Flavonoid Composition and Antibacterial Properties of Crocus sativus L. Petal Extracts
Abstract
:1. Introduction
2. Results
2.1. HPLC-PDA-ESI/MS Analysis
2.2. Antibacterial Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. HPLC-PDA-ESI/MS Analysis
4.2.1. Sample Preparation
4.2.2. HPLC-PDA-ESI/MS analysis condition
4.2.3. Standards Employed
4.3. Antibacterial Activity
4.3.1. Bacterial Strains and Growth Conditions
4.3.2. Disc Diffusion Method
4.3.3. Broth Microdilution Method
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Evaluation of corm origin and climatic conditions on saffron (Crocus sativus L.) yield and quality. J. Sci. Food Agric. 2019, 99, 5858–5869. [Google Scholar] [CrossRef]
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. 2020, 272, 109560. [Google Scholar] [CrossRef]
- FIMASAFRAN La Fédération Interprofessionnelle Marocaine du Safran, Vie économique. 15 June 2021. Available online: lavieeco.com (accessed on 21 December 2022).
- Naim, N.; Ennahli, N.; Hanine, H.; Lahlali, R.; Tahiri, A.; Fauconnier, M.-L.; Madani, I.; Ennahli, S. ATR-FTIR spectroscopy combined with DNA barcoding and GC-MS to assess the quality and purity of saffron (Crocus sativus L.). Vib. Spectrosc. 2022, 123, 103446. [Google Scholar] [CrossRef]
- Schmidt, M.; Betti, G.; Hensel, A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien. Med. Wochenschr. 2007, 157, 315–319. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Emami, S.A.; Hosseinzadeh, H. Razi’s Al-Hawi and saffron (Crocus sativus): A review. Iran. J. Basic Med. Sci. 2015, 18, 1153. [Google Scholar] [PubMed]
- Armellini, R.; Peinado, I.; Pittia, P.; Scampicchio, M.; Heredia, A.; Andres, A. Effect of saffron (Crocus sativus L.) enrichment on antioxidant and sensorial properties of wheat flour pasta. Food Chem. 2018, 254, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashktorab, H.; Soleimani, A.; Singh, G.; Amin, A.; Tabtabaei, S.; Latella, G.; Stein, U.; Akhondzadeh, S.; Solanki, N.; Gondré-Lewis, M.C. Saffron: The golden spice with therapeutic properties on digestive diseases. Nutrients 2019, 11, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaffari, S.; Roshanravan, N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed. Pharmacother. 2019, 109, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L.; Drummond, P.D. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. J. Affect. Disord. 2017, 207, 188–196. [Google Scholar] [CrossRef]
- Moradzadeh, M.; Kalani, M.R.; Avan, A. The antileukemic effects of saffron (Crocus sativus L.) and its related molecular targets: A mini review. J. Cell. Biochem. 2019, 120, 4732–4738. [Google Scholar] [CrossRef]
- Carmona, M.; Zalacain, A.; Salinas, M.R.; Alonso, G.L. A new approach to saffron aroma. Crit. Rev. Food Sci. Nutr. 2007, 47, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Pintado, C.; de Miguel, A.; Acevedo, O.; Nozal, L.; Novella, J.L.; Rotger, R. Bactericidal effect of saffron (Crocus sativus L.) on Salmonella enterica during storage. Food Control 2011, 22, 638–642. [Google Scholar] [CrossRef]
