terpenes fragments | 0.03 ± 0.01 | 0.11 ± 0.01 | 0.11 ± 0.01 |
97.069 | C5H5O2+ | furfural | 0.00 | 0.03 ± 0.01 | 0.00 |
99.080 | C6H11O+ | hexenal/methyl-pentenone | 0.02 ± 0.00 | 0.07 ± 0.01 | 0.07 ± 0.00 |
101.060 | C5H9O2+ | hexanal | 0.06 ± 0.01 | 0.22 ± 0.03 | 0.11 ± 0.02 |
103.054 | C8H7+ | fragments | 0.02 ± 0.01 | 0.10 ± 0.02 | 0.00 |
103.075 | C5H11O2+ | butyl formate | 0.00 | 0.01 ± 0.00 | 0.11 ± 0.00 |
107.049 | C7H7O+ | benzaldehyde | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.12 ± 0.00 |
109.101 | C8H13+ | sesqui/terpenes fragments | 0.03 ± 0.01 | 0.40 ± 0.07 | 0.20 ± 0.01 |
111.080 | C7H11O+ | dimethyl-2-cyclopenten-1-one | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.04 ± 0.00 |
113.059 | C6H9O2+ | n.a. | 0.01 ± 0.00 | 0.03 ± 0.01 | 0.01 ± 0.01 |
115.054 | C6H11O2+ | C9-aromatics | 0.01 ± 0.00 | 0.07 ± 0.03 | 0.03 ± 0.01 |
117.091 | C6H13O2+ | hexanoic acid/methyl valerate | 0.01 ± 0.00 | 0.03 ± 0.00 | 0.00 |
119.085 | C9H11+ | terpenes fragments | 0.00 | 0.02 ± 0.01 | 0.00 |
121.101 | C9H13+ | sesquiterpene fragments | 0.00 | 0.01 ± 0.00 | 0.00 |
123.116 | C9H15+ | sesquiterpene fragments | 0.00 | 0.03 ± 0.01 | 0.03 ± 0.00 |
129.127 | C8H17O+ | methyl hexyl ketone | 0.00 | 0.01 ± 0.00 | 0.03 ± 0.00 |
131.001 | n.a. | n.a. | 0.02 ± 0.01 | 0.05 ± 0.002 | 0.00 |
131.106 | C7H15O2+ | eptanoic acid | 0.00 | 0.00 | 0.04 ± 0.02 |
133.101 | C10H13+ | p-cymenene/fragm | 0.00 | 0.02 ± 0.00 | 0.00 |
135.116 | C10H15+ | p-cymene | 0.01 ± 0.00 | 0.05 ± 0.02 | 0.09 ± 0.01 |
137.132 | C10H17+ | monoterpenes | 0.05 ± 0.02 | 0.12 ± 0.04 | 0.40 ± 0.05 |
139.113 | C9H14O+ | nopinone/isophorone | 0.00 | 0.03 ± 0.00 | 0.00 |
143.143 | C9H19O+ | nonanal | 0.03 ± 0.01 | 0.05 ± 0.01 | 0.09 ± 0.03 |
149.012 | n.a. | n.a. | 0.01 ± 0.00 | 0.04 ± 0.01 | 0.00 |
149.140 | C11H17+ | sesquiterpene fragments | 0.00 | 0.04 ± 0.01 | 0.05 ± 0.01 |
153.127 | C10H17O+ | terpenoids | 0.01 ± 0.00 | 0.09 ± 0.02 | 0.27 ± 0.11 |
155.143 | C10H19O+ | terpenoids (e.g., terpineol/fenchyl alcohol) | 0.00 | 0.01 ± 0.00 | 0.00 |
157.158 | C10H21O+ | decanal/terpenoids (e.g., menthol) | 0.00 | 0.01 ± 0.00 | 0.00 |
205.195 | C15H25 | sesquiterpenes | 0.01 ± 0.00 | 0.14 ± 0.03 | 0.16 ± 0.05 |
number of signals detected | 47 | 56 | 46 | ||
total VOCs emission (ppbv) | 13586.5 ± 705.3 | 11918.12 ± 1304.4 | 2970.1 ± 183.5 | ||
terpenes total emission (ppbv) | 61.12 ± 5.9 | 209.41 ± 19.3 | 111.98 ± 7.9 |
