Virtual Screening of FDA-Approved Drugs for Enhanced Binding with Mitochondrial Aldehyde Dehydrogenase
Abstract
:1. Introduction
2. Results and Discussion
2.1. MD Simulation of ALDH2 Tetramer
2.2. Virtual Screening of FDA-Approved Drugs against ALDH2
2.3. Toxicity Evaluation
2.4. MD Simulation of ALDH2–Inhibitor Complexes and Binding Energy Calculation
2.5. Identification of Key Residues for Receptor-Inhibitor Interactions
2.6. Drug Selectivity against Human ALDH Family
3. Computational Methods
3.1. Docking Protocol
3.1.1. Ligand Preparation
3.1.2. Receptor Preparation
3.1.3. Docking Calculation
3.2. MD Simulation of ALDH2 Tetramer
3.3. Toxicity Prediction
3.4. MM-PBSA Analysis
3.5. Inhibition against Different ALDHs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Voulgaridou, G.P.; Anestopoulos, I.; Franco, R.; Panayiotidis, M.I.; Pappa, A. DNA Damage Induced by Endogenous Aldehydes: Current State of Knowledge. Mutat. Res. 2011, 711, 13–27. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.J.; Siraki, A.G.; Shangari, N. Aldehyde Sources, Metabolism, Molecular Toxicity Mechanisms, and Possible Effects on Human Health. Crit. Rev. Toxicol. 2005, 35, 609–662. [Google Scholar] [CrossRef] [PubMed]
- Garaycoechea, J.I.; Crossan, G.P.; Langevin, F.; Mulderrig, L.; Louzada, S.; Yang, F.; Guilbaud, G.; Park, N.; Roerink, S.; Nik-Zainal, S.; et al. Alcohol and Endogenous Aldehydes Damage Chromosomes and Mutate Stem Cells. Nature 2018, 553, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Yabushita, H.; Kanaly, R.A.; Shibutani, S.; Yokoyama, A. Increased DNA Damage in ALDH2-Deficient Alcoholics. Chem. Res. Toxicol. 2006, 19, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, C.; Xu, H.; Gao, Y. Aldehyde Dehydrogenase, Liver Disease and Cancer. Int. J. Biol. Sci. 2020, 16, 921–934. [Google Scholar] [CrossRef] [Green Version]
- Ahmed Laskar, A.; Younus, H. Aldehyde Toxicity and Metabolism: The Role of Aldehyde Dehydrogenases in Detoxification, Drug Resistance and Carcinogenesis. Drug Metab. Rev. 2019, 51, 42–64. [Google Scholar] [CrossRef]
- Tian, F.X.; Zang, J.L.; Wang, T.; Xie, Y.L.; Zhang, J.; Hu, J.J. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs. PLoS ONE 2015, 10, e0124669. [Google Scholar] [CrossRef] [Green Version]
- Buchman, C.D.; Hurley, T.D. Inhibition of the Aldehyde Dehydrogenase 1/2 Family by Psoralen and Coumarin Derivatives. J. Med. Chem. 2017, 60, 2439–2455. [Google Scholar] [CrossRef] [Green Version]
- Jackson, B.; Brocker, C.; Thompson, D.C.; Black, W.; Vasiliou, K.; Nebert, D.W.; Vasiliou, V. Update on the Aldehyde Dehydrogenase Gene (ALDH) Superfamily. Hum. Genom. 2011, 5, 283–303. [Google Scholar] [CrossRef] [Green Version]
- Edenberg, H.J.; McClintick, J.N. Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and Alcohol Use Disorders: A Critical Review. Alcohol. Clin. Exp. Res. 2018, 42, 2281–2297. [Google Scholar] [CrossRef]
