Pyridyl Methylsulfinyl Benzimidazole Derivatives as Promising Agents against Giardia lamblia and Trichomonas vaginalis
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Screening of GlG6PD:6PGL and TvG6PD::6PGL Inactivation with Benzimidazole Compounds
2.2. Second-Order Rate Constant (k2) of Selected Compounds
2.3. Spectroscopic and Chromatographic Characterization
2.3.1. Circular Dichroism Experiments
2.3.2. Intrinsic Fluorescence Assays
2.4. Molecular Docking Study
2.5. In Vitro Assays over T. vaginalis Trophozoites
2.6. Pharmacokinetic Predictive Values
3. Materials and Methods
3.1. Purification of Fused GlG6PD:6PGLP and TvG6PD::6PGL Recombinant Proteins
3.2. Activity Assay
3.2.1. General Methodology for the Synthesis of Compounds
3.2.2. Determination of the Molar Extinction Coefficient of the Compounds
3.3. In Vitro Screening of GlG6PD:6PGLP and TvG6PD::6PGL Inactivation with Compounds
3.4. Second-Order Rate Constant (k2) of Selected Hit Compounds
3.5. Spectroscopic and Chromatographic Characterization
3.5.1. Circular Dichroism Experiments
3.5.2. Intrinsic Fluorescence Assays
3.5.3. Oligomeric Status of the Recombinant Proteins
3.6. In Silico Docking Calculation
3.7. In Vitro Assays over T. vaginalis Trophozoites
3.7.1. T. vaginalis Culture
3.7.2. Anti-T. vaginalis Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Theel, E.S.; Pritt, B.S. Parasites. Microbiol. Spectr. 2016, 4, DMIH2-0013-2015. [Google Scholar] [CrossRef] [PubMed]
- Enríquez-Flores, S.; Rodríguez-Romero, A.; Hernández-Alcántara, G.; Oria-Hernández, J.; Gutiérrez-Castrellón, P.; Pérez-Hernández, G.; de la Mora-de la Mora, I.; Castillo-Villanueva, A.; García-Torres, I.; Méndez, S.T.; et al. Determining the molecular mechanism of inactivation by chemical modification of triosephosphate isomerase from the human parasite Giardia lamblia: A study for antiparasitic drug design. Proteins 2011, 9, 2711–2724. [Google Scholar] [CrossRef]
- Reyes-Vivas, H.; de la Mora-de la Mora, I.; Castillo-Villanueva, A.; Yépez-Mulia, L.; Hernández-Alcántara, G.; Figueroa-Salazar, R.; García-Torres, I.; Gómez-Manzo, S.; Méndez, S.T.; Vanoye-Carlo, A.; et al. Giardial triosephosphate isomerase as possible target of the cytotoxic effect of omeprazole in Giardia lamblia. Antimicrob. Agents Chemother. 2014, 12, 7072–7082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Torres, I.; de la Mora-de la Mora, I.; Marcial-Quino, J.; Gómez-Manzo, S.; Vanoye-Carlo, A.; Navarrete-Vázquez, G.; Colín-Lozano, B.; Gutiérrez-Castrellón, P.; Sierra-Palacios, E.; López-Velázquez, G.; et al. Proton pump inhibitors drastically modify triosephosphate isomerase from Giardia lamblia at functional and structural levels, providing molecular leads in the design of new antigiardiasic drugs. Biochim. Biophys. Acta 2016, 1860, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Vique-Sánchez, J.L.; Caro-Gómez, L.A.; Brieba, L.G.; Benítez-Cardoza, C.G. Developing a new drug against trichomoniasis, new inhibitory compounds of the protein triosephosphate isomerase. Parasitol. Int. 2020, 76, 102086. [Google Scholar] [CrossRef]
- Benítez-Cardoza, C.G.; Brieba, L.G.; Arroyo, R.; Rojo-Domínguez, A.; Vique-Sánchez, J.L. Triosephosphate isomerase as a therapeutic target against trichomoniasis. Mol. Biochem. Parasitol. 2021, 246, 111413. [Google Scholar] [CrossRef]
- Hua, Y.; Dai, X.; Xu, Y.; Xing, G.; Liu, H.; Lu, T.; Chen, Y.; Zhang, Y. Drug repositioning: Progress and challenges in drug discovery for various diseases. Eur. J. Med. Chem. 2022, 234, 114239. [Google Scholar] [CrossRef]
