Larix Sibirica Arabinogalactan Hydrolysis over Zr-SBA-15; Depolymerization Insight
Abstract
:1. Introduction
2. Results
2.1. Catalyst Characterization
2.2. Arabinogalactane Hydrolysis over 5%Zr-SBA-15
2.3. Gel Permeation Chromatography of Hemicelluloses
2.4. Arabinogalactan Structure Optimization
3. Materials and Methods
3.1. Materials
3.2. SBA-15 Preparation
3.3. 5%Zr-SBA-15 Preparation
3.4. Catalyst Characterization
3.5. Catalytic Testing
3.6. Product Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Choi, Y.J.; Lee, S.Y. Microbial production of short-chain alkanes. Nature 2013, 502, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Bozell, J.J. Connecting Biomass and Petroleum Processing with a Chemical Bridge. Science 2010, 329, 522–523. [Google Scholar] [CrossRef] [PubMed]
- Venderbosch, R.H. A Critical View on Catalytic Pyrolysis of Biomass. ChemSusChem 2015, 8, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Dawes, G.J.S.; Scott, E.L.; Le Nôtre, J.; Sanders, J.P.M.; Bitter, J.H. Deoxygenation of biobased molecules by decarboxylation and decarbonylation–A review on the role of heterogeneous, homogeneous and bio-catalysis. Green Chem. 2015, 17, 3231–3250. [Google Scholar] [CrossRef] [Green Version]
- Bohre, A.; Dutta, S.; Saha, B.; Abu-Omar, M.M. Upgrading Furfurals to Drop-in Biofuels: An Overview. ACS Sustain. Chem. Eng. 2015, 3, 1263–1277. [Google Scholar] [CrossRef]
- Taran, O.P.; Gromov, N.V.; Parmon, V.N. Chapter 2–Catalytic Processes and Catalyst Development in Biorefining. In Sustainable Catalysis for Biorefineries; Frusteri, F., Aranda, D., Bonura, G., Eds.; The Royal Society of Chemistry: London, UK, 2018; pp. 25–64. [Google Scholar]
- Tuck, C.O.; Pérez, E.; Horváth, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of Biomass: Deriving More Value from Waste. Science 2012, 337, 695–699. [Google Scholar] [CrossRef]
- Werpy, T.; Petersen, G. Top Value Added Chemicals From Biomass: Volume 1–Results of Screening for Potential Candidates from Sugars and Synthesis Gas; National Renewable Energy Laboratory: Golden, CO, USA, 2004; p. 76. [Google Scholar]
- Upare, P.P.; Lee, J.-M.; Hwang, Y.K.; Hwang, D.W.; Lee, J.-H.; Halligudi, S.B.; Hwang, J.-S.; Chang, J.-S. Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts. ChemSusChem 2011, 4, 1749–1752. [Google Scholar] [CrossRef]
- Luska, K.L.; Migowski, P.; Leitner, W. Ionic liquid-stabilized nanoparticles as catalysts for the conversion of biomass. Green Chem. 2015, 17, 3195–3206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhen, J.; Liu, B.; Lv, K.; Deng, K. Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst. Green Chem. 2015, 17, 1308–1317. [Google Scholar] [CrossRef]
- Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem. 2010, 12, 1493–1513. [Google Scholar] [CrossRef]
- Murzin, D.Y.; Simakova, I.L. 7.21–Catalysis in Biomass Processing. In Comprehensive Inorganic Chemistry II, 2nd ed.; Reedijk, J., Poeppelmeier, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 559–586. [Google Scholar]
- Zhang, Z.; Deng, K. Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives. ACS Catal. 2015, 5, 6529–6544. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [Green Version]
- Kamm, B. Production of Platform Chemicals and Synthesis Gas from Biomass. Angew. Chem. Int. Ed. 2007, 46, 5056–5058. [Google Scholar] [CrossRef]
- Weingarten, R.; Tompsett, G.A.; Conner, W.C.; Huber, G.W. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Brønsted acid sites. J. Catal. 2011, 279, 174–182. [Google Scholar] [CrossRef]
- Salmi, T.; Murzin, D.Y.; Mäki-Arvela, P.; Kusema, B.; Holmbom, B.; Willför, S.; Wärnå, J. Kinetic modeling of hemicellulose hydrolysis in the presence of homogeneous and heterogeneous catalysts. AIChE J. 2014, 60, 1066–1077. [Google Scholar] [CrossRef]