- Vasiliou, V.; Pappa, A.; Estey, T. Role of Human Aldehyde Dehydrogenases in Endobiotic and Xenobiotic Metabolism. Drug Metab. Rev. 2004, 36, 279–299. [Google Scholar] [CrossRef]
- Guo, R.; Ren, J. Alcohol and Acetaldehyde in Public Health: From Marvel to Menace. Int. J. Environ. Res. Public Health 2010, 7, 1285–1301. [Google Scholar] [CrossRef] [Green Version]
- Klyosov, A.A. Kinetics and Specificity of Human Liver Aldehyde Dehydrogenases toward Aliphatic, Aromatic, and Fused Polycyclic Aldehydes. Biochemistry 1996, 35, 4457–4467. [Google Scholar] [CrossRef]
- Chen, C.-H.; Ferreira, J.C.B.; Gross, E.R.; Mochly-Rosen, D. Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities. Physiol. Rev. 2014, 94, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Jang, E.Y.; Song, S.-H.; Kim, J.S.; Ryu, I.S.; Jeong, C.-H.; Lee, S. Brain Microdialysis Coupled to LC-MS/MS Revealed That Cvt-10216, a Selective Inhibitor of Aldehyde Dehydrogenase 2, Alters the Neurochemical and Behavioral Effects of Methamphetamine. ACS Chem. Neurosci. 2021, 12, 1552–1562. [Google Scholar] [CrossRef]
- Yao, L.; Fan, P.; Arolfo, M.; Jiang, Z.; Olive, M.F.; Zablocki, J.; Sun, H.-L.; Chu, N.; Lee, J.; Kim, H.-Y.; et al. Inhibition of Aldehyde Dehydrogenase-2 Suppresses Cocaine Seeking by Generating Thp, a Cocaine Use–Dependent Inhibitor of Dopamine Synthesis. Nat. Med. 2010, 16, 1024–1028. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Yokoyama, A.; Higuchi, S. Aldehyde Dehydrogenase-2 as a Therapeutic Target. Expert Opin. Ther. Tar. 2019, 23, 955–966. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Lu, J.; Yang, Y.; Cui, J.; Xu, W.; Wu, C.; Li, J.; Li, X. Alcohol Use Disorder and Its Association with Quality of Life and Mortality in Chinese Male Adults: A Population-Based Cohort Study. BMC Public Health 2022, 22, 789. [Google Scholar] [CrossRef]
- Matsumura, Y.; Stiles, K.M.; Reid, J.; Frenk, E.Z.; Cronin, S.; Pagovich, O.E.; Crystal, R.G. Gene Therapy Correction of Aldehyde Dehydrogenase 2 Deficiency. Mol. Ther.-Meth. Clin. D 2019, 15, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.W.K. Racial Differences in Alcohol Sensitivity. Alcohol. Alcoholism. 1986, 21, 93–104. [Google Scholar] [CrossRef]
- Larson, H.N.; Weiner, H.; Hurley, T.D. Disruption of the Coenzyme Binding Site and Dimer Interface Revealed in the Crystal Structure of Mitochondrial Aldehyde Dehydrogenase “Asian” Variant. J. Biol. Chem. 2005, 280, 30550–30556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, H.N.; Zhou, J.; Chen, Z.; Stamler, J.S.; Weiner, H.; Hurley, T.D. Structural and Functional Consequences of Coenzyme Binding to the Inactive Asian Variant of Mitochondrial Aldehyde Dehydrogenase: Roles of Residues 475 and 487 *. J. Biol. Chem. 2007, 282, 12940–12950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edenberg, H.J. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants. Alcohol. Res. Health 2007, 30, 5–13. [Google Scholar] [PubMed]