- López-Velázquez, G.; Fernández-Lainez, C.; de la Mora-de la Mora, J.I.; Caudillo de la Portilla, D.; Reynoso-Robles, R.; González-Maciel, A.; Ridaura, C.; García-Torres, I.; Gutiérrez-Castrellón, P.; Olivos-García, A.; et al. On the molecular and cellular effects of omeprazole to further support its effectiveness as an antigiardial drug. Sci. Rep. 2019, 9, 8922. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Villanueva, J.; Romo-Mancillas, A.; Hernández-Campos, A.; Yépez-Mulia, L.; Hernández-Luis, F.; Castillo, R. Antiprotozoal activity of proton-pump inhibitors. Bioorg. Med. Chem. Lett. 2011, 24, 7351–7354. [Google Scholar] [CrossRef]
- Hernández-Ochoa, B.; Navarrete-Vázquez, G.; Nava-Zuazo, C.; Castillo-Villanueva, A.; Méndez, S.T.; Torres-Arroyo, A.; Gómez-Manzo, S.; Marcial-Quino, J.; Ponce-Macotela, M.; Rufino-González, Y.; et al. Novel giardicidal compounds bearing proton pump inhibitor scaffold proceeding through triosephosphate isomerase inactivation. Sci. Rep. 2017, 7, 7810. [Google Scholar] [CrossRef]
- Hernández-Ochoa, B.; Gómez-Manzo, S.; Sánchez-Carrillo, A.; Marcial-Quino, J.; Rocha-Ramírez, L.M.; Santos-Segura, A.; Ramírez-Nava, E.J.; Arreguin-Espinosa, R.; Cuevas-Cruz, M.; Méndez-Tenorio, A.; et al. Enhanced Antigiardial Effect of Omeprazole Analog Benzimidazole Compounds. Molecules 2020, 17, 3979. [Google Scholar] [CrossRef] [PubMed]
- Cartee, N.M.P.; Wang, M.M. Binding of omeprazole to protein targets identified by monoclonal antibodies. PLoS. ONE 2020, 15, e0239464. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rosas, V.; Hernández-Ochoa, B.; Navarrete-Vázquez, G.; Martínez-Conde, C.; Gómez-Chávez, F.; Morales-Luna, L.; González-Valdez, A.; Arreguin-Espinosa, R.; Enríquez-Flores, S.; Pérez de la Cruz, V.; et al. Kinetic and Molecular Docking Studies to Determine the Effect of Inhibitors on the Activity and Structure of Fused G6PD::6PGL Protein from Trichomonas vaginalis. Molecules 2022, 27, 1174. [Google Scholar] [CrossRef] [PubMed]
- Morales-Luna, L.; Serrano-Posada, H.; González-Valdez, A.; Ortega-Cuellar, D.; Vanoye-Carlo, A.; Hernández-Ochoa, B.; Sierra-Palacios, E.; Rufino-González, Y.; Castillo-Rodríguez, R.A.; Pérez de la Cruz, V.; et al. Biochemical Characterization and Structural Modeling of Fused Glucose-6-Phosphate Dehydrogenase-Phosphogluconolactonase from Giardia lamblia. Int. J. Mol. Sci. 2018, 19, 2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, D.; Caballero, J. Is It Reliable to Use Common Molecular Docking Methods for Comparing the Binding Affinities of Enantiomer Pairs for Their Protein Target? Int. J. Mol. Sci. 2016, 17, 525. [Google Scholar] [CrossRef] [Green Version]
- Au, S.W.; Naylor, C.E.; Gover, S.; Vandeputte-Rutten, L.; Scopes, D.A.; Mason, P.J.; Luzzatto, L.; Lam, V.M.; Adams, M.J. Solution of the structure of tetrameric human glucose 6-phosphate dehydrogenase by molecular replacement. Acta Crystallogr. Sect. D Biol. Crystallogr. 1999, 55, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Bautista, J.M.; Mason, P.J.; Luzzatto, L. Human glucose-6-phosphate dehydrogenase Lysine 205 is dispensable for substrate binding but essential for catalysis. FEBS Lett. 1995, 366, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Kotaka, M.; Gover, S.; Vandeputte-Rutten, L.; Au, S.W.; Lam, V.M.; Adams, M.J. Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Abhari, F.M.; Pirestani, M.; Dalimi, A. Anti-amoebic activity of a cecropin-melittin hybrid peptide (CM11) against trophozoites of Entamoeba histolytica. Wien. Klin. Wochenschr. 2019, 131, 427–434. [Google Scholar] [CrossRef]