m/z | Formula | Tentative Identification 1 | SCBD (%) | SMC (%) | GEL (%) |
---|---|---|---|---|---|
27.022 | C2H3+ | acetylene | 7.78 | 9.54 | 10.37 |
29.038 | C2H5+ | fragments | 0.48 | 0.56 | 0.49 |
31.018 | CH3O+ | formaldehyde | 1.00 | 1.56 | 0.77 |
33.033 | CH5O+ | methanol | 0.59 | 1.00 | 11.55 |
41.038 | C3H5+ | alkyl fragments | 19.33 | 28.02 | 26.69 |
43.018 | C2H3O+ | alkyl fragment (e.g., terpenes and other compounds) | 5.61 | 5.64 | 4.53 |
43.050 | C3H7+ | alkyl fragment (e.g., propene) | 6.11 | 9.40 | 13.65 |
45.033 | C2H5O+ | acetaldehyde | 3.24 | 3.94 | 1.55 |
47.012 | CH3O2+ | formic acid/formates | 1.66 | 2.06 | 0.61 |
47.049 | C2H7O+ | ethanol | 0.19 | 0.00 | 0.07 |
51.044 | CH7O2+ | n.a. | 0.00 | 0.00 | 0.01 |
53.002 | C2H2N+ | n.a. | 0.08 | 0.11 | 0.06 |
53.038 | C4H5+ | C4 fragment | 0.13 | 0.17 | 0.14 |
55.054 | C4H7+ | C4 aldehydes fragment | 2.20 | 2.49 | 2.49 |
57.033 | C3H5O+ | alkyl fragment (e.g., hexanal/1-butanol/1-octanol) | 1.83 | 1.66 | 1.12 |
57.069 | C4H9+ | alkyl fragment (hexanol/valeric acid) | 11.94 | 13.33 | 7.46 |
59.049 | C3H7O+ | acetone | 9.66 | 6.41 | 8.60 |
61.028 | C2H5O2+ | acetic acid | 21.66 | 3.16 | 2.08 |
63.001 | CH3O3+ | n.a. | 0.00 | 0.00 | 0.04 |
67.054 | C5H7+ | terpenes fragments | 0.12 | 0.16 | 0.16 |
69.069 | C5H9+ | isoprene/terpenes fragments | 0.38 | 0.55 | 0.46 |
71.049 | C4H7O+ | 2-butenal | 0.23 | 0.51 | 0.72 |
71.086 | C5H11+ | 3-methyl-1-butanol/alcohol fragment | 0.23 | 0.28 | 0.22 |
73.028 | C3H5O2+ | n.a. | 0.21 | 0.27 | 0.05 |
73.064 | C4H9O+ | 2-butanone/isobutyraldehyde | 0.19 | 0.26 | 0.19 |
75.044 | C3H7O2+ | methyl acetate/propanoates | 0.17 | 0.34 | 0.14 |
77.059 | C3H9O2+ | propylene glycol | 0.08 | 0.16 | 0.07 |
79.054 | C6H7+ | C6 fragments | 0.05 | 0.08 | 0.09 |
81.069 | C6H9+ | C6 and terpenes fragments | 0.77 | 1.05 | 1.63 |
83.049 | C5H7O+ | 3-methyl furan | 0.11 | 0.21 | 0.10 |
83.086 | C6H11+ | C6 compounds/hexenol fragment | 0.26 | 0.28 | 0.43 |
85.065 | C5H9O+ | methyl-butenal/pentenone | 0.39 | 0.60 | 0.22 |
85.101 | C6H13+ | alcohol (1-hexanol/nonanol) | 0.18 | 0.40 | 0.30 |
87.044 | C4H7O2+ | 2,3-butandione/diacetyl | 0.32 | 0.44 | 0.07 |
87.080 | C5H11O+ | pentanal/methylbutanal | 0.61 | 0.70 | 0.12 |
89.059 | C4H9O2+ | ethyl acetate/methylpropanoate/alkyl fragment | 0.06 | 0.09 | 0.05 |