- Li, D.; Zhao, H.; Gelernter, J. Strong Protective Effect of the Aldehyde Dehydrogenase Gene (ALDH2) 504lys (*2) Allele against Alcoholism and Alcohol-Induced Medical Diseases in Asians. Hum. Genet. 2012, 131, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Arolfo, M.P.; Overstreet, D.H.; Yao, L.; Fan, P.D.; Lawrence, A.J.; Tao, G.X.; Keung, W.M.; Vallee, B.L.; Olive, M.F.; Gass, J.T.; et al. Suppression of Heavy Drinking and Alcohol Seeking by a Selective Aldh-2 Inhibitor. Alcohol. Clin. Exp. Res. 2009, 33, 1935–1944. [Google Scholar] [CrossRef]
- Wang, S.C.; Chen, Y.C.; Chen, S.J.; Lee, C.H.; Cheng, C.M. Alcohol Addiction, Gut Microbiota, and Alcoholism Treatment: A Review. Int. J. Mol. Sci. 2020, 21, 6413. [Google Scholar] [CrossRef]
- Moore, S.A.; Baker, H.M.; Blythe, T.J.; Kitson, K.E.; Kitson, T.M.; Baker, E.N. Sheep Liver Cytosolic Aldehyde Dehydrogenase: The Structure Reveals the Basis for the Retinal Specificity of Class 1 Aldehyde Dehydrogenases. Structure 1998, 6, 1541–1551. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, J.P.; Cooper, D.A.; Schank, J.R.; Lyle, M.A.; Gaval-Cruz, M.; Ogbonmwan, Y.E.; Pozdeyev, N.; Freeman, K.G.; Iuvone, P.M.; Edwards, G.L.; et al. Disulfiram Attenuates Drug-Primed Reinstatement of Cocaine Seeking Via Inhibition of Dopamine Β-Hydroxylase. Neuropsychopharmacology 2010, 35, 2440–2449. [Google Scholar] [CrossRef] [Green Version]
- Spillier, Q.; Vertommen, D.; Ravez, S.; Marteau, R.; Themans, Q.; Corbet, C.; Feron, O.; Wouters, J.; Frederick, R. Anti-Alcohol Abuse Drug Disulfiram Inhibits Human Phgdh Via Disruption of Its Active Tetrameric Form through a Specific Cysteine Oxidation. Sci. Rep. 2019, 9, 4737. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.-Y.; Li, D.-J.; Keung, W.M. Synthesis of Potential Antidipsotropic Isoflavones: Inhibitors of the Mitochondrial Monoamine Oxidase-Aldehyde Dehydrogenase Pathway. J. Med. Chem. 2001, 44, 3320–3328. [Google Scholar] [CrossRef]
- Wang, B.; Buchman, C.D.; Li, L.; Hurley, T.D.; Meroueh, S.O. Enrichment of Chemical Libraries Docked to Protein Conformational Ensembles and Application to Aldehyde Dehydrogenase 2. J. Chem. Inf. Model. 2014, 54, 2105–2116. [Google Scholar] [CrossRef] [Green Version]
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug Repurposing: A Promising Tool to Accelerate the Drug Discovery Process. Drug Discov. Today 2019, 24, 2076–2085. [Google Scholar] [CrossRef]
- Cheng, F.; Murray, J.L.; Rubin, D.H. Drug Repurposing: New Treatments for Zika Virus Infection? Trends Mol. Med. 2016, 22, 919–921. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, L.; Gong, X.; Hu, M.; Wang, H. Virtual Screening FDA Approved Drugs against Multiple Targets of SARS-CoV-2. Clin. Transl. Sci. 2021, 14, 1123–1132. [Google Scholar] [CrossRef]