- Nasab, B.F. Evaluation of antibacterial activities of hydroalcoholic extract of saffron petals on some bacterial pathogens. J. Med. Bacteriol. 2019, 8, 8–20. [Google Scholar]
- Moshiri, E.; Basti, A.A.; Noorbala, A.-A.; Jamshidi, A.-H.; Abbasi, S.H.; Akhondzadeh, S. Crocus sativus L.(petal) in the treatment of mild-to-moderate depression: A double-blind, randomized and placebo-controlled trial. Phytomedicine 2006, 13, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Fazeli-Nasab, B.; Mirzaei, N. Evaluation of total phenol and flavonoid content in a wide variety of native and imported plants. Sci. J. Ilam Univ. Med. Sci. 2018, 26, 141–154. [Google Scholar]
- Hosseinzadeh, H.; Behravan, J.; Ramezani, M.; Ajgan, K. Anti-tumor and cytotoxic evaluation of Crocus sativus L. stigma and petal extracts using brine shrimp and potato disc assays. J. Med. Plants 2005, 4, 59–65. [Google Scholar]
- Fatehi, M.; Rashidabady, T.; Fatehi-Hassanabad, Z. Effects of Crocus sativus petals’ extract on rat blood pressure and on responses induced by electrical field stimulation in the rat isolated vas deferens and guinea-pig ileum. J. Ethnopharmacol. 2003, 84, 199–203. [Google Scholar] [CrossRef]
- Hosseini, A.; Razavi, B.M.; Hosseinzadeh, H. Saffron (Crocus sativus) petal as a new pharmacological target: A review. Iran. J. Basic Med. Sci. 2018, 21, 1091–1099. [Google Scholar] [CrossRef]
- Karimi, G.H.; Taiebi, N.; Hosseinzadeh, A.; Shirzad, F. Evaluation of subacute toxicity of aqueous extract of Crocus sativus L. stigma and petal in rats. J. Med. Plants 2004, 3, 29–35. [Google Scholar]
- Kianbakht, S. A systematic review on pharmacology of saffron and its active constituents. J. Med. Plants 2008, 7, 1–27. [Google Scholar]
- Lai, P.K.; Roy, J. Antimicrobial and chemopreventive properties of herbs and spices. Curr. Med. Chem. 2004, 11, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Caillet, S.; Côté, J.; Sylvain, J.-F.; Lacroix, M. Antimicrobial effects of fractions from cranberry products on the growth of seven pathogenic bacteria. Food Control 2012, 23, 419–428. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.B.-C.; Barrajón-Catalán, E.; Encinar, J.A.; Rodríguez-Díaz, J.C.; Micol, V. Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review. Curr. Med. Chem. 2020, 27, 2576–2606. [Google Scholar] [CrossRef] [PubMed]
- Karaman, I.; Şahin, F.; Güllüce, M.; Öǧütçü, H.; Şengül, M.; Adıgüzel, A. Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J. Ethnopharmacol. 2003, 85, 231–235. [Google Scholar] [CrossRef]
- Oliva, E.; Fanti, F.; Palmieri, S.; Viteritti, E.; Eugelio, F.; Pepe, A.; Compagnone, D.; Sergi, M. Predictive Multi Experiment Approach for the Determination of Conjugated Phenolic Compounds in Vegetal Matrices by Means of LC-MS/MS. Molecules 2022, 27, 3089. [Google Scholar] [CrossRef]
- Hoang, L.; Beneš, F.; Fenclová, M.; Kronusová, O.; Švarcová, V.; Řehořová, K.; Baldassarre Švecová, E.; Vosátka, M.; Hajšlová, J.; Kaštánek, P. Phytochemical composition and in vitro biological activity of Iris spp. (Iridaceae): A new source of bioactive constituents for the inhibition of oral bacterial biofilms. Antibiotics 2020, 9, 403. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Ivanauskas, L.; Bezruk, I.; Sidorenko, L.; Lesyk, R.; Georgiyants, V. Characterization of phytochemical components of Crocus sativus leaves: A new attractive by-product. Sci. Pharm. 2021, 89, 28. [Google Scholar] [CrossRef]