- Dion, C.; Chappuis, E.; Ripoll, C. Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials. Nutr. Metab. 2016, 13, 28. [Google Scholar] [CrossRef] [Green Version]
- Murzin, D.; Murzina, E.; Tokarev, A.; Shcherban, N.; Wärnå, J.; Salmi, T. Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials. Catal. Today 2015, 257, 169–176. [Google Scholar] [CrossRef]
- Rabinovich, M.L. Wood hydrolysis industry in the soviet union and Russia: A mini-review. Cellul. Chem. Technol. 2010, 44, 173–186. [Google Scholar]
- Gromov, N.V.; Taran, O.P.; Semeykina, V.S.; Danilova, I.G.; Pestunov, A.V.; Parkhomchuk, E.V.; Parmon, V.N. Solid Acidic NbOx/ZrO2 Catalysts for Transformation of Cellulose to Glucose and 5-Hydroxymethylfurfural in Pure Hot Water. Catal. Lett. 2017, 147, 1485–1495. [Google Scholar] [CrossRef]
- Rinaldi, R.; Schüth, F. Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes. ChemSusChem 2009, 2, 1096–1107. [Google Scholar] [CrossRef]
- Huang, Y.-B.; Fu, Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. 2013, 15, 1095–1111. [Google Scholar] [CrossRef]
- Gromov, N.; Taran, O.; Parmon, V. Chapter 3–Catalysts for Depolymerization of Biomass. In Sustainable Catalysis for Biorefineries; Frusteri, F., Aranda, D., Bonura, G., Eds.; The Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Medvedeva, T.B.; Ogorodnikova, O.L.; Yakovleva, I.S.; Isupova, L.A.; Taran, O.P.; Gromov, N.V.; Parmon, V.N. Impact of Design on the Activity of ZrO2 Catalysts in Cellulose Hydrolysis-Dehydration to Glucose and 5-Hydroxymethylfurfural. Catalysts 2021, 11, 1359. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Miroshnikova, A.V.; Tarabanko, V.E.; Skripnikov, A.M.; Malyar, Y.N.; Borovkova, V.S.; Sychev, V.V.; Taran, O.P. Thermal Conversion of Flax Shives in Sub- and Supercritical Ethanol in the Presence of Ru/C Catalyst. Catalysts 2021, 11, 970. [Google Scholar] [CrossRef]
- Lázaro, N.; Franco, A.; Ouyang, W.; Balu, A.M.; Romero, A.A.; Luque, R.; Pineda, A. Continuous-Flow Hydrogenation of Methyl Levulinate Promoted by Zr-Based Mesoporous Materials. Catalysts 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Melero, J.; Bautista, L.; Iglesias, J.; Morales, G.; Sánchez-Vázquez, R. Zr-SBA-15 acid catalyst: Optimization of the synthesis and reaction conditions for biodiesel production from low-grade oils and fats. Catal. Today 2012, 195, 44–53. [Google Scholar] [CrossRef]
- Iglesias, J.; Melero, J.A.; Bautista, L.F.; Morales, G.; Sánchez-Vázquez, R.; Andreola, M.T.; Lizarraga-Fernández, A. Zr-SBA-15 as an efficient acid catalyst for FAME production from crude palm oil. Catal. Today 2011, 167, 46–55. [Google Scholar] [CrossRef]
- Do, D.M.; Jaenicke, S.; Chuah, G.-K. Mesoporous Zr-SBA-15 as a green solid acid catalyst for the Prins reaction. Catal. Sci. Technol. 2012, 2, 1417–1424. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Kaburagi, W.; Osada, Y.; Fujitani, T.; Yamashita, H. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO2 catalyst supported on SBA-15 silica. Catal. Today 2017, 281, 418–428. [Google Scholar] [CrossRef]
- Iglesias, J.; Melero, J.A.; Morales, G.; Paniagua, M.; Hernández, B.; Osatiashtiani, A.; Lee, A.F.; Wilson, K. ZrO2-SBA-15 catalysts for the one-pot cascade synthesis of GVL from furfural. Catal. Sci. Technol. 2018, 8, 4485–4493. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Kirik, S.D.; Parfenov, V.A.; Zharkov, S.M. Monitoring MCM-41 synthesis by X-ray mesostructure analysis. Microporous Mesoporous Mater. 2014, 195, 21–30. [Google Scholar] [CrossRef]
- Huo, L.; Wang, T.; Xuan, K.; Li, L.; Pu, Y.; Li, C.; Qiao, C.; Yang, H.; Bai, Y. Synthesis of Dimethyl Carbonate from CO2 and Methanol over Zr-Based Catalysts with Different Chemical Environments. Catalysts 2021, 11, 710. [Google Scholar] [CrossRef]