- Gahlawat, A.; Kumar, N.; Kumar, R.; Sandhu, H.; Singh, I.P.; Singh, S.; Sjöstedt, A.; Garg, P. Structure-Based Virtual Screening to Discover Potential Lead Molecules for the SARS-CoV-2 Main Protease. J. Chem. Inf. Model. 2020, 60, 5781–5793. [Google Scholar] [CrossRef]
- Yuce, M.; Cicek, E.; Inan, T.; Dag, A.B.; Kurkcuoglu, O.; Sungur, F.A. Repurposing of FDA-Approved Drugs against Active Site and Potential Allosteric Drug-Binding Sites of COVID-19 Main Protease. Proteins 2021, 89, 1425–1441. [Google Scholar] [CrossRef]
- Detroja, T.S.; Samson, A.O. Virtual Screening for FDA-Approved Drugs That Selectively Inhibit Arginase Type 1 and 2. Molecules 2022, 27, 5134. [Google Scholar] [CrossRef]
- Dalhat, M.H.; Altayb, H.N.; Khan, M.I.; Choudhry, H. Structural Insights of Human N-Acetyltransferase 10 and Identification of Its Potential Novel Inhibitors. Sci. Rep. 2021, 11, 6051. [Google Scholar] [CrossRef]
- Ye, W.-L.; Zhang, L.-X.; Guan, Y.-D.; Xue, W.-W.; Chen, A.F.; Cao, Q.; Cheng, Y.; Cao, D.-S. Virtual Screening and Experimental Validation of Eef2k Inhibitors by Combining Homology Modeling, Qsar and Molecular Docking from FDA Approved Drugs. New J. Chem. 2019, 43, 19097–19106. [Google Scholar] [CrossRef]
- Juárez-Saldivar, A.; Barbosa-Cabrera, E.; Lara-Ramírez, E.E.; Paz-González, A.D.; Martínez-Vázquez, A.V.; Bocanegra-García, V.; Palos, I.; Campillo, N.E.; Rivera, G. Virtual Screening of FDA-Approved Drugs against Triose Phosphate Isomerase from Entamoeba Histolytica and Giardia Lamblia Identifies Inhibitors of Their Trophozoite Growth Phase. Int. J. Mol. Sci. 2021, 22, 5943. [Google Scholar] [CrossRef]
- Lowe, E.D.; Gao, G.Y.; Johnson, L.N.; Keung, W.M. Structure of Daidzin, a Naturally Occurring Anti-Alcohol-Addiction Agent, in Complex with Human Mitochondrial Aldehyde Dehydrogenase. J. Med. Chem. 2008, 51, 4482–4487. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, C.G.; Xie, P.; Weiner, H.; Hurley, T.D. Structure of Mitochondrial Aldehyde Dehydrogenase: The Genetic Component of Ethanol Aversion. Structure 1997, 5, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.I.; Zhou, J.; Hurley, T.D.; Weiner, H. Human Liver Mitochondrial Aldehyde Dehydrogenase: Three-Dimensional Structure and the Restoration of Solubility and Activity of Chimeric Forms. Protein Sci. 1999, 8, 2784–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Qiu, Y.; Zhang, H. Computational Investigation of Structural Basis for Enhanced Binding of Isoflavone Analogues with Mitochondrial Aldehyde Dehydrogenase. ACS Omega 2022, 7, 8115–8127. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. Autodock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. Protox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [Green Version]
- Zakhari, S. Overview: How Is Alcohol Metabolized by the Body? Alcohol. Res. Health 2006, 29, 245–254. [Google Scholar]