- Jadouali, S.M.; Atifi, H.; Elbir, M.; Mamouni, R.; Majourhat, K.; Bouzoubaa, Z.; Neffa, M.; Alilou, H. Antimicrobial activity, antioxidant capacity and attempt to identify Flavonoids Analyses of Crocus sativus leaves and petals by ultra-performance LC-DAD-MS. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Goupy, P.; Vian, M.A.; Chemat, F.; Caris-Veyrat, C. Identification and quantification of flavonols, anthocyanins and lutein diesters in tepals of Crocus sativus by ultra performance liquid chromatography coupled to diode array and ion trap mass spectrometry detections. Ind. Crops Prod. 2013, 44, 496–510. [Google Scholar] [CrossRef]
- Termentzi, A.; Kokkalou, E. LC-DAD-MS (ESI+) analysis and antioxidant capacity of Crocus sativus petal extracts. Planta Med. 2008, 74, 573–581. [Google Scholar] [CrossRef]
- Asgarpanah, J.; Darabi-Mahboub, E.; Mahboubi, A.; Mehrab, R.; Hakemivala, M. In-vitro evaluation of Crocus sativus L. petals and stamens as natural antibacterial agents against food-borne bacterial strains. Iran. J. Pharm. Sci. 2013, 9, 69–82. [Google Scholar]
- Fazeli-Nasab, B.; Rahnama, M.; Mazarei, A. Correlation between antioxidant activity and antibacterial activity of nine medicinal plant extracts. J. Maz. Univ. Med. Sci. 2017, 27, 63–78. [Google Scholar]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities—A review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Germano, M.P.; D’angelo, V.; Marino, A.; Cannatelli, M.A. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett. Appl. Microbiol. 2000, 30, 379–384. [Google Scholar] [CrossRef]
- Gao, Y.; van Belkum, M.J.; Stiles, M.E. The outer membrane of Gram-negative bacteria inhibits antibacterial activity of brochocin-C. Appl. Environ. Microbiol. 1999, 65, 4329–4333. [Google Scholar] [CrossRef] [Green Version]
- Zuhaira, S.; Nizam, N.M.; Ridzuan, P.M. The Efficacy of Psidium guajava Linn Leaf Extracts from Selangor Region Against Gram-Positive and Gram-Negative Bacteria. Folia Medica Indones. 2018, 54, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Alzoreky, N.S.; Nakahara, K. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int. J. Food Microbiol. 2003, 80, 223–230. [Google Scholar] [CrossRef]
- Bouymajane, A.; Filali, F.R.; El Majdoub, Y.O.; Ouadik, M.; Abdelilah, R.; Cavò, E.; Miceli, N.; Taviano, M.F.; Mondello, L.; Cacciola, F. Phenolic compounds, antioxidant and antibacterial activities of extracts from aerial parts of Thymus zygis subsp. gracilis, Mentha suaveolens and Sideritis incana from Morocco. Chem. Biodivers. 2022, 19, e202101018. [Google Scholar] [CrossRef]
- Alsaggaf, M.S.; Moussa, S.H.; Tayel, A.A. Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. Int. J. Biol. Macromol. 2017, 99, 499–505. [Google Scholar] [CrossRef]
- Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574. [Google Scholar]