- Iglesias, J.; Gracia, M.D.; Luque, R.; Romero, A.A.; Melero, J.A. Maximizing the Accessibility of Active Species in Weakly Acidic Zr-SBA-15 Materials. ChemCatChem 2012, 4, 379–386. [Google Scholar] [CrossRef]
- Jones, D.J.; Jiménez-Jiménez, J.; Jiménez-López, A.; Maireles-Torres, P.; Olivera-Pastor, P.; Rodriguez-Castellón, E.; Rozière, J. Surface characterisation of zirconium-doped mesoporous silica. Chem. Commun. 1997, 32, 431–432. [Google Scholar] [CrossRef]
- Alaya, M.; Youssef, A.; Roumie, A.; Grge, R. Physico–chemical properties of CdO–Al2O3 catalysts. I–Structural characteristics. Arab. J. Chem. 2014, 7, 722–731. [Google Scholar] [CrossRef] [Green Version]
- Morrow, B.A.; McFarlan, A.J. Infrared and gravimetric study of an aerosil and a precipitated silica using chemical and hydrogen/deuterium exchange probes. Langmuir 1991, 7, 1695–1701. [Google Scholar] [CrossRef]
- Colmenares-Zerpa, J.; Gajardo, J.; Peixoto, A.; Silva, D.; Silva, J.; Gispert-Guirado, F.; Llorca, J.; Urquieta-Gonzalez, E.; Santos, J.; Chimentão, R. High zirconium loads in Zr-SBA-15 mesoporous materials prepared by direct-synthesis and pH-adjusting approaches. J. Solid State Chem. 2022, 312, 123296. [Google Scholar] [CrossRef]
- Anderson, J.A.; Fergusson, C.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A. Influence of Si/Zr ratio on the formation of surface acidity in silica-zirconia aerogels. J. Catal. 2000, 192, 344–354. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, X.; Noreña, L.; Wang, J.; Navarrete, J.; Salas, P.; Montoya, A.; Del Angel, P.; Llanos, M. Comparative studies of Zr-based MCM-41 and MCM-48 mesoporous molecular sieves: Synthesis and physicochemical properties. Appl. Surf. Sci. 2006, 253, 2443–2451. [Google Scholar] [CrossRef]
- Paukshtis, E.A.; Yurchenko, E.N. Study of the Acid–Base Properties of Heterogeneous Catalysts by Infrared Spectroscopy. Russ. Chem. Rev. 1983, 52, 242–258. [Google Scholar] [CrossRef]
- Sinkó, K. Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels. Materials 2010, 3, 704–740. [Google Scholar] [CrossRef]
- Hadjiivanov, K. Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy. Adv. Catal. 2014, 57, 99–318. [Google Scholar] [CrossRef]
- Babkin, V.A.; Neverova, N.A.; Medvedeva, E.N.; Fedorova, T.E.; Levchuk, A.A. Investigation of physicochemical properties of arabinogalactan of different larch species. Russ. J. Bioorganic Chem. 2016, 42, 707–711. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Liao, Y.; Wang, H.; Liu, Q.; Ma, L.; Wang, C. Advances in understanding the humins: Formation, prevention and application. Appl. Energy Combust. Sci. 2022, 10, 100062. [Google Scholar] [CrossRef]
- Patil, S.K.R.; Lund, C.R.F. Formation and Growth of Humins via Aldol Addition and Condensation during Acid-Catalyzed Conversion of 5-Hydroxymethylfurfural. Energy Fuels 2011, 25, 4745–4755. [Google Scholar] [CrossRef]
- Borovkova, V.S.; Malyar, Y.N.; Sudakova, I.G.; Chudina, A.I.; Skripnikov, A.M.; Fetisova, O.Y.; Kazachenko, A.S.; Miroshnikova, A.V.; Zimonin, D.V.; Ionin, V.A.; et al. Molecular Characteristics and Antioxidant Activity of Spruce (Picea abies) Hemicelluloses Isolated by Catalytic Oxidative Delignification. Molecules 2022, 27, 266. [Google Scholar] [CrossRef]
- Malyar, Y.N.; Vasilyeva, N.Y.; Kazachenko, A.S.; Borovkova, V.S.; Skripnikov, A.M.; Miroshnikova, A.V.; Zimonin, D.V.; Ionin, V.A.; Kazachenko, A.S.; Issaoui, N. Modification of Arabinogalactan Isolated from Larix sibirica Ledeb. into Sulfated Derivatives with the Controlled Molecular Weights. Molecules 2021, 26, 5364. [Google Scholar] [CrossRef]
- Goellner, E.M.; Utermoehlen, J.; Kramer, R.; Classen, B. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr. Polym. 2011, 86, 1739–1744. [Google Scholar] [CrossRef]