- Jones, A.W. Alcohol, Its Absorption, Distribution, Metabolism, and Excretion in the Body and Pharmacokinetic Calculations. WIREs Forensic Sci. 2019, 1, e1340. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Open Source Drug Discovery Consortium; Lynn, A. g_MMPBSA-A GROMACS Tool for High-Throughput Mm-Pbsa Calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, T.; Hetényi, C.; van der Spoel, D. Quantification of Solvent Contribution to the Stability of Noncovalent Complexes. J. Chem. Theory Comput. 2013, 9, 4542–4551. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tan, T.; Hetényi, C.; Lv, Y.; van der Spoel, D. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations. J. Phys. Chem. C 2014, 118, 7163–7173. [Google Scholar] [CrossRef]
- Shortall, K.; Djeghader, A.; Magner, E.; Soulimane, T. Insights into Aldehyde Dehydrogenase Enzymes: A Structural Perspective. Front. Mol. Biosci. 2021, 8, 659550. [Google Scholar] [CrossRef]
- Malod-Dognin, N.; Pržulj, N. GR-Align: Fast and Flexible Alignment of Protein 3d Structures Using Graphlet Degree Similarity. Bioinformatics 2014, 30, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Sterling, T.; Irwin, J.J. Zinc 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and Autodocktools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved Side-Chain Torsion Potentials for the Amber Ff99sb Protein Force Field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Modell. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Walker, R.C.; de Souza, M.M.; Mercer, I.P.; Gould, I.R.; Klug, D.R. Large and Fast Relaxations inside a Protein: Calculation and Measurement of Reorganization Energies in Alcohol Dehydrogenase. J. Phys. Chem. B 2002, 106, 11658–11665. [Google Scholar] [CrossRef] [Green Version]
- Pavelites, J.J.; Gao, J.; Bash, P.A.; Mackerell, A.D., Jr. A Molecular Mechanics Force Field for NAD+, NADH, and the Pyrophosphate Groups of Nucleotides. J. Comput. Chem. 1997, 18, 221–239. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the Apbs Biomolecular Solvation Software Suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with Alphafold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
ZINC ID | Name | Molecular Structure | q | ∆Edock | Toxicity | ||||
---|---|---|---|---|---|---|---|---|---|
Dili | Carcino | Immuno | Mutagen | Cyto | |||||
ZINC003784182 | differin | −1 | −48.5 | N(83) | Y(61) | N(85) | N(73) | N(76) | |
ZINC011679756 | eltrombopag | −3 | −46.9 | Y(67) | N(57) | N(72) | N(56) | N(84) | |
ZINC003824921 | fexofenadine | 0 | −45.6 | N(99) | Y(50) | N(86) | N(85) | N(81) | |
ZINC035801098 | indacaterol | 0 | −45.6 | N(74) | N(60) | Y(80) | N(61) | N(66) | |
ZINC003831151 | montelukast | −1 | −45.6 | N(56) | N(64) | N(67) | N(72) | N(67) | |
ZINC019632618 | imatinib | 1 | −45.2 | Y(71) | N(67) | Y(66) | N(73) | N(52) | |
ZINC004097343 | itc | 0 | −45.2 | Y(88) | N(62) | Y(75) | N(53) | N(90) | |
ZINC006745272 | stivarga | 0 | −45.2 | Y(82) | N(50) | Y(99) | N(79) | Y(77) | |
ZINC000643138 | nizoral | 1 | −43.9 | Y(76) | N(51) | Y(98) | N(69) | N(63) | |