- Xin, Z.; OuYang, Q.; Wan, C.; Che, J.; Li, L.; Chen, J.; Tao, N. Isolation of antofine from Cynanchum atratum BUNGE (Asclepiadaceae) and its antifungal activity against Penicillium digitatum. Postharvest Biol. Technol. 2019, 157, 110961. [Google Scholar] [CrossRef]
- Naim, N.; Fauconnier, M.-L.; Ennahli, N.; Tahiri, A.; Baala, M.; Madani, I.; Ennahli, S.; Lahlali, R. Chemical Composition Profiling and Antifungal Activity of Saffron Petal Extract. Molecules 2022, 27, 8742. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- She, G.; Xu, C.; Liu, B.; Shi, R. Polyphenolic acids from mint (the aerial of Mentha haplocalyx Briq.) with DPPH radical scavenging activity. J. Food Sci. 2010, 75, C359–C362. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, J.; Lu, X.; Zhang, L.; Zhang, Y. Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food Chem. Toxicol. 2011, 49, 2689–2696. [Google Scholar] [CrossRef]
- Arena, K.; Trovato, E.; Cacciola, F.; Spagnuolo, L.; Pannucci, E.; Guarnaccia, P.; Santi, L.; Dugo, P.; Mondello, L.; Dugo, L. Phytochemical Characterization of Rhus coriaria L. Extracts by Headspace Solid-Phase Micro Extraction Gas Chromatography, Comprehensive Two-Dimensional Liquid Chromatography, and Antioxidant Activity Evaluation. Molecules 2022, 27, 1727. [Google Scholar]
- Asraoui, F.; Kounnoun, A.; Cacciola, F.; El Mansouri, F.; Kabach, I.; Oulad El Majdoub, Y.; Alibrando, F.; Arena, K.; Trovato, E.; Mondello, L.; et al. Phytochemical Profile, Antioxidant Capacity, α-Amylase and α-Glucosidase Inhibitory Potential of Wild Moroccan Inula viscosa (L.) Aiton Leaves. Molecules 2021, 26, 3134. [Google Scholar] [CrossRef]
- El Cadi, H.; El Bouzidi, H.; Selama, G.; Ramdan, B.; Oulad El Majdoub, Y.; Alibrando, F.; Arena, K.; Palma Lovillo, M.; Brigui, J.; Mondello, L.; et al. Elucidation of Antioxidant Compounds in Moroccan Chamaerops humilis L. Fruits by GC–MS and HPLC–MS Techniques. Molecules 2021, 26, 2710. [Google Scholar] [CrossRef]
Peak | Compound | tr (min) | UV Max (nm) | [M-H]- | mg/g ± SD | Ref. |
---|---|---|---|---|---|---|
1 | Myricetin-rutinoside-hexoside | 9.70 | 255, 352 | 787, 463 | 0.08 ± 0.000 | [26] |
2 | Kaempferol-sophoroside-hexoside | 10.08 | 266, 346 | 771, 609, 285 | 2.63 ± 0.001 | [26] |
3 | Kaempferol-rutinoside-hexoside | 10.46 | 265, 344 | 755, 593 | 0.11 ± 0.003 | [26] |
4 | Kaempferol-glucosyl-(6”-acetylgalactoside)-hexoside | 11.37 | 265, 347 | 813, 651 | 0.19 ± 0.000 | [26] |
5 | Eriodictyol-hexoside derivative | 11.52 | 282, 331sh | 625, 449, 287 | x | - |
6 | Kaempferol-sophoroside isomer | 11.68 | 265, 345 | 609, 447, 285 | 0.39 ± 0.008 | [26] |
7 | Unknown | 11.88 | 271, 334 | 787, 602, 266 | x | - |
8 | Myricetin-dihexoside | 12.04 | 260, 353 | 641, 479, 317 | 0.22 ± 0.044 | - |
9 | Kaempferol (or Luteolin)-dihexoside derivative | 12.53 | 265, 344 | 695, 447, 285 | 0.18 ± 0.008 | - |
10 | Kaempferol (or Luteolin)-trihexoside derivative isomer | 12.83 | 266, 348 | 873, 771, 447, 285 | 0.16 ± 0.042 | - |
11 | Quercetin-sophoroside | 12.98 | 254, 352 | 625, 463, 301 | 2.45 ± 0.008 | [26] |
12 | Kaempferol (or Luteolin)-trihexoside derivative isomer | 13.08 | 266, 348 | 873, 771, 447, 285 | 0.43 ± 0.001 | - |
13 | Kaempferol-hexoside isomer | 13.27 | 267, 347 | 447 | 0.12 ± 0.001 | [26] |