91.054 | C7H7+ | monoterpene fragments (e.g., thujone, linalool) | 0.06 | 0.07 | 0.07 |
93.069 | C7H9+ | terpenes fragments | 0.40 | 0.38 | 0.37 |
95.049 | C6H7O+ | phenol | 0.09 | 0.44 | 0.10 |
95.086 | C7H11+ | terpenes fragments | 0.14 | 0.36 | 0.17 |
97.069 | C5H5O2+ | dimethyl-furan | 0.08 | 0.08 | 0.04 |
99.080 | C6H11O+ | hexenals/methylpentenone | 0.07 | 0.12 | 0.10 |
101.060 | C5H9O2+ | hexanal | 0.11 | 0.14 | 0.05 |
101.096 | C6H13O2+ | pentanedione | 0.20 | 0.21 | 0.00 |
103.075 | C5H11O2+ | butyl formate | 0.02 | 0.06 | 0.03 |
105.075 | C8H9+ | styrene | 0.00 | 0.03 | 0.02 |
107.049 | C7H7O+ | benzaldehyde | 0.07 | 0.06 | 0.05 |
107.086 | C8H11+ | terpenes fragment | 0.04 | 0.09 | 0.06 |
109.101 | C8H13+ | sesqui/terpenes fragments | 0.10 | 0.19 | 0.18 |
111.080 | C7H11O+ | dimethyl-2-cyclopenten-1-one | 0.04 | 0.08 | 0.02 |
113.095 | C7H13O+ | n.a. | 0.04 | 0.07 | 0.02 |
115.075 | C6H11O2+ | γ-hexalactone | 0.04 | 0.05 | 0.02 |
117.091 | C6H13O2+ | hexanoic acid/methyl valerate | 0.00 | 0.02 | 0.01 |
119.085 | C9H11+ | terpenes fragments | 0.02 | 0.04 | 0.02 |
121.101 | C9H13+ | sesquiterpene fragments | 0.02 | 0.16 | 0.03 |
123.116 | C9H15+ | sesquiterpene fragments | 0.02 | 0.05 | 0.03 |
125.101 | C8H13O+ | (E)-2-octenal | 0.02 | 0.05 | 0.03 |
127.111 | C8H15O+ | 1-octen-3-one | 0.02 | 0.05 | 0.03 |
129.127 | C8H17O+ | methyl hexyl ketone | 0.02 | 0.04 | 0.02 |
131.086 | C10H11+ | terpene oxidation products | 0.00 | 0.00 | 0.02 |
133.111 | C10H13+ | p-cymenene/fragments | 0.00 | 0.03 | 0.02 |
135.125 | C10H15+ | p-cymene | 0.02 | 0.18 | 0.08 |
136.033 | n.a. | n.a. | 0.00 | 0.32 | 0.04 |
137.132 | C10H17+ | monoterpenes | 0.28 | 0.60 | 0.60 |
139.113 | C9H14O+ | nopinone/isophorone | 0.01 | 0.02 | 0.04 |
141.132 | C10H21+ | terpenes fragments | 0.00 | 0.02 | tr |
143.118 | C8H15O2+ | lactone compound | 0.09 | 0.11 | 0.10 |
145.123 | C8H17O2+ | hexyl acetate/ethyl hexanoate | 0.00 | 0.00 | 0.01 |
147.080 | C10H11O+ | n.a. | 0.00 | 0.00 | 0.01 |
149.132 | C11H17+ | sesquiterpene fragments | 0.00 | 0.03 | 0.07 |
151.111 | C10H15O+ | monoterpenes oxygenate (e.g., carvone) | 0.00 | 0.08 | 0.02 |
153.127 | C10H17O+ | terpenoid-like compound (e.g., camphor, fenchone) | 0.11 | 0.26 | 0.13 |
155.143 | C10H19O+ | alcohol monoterpenes (e.g., sabinene hydrate) | 0.00 | 0.00 | 0.01 |
157.158 | C10H21O+ | terpenoids (e.g., menthol) | 0.00 | 0.01 | tr |
159.140 | C9H19O2+ | C9 ester/octyl formate | 0.00 | 0.00 | tr |