ZINC000537791 | amaryl | −1 | −43.5 | N(74) | N(61) | N(98) | N(75) | N(68) | |
CVT-10216 | 0 | −43.5 | Y(56) | N(60) | N(95) | Y(54) | N(66) | ||
daidzin | 0 | −38.1 | N(82) | N(85) | N(59) | N(76) | N(69) |
ZINC ID | Name | Molecular Structure | q | ∆Edock | Toxicity | ||||
---|---|---|---|---|---|---|---|---|---|
Dili | Carcino | Immuno | Mutagen | Cyto | |||||
ZINC100017856 | mepron | −1 | −51.1 | N(64) | N(53) | N(86) | N(53) | N(87) | |
ZINC003784182 | differin | −1 | −48.5 | N(83) | Y(61) | N(85) | N(73) | N(76) | |
ZINC028639340 | noxafil | 0 | −47.7 | Y(86) | N(62) | Y(99) | N(56) | N(75) | |
ZINC000896717 | accolate | −1 | −47.3 | Y(76) | N(57) | N(65) | N(67) | N(56) | |
ZINC003938482 | noxafil | 0 | −47.3 | Y(86) | N(62) | Y(99) | N(56) | N(75) | |
ZINC004175630 | orap | 1 | −47.3 | N(78) | N(69) | Y(89) | N(86) | N(65) | |
ZINC040430143 | olaparib | 0 | −46.9 | N(62) | N(57) | N(95) | N(54) | N(65) | |
ZINC011679756 | eltrombopag | −2 | −46.9 | Y(67) | N(57) | N(72) | N(56) | N(84) | |
ZINC001530975 | butenafine | 1 | −46.9 | N(85) | N(57) | N(92) | N(71) | N(75) | |
ZINC000057255 | thalitone | 0 | −46.4 | N(79) | N(71) | Y(80) | N(77) | N(67) |
Compound | Chain A | Chain B | Chain C | Chain D | Tetramer |
---|---|---|---|---|---|
RMSD (nm) | |||||
butenafine | 0.13 | 0.10 | 0.09 | 0.10 | 0.15 |
olaparib | 0.10 | 0.10 | 0.10 | 0.09 | 0.13 |
fexofenadine | 0.12 | 0.10 | 0.11 | 0.11 | 0.14 |
mepron | 0.12 | 0.11 | 0.10 | 0.10 | 0.13 |
differin | 0.10 | 0.10 | 0.09 | 0.10 | 0.11 |
daidzin | 0.09 | 0.11 | 0.10 | 0.09 | 0.12 |
free | 0.10 | 0.10 | 0.12 | 0.11 | 0.13 |
Compound | Chain A | Chain B | Chain C | Chain D | <ΔEbind> |
ΔEbind (kJ/mol) | |||||
butenafine | −290.0 ± 3.9 | −306.9 ± 3.2 | −313.4 ± 3.1 | −270.2 ± 6.0 | −313.0 ± 4.2 |
olaparib | −119.2 ± 2.4 | −115.1 ± 3.3 | −127.6 ± 8.7 | −121.9 ± 5.1 | −126.8 ± 5.4 |
fexofenadine | −35.2 ± 10.4 | −94.4 ± 5.2 | −34.2 ± 13.9 | −90.1 ± 5.2 | −93.8 ± 9.4 |
mepron | 35.0 ± 3.5 | 8.3 ± 1.1 | 47.5 ± 5.5 | 44.4 ± 4.0 | 8.3 ± 3.9 |
differin | 64.2 ± 6.3 | 58.9 ± 5.3 | 92.7 ± 7.8 | 70.9 ± 6.9 | 59.5 ± 6.6 |
daidzin | −79.5 ± 9.9 | −91.9 ± 4.5 | −110.1 ± 4.6 | −86.9 ± 4.9 | −110.1 ± 6.4 |
Compound | q | ΔEvdW | ΔEelec | ΔEMM | ΔGpolar | ΔGnonpolar | ΔGsol | ΔEbind |
---|---|---|---|---|---|---|---|---|
butenafine | +1 | −220.4 ± 2.2 | −280.6 ± 1.3 | −501.0 ± 1.9 | 207.6 ± 2.3 | −20.0 ± 0.1 | 187.6 ± 2.4 | −313.4 ± 3.1 |
olaparib | 0 | −232.2 ± 4.9 | −8.6 ± 2.6 | −240.8 ± 7.4 | 134.9 ± 3.1 | −21.7 ± 0.4 | 113.2 ± 3.2 | −127.6 ± 8.7 |
fexofenadine | 0 | −216.9 ± 2.7 | −183.6 ± 5.4 | −400.4 ± 7.0 | 330.7 ± 8.6 | −24.7 ± 0.4 | 306.0 ± 8.5 | −94.4 ± 5.2 |
mepron | −1 | −227.5 ± 1.1 | 101.9 ± 5.0 | −125.5 ± 4.0 | 152.9 ± 4.0 | −19.1 ± 0.1 | 133.8 ± 3.9 | 8.3 ± 1.1 |
differin | −1 | −199.5 ± 3.6 | 74.8 ± 4.1 | −124.7 ± 1.5 | 203.4 ± 5.0 | −19.8 ± 0.2 | 183.6 ± 5.2 | 58.9 ± 5.3 |