14 | Isorhamnetin-sophoroside | 13.45 | 252, 344 | 639, 477, 315 | 0.76 ± 0.005 | [26] |
15 | Kaempferol-sophoroside isomer | 14.00 | 265, 347 | 609, 447, 285 | 20.82 ± 0.152 | [26] |
16 | Isorhamnetin-sophoroside | 14.16 | 255, 352 | 639, 477, 315 | 0.11 ± 0.015 | [26] |
17 | Kaempferol-rutinoside | 14.85 | 265, 347 | 593, 285 | 0.25 ± 0.005 | [26] |
18 | Isorhamnetin-rutinoside | 15.03 | 254, 353 | 623, 477, 315 | 0.76 ± 0.021 | [26] |
19 | Quercetin-hexoside | 15.12 | 255, 354 | 463, 301 | 0.29 ± 0.006 | [26] |
20 | Kaempferol-(6”-acetyl-glucoside)-glucoside | 16.22 | 265, 347 | 651, 489, 285 | 0.82 ± 0.012 | [26] |
21 | Kaempferol-hexoside isomer | 16.47 | 264, 346 | 447, 285 | 1.33 ± 0.009 | [26] |
22 | Isorhamnetin-hexoside | 16.78 | 254, 356 | 477, 315 | 0.16 ± 0.002 | [27] |
23 | Kaempferol (or Luteolin)-derivative | 18.69 | 265, 347 | 489, 285 | 0.14 ± 0.001 | - |
24 | Unknown | 19.44 | 266, 311, 352 sh | 609 | x | - |
25 | Unknown | 21.01 | 266, 313, 355 sh | 593 | x | - |
26 | Kaempferol | 24.41 | 264, 366 | 285 | <LOQ | [28] Standard |
27 | Isorhamnetin | 25.15 | 371 | 315 | <LOQ | Standard |
Bacteria | Amoxicillin | Crocus sativus L. extract | ||||||
---|---|---|---|---|---|---|---|---|
D | MIC | MBC | MBC/MIC | D | MIC | MBC | MBC/MIC | |
Escherichia coli | 8 ± 0.12 a | 0.015 ± 0.00 a | 0.012 ± 0.00 a | 1 | 7 ± 0.10 a | 4.33 ± 1.50 a | 34.72 ± 12.02 b | 8 |
Salmonella typhimurium | 27 ± 0.22 c | 0.015 ± 0.00 a | 0.012 ± 0.00 a | 1 | 12 ± 0.06 b | 6.94 ± 3.01 b | 41.66 ± 0.00 b | 6 |
Staphylococcus aureus | 30 ± 0.33 c | 0.015 ± 0.00 a | 0.02 ± 0.00 a | 1 | 9 ± 0.14 a | 6.94 ± 3.007 b | 13.88 ± 6.01 a | 2 |
Listeria monocytogenes | 12 ± 0.04 b | 0.031 ± 0.00 a | 0.03 ± 0.00 a | 1 | 15 ± 0.03 b | 4.33 ± 1.50 a | 17.35 ± 6.01 a | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naim, N.; Bouymajane, A.; Oulad El Majdoub, Y.; Ezrari, S.; Lahlali, R.; Tahiri, A.; Ennahli, S.; Laganà Vinci, R.; Cacciola, F.; Mondello, L.; et al. Flavonoid Composition and Antibacterial Properties of Crocus sativus L. Petal Extracts. Molecules 2023, 28, 186. https://doi.org/10.3390/molecules28010186
Naim N, Bouymajane A, Oulad El Majdoub Y, Ezrari S, Lahlali R, Tahiri A, Ennahli S, Laganà Vinci R, Cacciola F, Mondello L, et al. Flavonoid Composition and Antibacterial Properties of Crocus sativus L. Petal Extracts. Molecules. 2023; 28(1):186. https://doi.org/10.3390/molecules28010186
Chicago/Turabian StyleNaim, Nadia, Aziz Bouymajane, Yassine Oulad El Majdoub, Said Ezrari, Rachid Lahlali, Abdessalem Tahiri, Said Ennahli, Roberto Laganà Vinci, Francesco Cacciola, Luigi Mondello, and et al. 2023. "Flavonoid Composition and Antibacterial Properties of Crocus sativus L. Petal Extracts" Molecules 28, no. 1: 186. https://doi.org/10.3390/molecules28010186
APA StyleNaim, N., Bouymajane, A., Oulad El Majdoub, Y., Ezrari, S., Lahlali, R., Tahiri, A., Ennahli, S., Laganà Vinci, R., Cacciola, F., Mondello, L., & Madani, I. (2023). Flavonoid Composition and Antibacterial Properties of Crocus sativus L. Petal Extracts. Molecules, 28(1), 186. https://doi.org/10.3390/molecules28010186