- Levdansky, A.V.; Vasilyeva, N.Y.; Kondrasenko, A.A.; Levdansky, V.A.; Malyar, Y.N.; Kazachenko, A.S.; Kuznetsov, B.N. Sulfation of arabinogalactan with sulfamic acid under homogeneous conditions in dimethylsulfoxide medium. Wood Sci. Technol. 2021, 55, 1725–1744. [Google Scholar] [CrossRef]
- Chikunov, A.S.; Taran, O.P.; Pyshnaya, I.A.; Parmon, V.N. Colloidal FeIII, MnIII, CoIII, and CuII hydroxides stabilized by starch as catalysts of water oxidation reaction with one electron oxidant Ru(bpy)33+. ChemPhysChem 2019, 20, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Lipkowitz, K. Molecular mechanics, by Ulrich Burkert and Norman L. Allinger, published by the American Chemical Society, 1982. 339 pages, $64.95. J. Comput. Chem. 1983, 4, 605. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.S.H.; Heinonen, J.; Sainio, T. Acid hydrolysis of glycosidic bonds in oat β-glucan and development of a structured kinetic model. AIChE J. 2018, 64, 2570–2580. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Sayari, A. Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements. Langmuir 1997, 13, 6267–6273. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992; Volume 40, p. 221. [Google Scholar]
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Tewari, P.H.; Campbell, A.B. Temperature dependence of point of zero charge of cobalt and nickel oxides and hydroxides. J. Colloid Interface Sci. 1976, 55, 531–539. [Google Scholar] [CrossRef]
Sample | Cell Parameter a, nm | ZrO2 Content, wt. % | Surface Area (SBET), m2/g | Micropore Surface Area Sµ (t-plot), m2/g | Pore Volume VSP, cm3/g | Pore Diameter D4V/A, Å | Pore Diameter D (from PSD max), Å | Wall Thickness (W), Å |
---|---|---|---|---|---|---|---|---|
SBA-15 | 114.5 | 0.0 | 903 | 327 | 1.14 | 50.6 | 63.6 | 63.9 |
5%Zr-SBA-15 | 104.0 | 4.5 | 702 | 254 | 0.66 | 37.6 | 57.0 | 66.4 |
Sample | Si | C | O | Zr | O/Si | Zr/Si | ||||
---|---|---|---|---|---|---|---|---|---|---|
at.% | wt% | at.% | wt% | at.% | wt% | at.% | wt% | |||
SBA-15 | 32.0 | 43.6 | 7.1 | 4.3 | 60.9 | 52.1 | 0.0 | 0.0 | 1.90 | 0.00 |
5%Zr-SBA-15 | 29.1 | 39.3 | 12.0 | 7.5 | 57.9 | 48.6 | 1.0 | 4.7 | 2.00 | 0.03 |
Catalyst | Tdes | CBAS, µmol/g | CLAS, µmol/g | pHpzc |
---|---|---|---|---|
5%Zr-SBA-15 | 150 | 76 | 223 | 2.65/5.20 * |
350 | - | 31 |
Temp. °C | Arabinose | Galactose | 5-HMF | Furfural | Levulinic Acid | TOF ** |
---|---|---|---|---|---|---|
150 | 1.57 | 7.56 | 1.63 | 0.479 | 0.290 | 4.14 |
130 | 1.49 | 2.25 | 0.228 | 0.0659 | - | 1.29 |
110 | 1.35 | 1.15 | 0.0371 | - | - | 1.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sychev, V.V.; Malyar, Y.N.; Skripnikov, A.M.; Trotsky, Y.A.; Zaitseva, Y.N.; Eremina, A.O.; Borovkova, V.S.; Taran, O.P. Larix Sibirica Arabinogalactan Hydrolysis over Zr-SBA-15; Depolymerization Insight. Molecules 2022, 27, 8756. https://doi.org/10.3390/molecules27248756
Sychev VV, Malyar YN, Skripnikov AM, Trotsky YA, Zaitseva YN, Eremina AO, Borovkova VS, Taran OP. Larix Sibirica Arabinogalactan Hydrolysis over Zr-SBA-15; Depolymerization Insight. Molecules. 2022; 27(24):8756. https://doi.org/10.3390/molecules27248756
Chicago/Turabian StyleSychev, Valentin V., Yuriy N. Malyar, Andrey M. Skripnikov, Yuriy A. Trotsky, Yulia N. Zaitseva, Anna O. Eremina, Valentina S. Borovkova, and Oxana P. Taran. 2022. "Larix Sibirica Arabinogalactan Hydrolysis over Zr-SBA-15; Depolymerization Insight" Molecules 27, no. 24: 8756. https://doi.org/10.3390/molecules27248756
APA StyleSychev, V. V., Malyar, Y. N., Skripnikov, A. M., Trotsky, Y. A., Zaitseva, Y. N., Eremina, A. O., Borovkova, V. S., & Taran, O. P. (2022). Larix Sibirica Arabinogalactan Hydrolysis over Zr-SBA-15; Depolymerization Insight. Molecules, 27(24), 8756. https://doi.org/10.3390/molecules27248756