daidzin | 0 | −222.9 ± 3.6 | −65.1 ± 2.5 | −288.1 ± 3.5 | 197.7 ± 3.9 | −19.8 ± 0.2 | 177.9 ± 3.8 | −110.1 ± 4.6 |
Name | Entry | Identifier | Residues | q | RMSD (nm) | ∆Edock (kJ/mol) | ||
---|---|---|---|---|---|---|---|---|
Others | ALDH2 | Butenafine | Olaparib | |||||
ALDH1A1 | P00352 | 4WB9 | 21–501 | −2 | 0.26 ± 0.18 | 0.13 | −40.3 ± 0.2 | −42.7 ± 0.2 |
ALDH1A2 | O94788 | 6B5G | 38–518 | −4 | 0.27 ± 0.19 | 0.12 | −39.3 ± 0.1 | −45.3 ± 1.7 |
ALDH1A3 | P47895 | 5FHZ | 32–507 | −2 | 0.26 ± 0.18 | 0.15 | −36.6 ± 0.2 | −39.7 ± 0.1 |
ALDH1B1 | P30837 | 7RAD | 37–500 | −5 | 0.29 ± 0.18 | 0.04 | −37.6 ± 0.2 | −36.8 ± 0.9 |
ALDH1L1 | O75891 | AF-O75891-F1 | 422–902 | −2 | 0.26 ± 0.17 | 0.16 | −28.5 ± 0.1 | −36.4 ± 0.1 |
ALDH1L2 | Q3SY69 | AF-Q3SY69-F1 | 443–923 | −4 | 0.26 ± 0.17 | 0.16 | −27.5 ± 0.2 | −34.3 ± 0.1 |
ALDH2 | P05091 | 2VLE | 37–500 | −5 | 0.30 ± 0.23 | 0.00 | −39.0 ± 3.9 | −39.2 ± 2.6 |
ALDH3A1 | P30838 | 4L2O | 1–432 | −6 | 0.37 ± 0.22 | 0.35 | −35.3 ± 0.3 | −35.5 ± 0.3 |
ALDH3A2 | P51648 | 4QGK | 1–432 | −3 | 0.37 ± 0.21 | 0.35 | −40.5 ± 1.7 | −41.4 ± 1.2 |
ALDH3B1 | P43353 | AF-P43353-F1 | 1–432 | −2 | 0.38 ± 0.22 | 0.33 | −34.6 ± 0.2 | −34.2 ± 1.4 |
ALDH3B2 | P48448 | AF-P48448-F1 | 1–353 | −7 | 0.68 ± 0.30 | 0.85 | −35.6 ± 0.4 | −37.9 ± 0.2 |
ALDH4A1 | P30038 | 4OE5 | 64–551 | −4 | 0.49 ± 0.18 | 0.48 | −34.6 ± 0.4 | −41.8 ± 0.1 |
ALDH5A1 | P51649 | 2W8R | 61–535 | −2 | 0.27 ± 0.15 | 0.19 | −33.5 ± 0.1 | −40.6 ± 0.1 |
ALDH6A1 | Q02252 | AF-Q02252-F1 | 39–517 | 4 | 0.32 ± 0.21 | 0.20 | −28.4 ± 0.2 | −33.5 ± 0.6 |
ALDH7A1 | P49419 | 4ZUK | 51–500 | 2 | 0.31 ± 0.14 | 0.18 | −41.2 ± 1.6 | −46.4 ± 0.1 |
ALDH8A1 | Q9H2A2 | AF-Q9H2A2-F1 | 10–487 | −1 | 0.31 ± 0.20 | 0.21 | −25.8 ± 0.4 | −31.4 ± 0.1 |
ALDH9A1 | P49189 | 6VR6 | 12–488 | −3 | 0.30 ± 0.21 | 0.16 | −41.2 ± 0.2 | −43.7 ± 0.9 |
ALDH16A1 | Q8IZ83 | AF-Q8IZ83-F1 | 26–488 | −9 | 0.61 ± 0.33 | 0.56 | −30.5 ± 0.1 | −37.2 ± 0.1 |
ALDH18A1 | P54886 | 2H5G | 361–770 | −7 | 0.81 ± 0.19 | 0.80 | −29.5 ± 0.6 | −40.1 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Zhang, Y.; Jiang, W.; Zhang, H. Virtual Screening of FDA-Approved Drugs for Enhanced Binding with Mitochondrial Aldehyde Dehydrogenase. Molecules 2022, 27, 8773. https://doi.org/10.3390/molecules27248773
Zhou B, Zhang Y, Jiang W, Zhang H. Virtual Screening of FDA-Approved Drugs for Enhanced Binding with Mitochondrial Aldehyde Dehydrogenase. Molecules. 2022; 27(24):8773. https://doi.org/10.3390/molecules27248773
Chicago/Turabian StyleZhou, Boqian, Yongguang Zhang, Wanyun Jiang, and Haiyang Zhang. 2022. "Virtual Screening of FDA-Approved Drugs for Enhanced Binding with Mitochondrial Aldehyde Dehydrogenase" Molecules 27, no. 24: 8773. https://doi.org/10.3390/molecules27248773
APA StyleZhou, B., Zhang, Y., Jiang, W., & Zhang, H. (2022). Virtual Screening of FDA-Approved Drugs for Enhanced Binding with Mitochondrial Aldehyde Dehydrogenase. Molecules, 27(24), 8773. https://doi.org/10.3390/molecules27248773