161.132 | C12H17+ | terpene oxidation products | 0.00 | 0.00 | 0.01 |
163.145 | C12H19+ | sesquiterpene fragments | 0.00 | 0.00 | 0.02 |
165.145 | C12H21+ | terpene oxidation products | 0.00 | 0.02 | 0.01 |
177.184 | C10H25O+ | n.a. | 0.00 | 0.01 | tr |
189.185 | C11H25O2+ | 1,11-undecanediol | 0.00 | 0.00 | tr |
203.79 | C15H23+ | sesquiterpenes (e.g., curcumene, calamene) and terpene fragments | 0.00 | 0.00 | tr |
205.195 | C15H25+ | sesquiterpenes | 0.02 | 0.03 | 0.05 |
217.160 | C15H21O+ | aromatic terpenoid (e.g., curzerene/furanodiene) | 0.00 | 0.00 | 0.01 |
221.189 | C15H25O+ | sesquiterpenes alcohol (e.g., caryophyllene oxide) | 0.00 | 0.01 | tr |
231.230 | C14H31O2+ | n.a. | 0.00 | 0.01 | 0.00 |
number of signals detected | 72 | 61 | 83 | ||
total VOCs emission (ppbv) | 6184.26 | 5643.04 | 16,296.73 | ||
terpenes total emission (ppbv) | 270.34 | 142.15 | 688.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiti, C.; Masi, E.; Cicaloni, V.; Vinciguerra, V.; Salvini, L.; Garzoli, S. SPME-GC-MS and PTR-ToF-MS Techniques for the Profiling of the Metabolomic Pattern of VOCs and GC-MS for the Determination of the Cannabinoid Content of Three Cultivars of Cannabis sativa L. Pollen. Molecules 2022, 27, 8739. https://doi.org/10.3390/molecules27248739
Taiti C, Masi E, Cicaloni V, Vinciguerra V, Salvini L, Garzoli S. SPME-GC-MS and PTR-ToF-MS Techniques for the Profiling of the Metabolomic Pattern of VOCs and GC-MS for the Determination of the Cannabinoid Content of Three Cultivars of Cannabis sativa L. Pollen. Molecules. 2022; 27(24):8739. https://doi.org/10.3390/molecules27248739
Chicago/Turabian StyleTaiti, Cosimo, Elisa Masi, Vittoria Cicaloni, Vittorio Vinciguerra, Laura Salvini, and Stefania Garzoli. 2022. "SPME-GC-MS and PTR-ToF-MS Techniques for the Profiling of the Metabolomic Pattern of VOCs and GC-MS for the Determination of the Cannabinoid Content of Three Cultivars of Cannabis sativa L. Pollen" Molecules 27, no. 24: 8739. https://doi.org/10.3390/molecules27248739
APA StyleTaiti, C., Masi, E., Cicaloni, V., Vinciguerra, V., Salvini, L., & Garzoli, S. (2022). SPME-GC-MS and PTR-ToF-MS Techniques for the Profiling of the Metabolomic Pattern of VOCs and GC-MS for the Determination of the Cannabinoid Content of Three Cultivars of Cannabis sativa L. Pollen. Molecules, 27(24), 8739. https://doi.org/10.3390/molecules27248739