- Seña, A.C.; Bachmann, L.H.; Hobbs, M.M. Persistent and recurrent Trichomonas vaginalis infections: Epidemiology, treatment and management considerations. Expert Rev. Anti-Infect. Ther. 2014, 12, 673–685. [Google Scholar] [CrossRef]
- Upcroft, P.; Upcroft, J.A. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin. Microbiol. Rev. 2001, 14, 150–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moya, I.A.; Su, Z.; Honek, J.F. Current and future perspectives on the chemotherapy of the parasitic protozoa Trichomonas vaginalis and Entamoeba histolytica. Future Med. Chem. 2009, 4, 619–643. [Google Scholar] [CrossRef] [PubMed]
- Leitsch, D.; Burgess, A.G.; Dunn, L.A.; Krauer, K.G.; Tan, K.; Duchêne, M.; Upcroft, P.; Eckmann, L.; Upcroft, J.A. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. J. Antimicrob. Chemother. 2011, 66, 1756–1766. [Google Scholar] [CrossRef] [Green Version]
- Pal, D.; Banerjee, S.; Cui, J.; Schwartz, A.; Ghosh, S.K.; Samuelson, J. Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases). Antimicrob. Agents. Chemother. 2009, 53, 458–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polat, Z.A.; Cetin, A.; Savage, P.B. Evaluation of the in vitro activity of ceragenins against Trichomonas vaginalis. Acta Parasitol. 2016, 61, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.S.D.; Sena-Lopes, Â.; das Neves, R.N.; Casaril, A.M.; Domingues, M.; Birmann, P.T.; da Silva, E.T.; de Souza, M.V.N.; Savegnago, L.; Borsuk, S. In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitol. Res. 2022, 121, 2697–2711. [Google Scholar] [CrossRef]
- Alves, M.S.D.; das Neves, R.N.; Sena-Lopes, Â.; Domingues, M.; Casaril, A.M.; Segatto, N.V.; Nogueira, T.C.M.; de Souza, M.V.N.; Savegnago, L.; Seixas, F.K.; et al. Antiparasitic activity of furanyl N-acylhydrazone derivatives against Trichomonas vaginalis: In vitro and in silico analyses. Parasit. Vectors 2020, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Mannhold, R. The impact of lipophilicity in drug research: A case report on beta-blockers. Mini Rev. Med. Chem. 2005, 5, 197–205. [Google Scholar] [CrossRef]
- Bergström, C.A. In silico predictions of drug solubility and permeability: Two rate-limiting barriers to oral drug absorption. Basic Clin. Pharmacol. Toxicol. 2005, 96, 156–161. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Ogilvie, B.W.; Yerino, P.; Kazmi, F.; Buckley, D.B.; Rostami-Hodjegan, A.; Paris, B.L.; Toren, P.; Parkinson, A. The proton pump inhibitor, omeprazole, but not lansoprazole or pantoprazole, is a metabolism-dependent inhibitor of CYP2C19: Implications for coadministration with clopidogrel. Drug. Metab. Dispos. 2011, 39, 2020–2033. [Google Scholar] [CrossRef] [Green Version]
- Morales-Luna, L.; Hernández-Ochoa, B.; Ramírez-Nava, E.J.; Martínez-Rosas, V.; Ortiz-Ramírez, P.; Fernández-Rosario, F.; González-Valdez, A.; Cárdenas-Rodríguez, N.; Serrano-Posada, H.; Centeno-Leija, S.; et al. Characterizing the Fused TvG6PD::6PGL Protein from the Protozoan Trichomonas vaginalis, and Effects of the NADP+ Molecule on Enzyme Stability. Int. J. Mol. Sci. 2020, 21, 4831. [Google Scholar] [CrossRef] [PubMed]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018, 27, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, L.S. The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol. 1957, 43, 488–490. [Google Scholar] [CrossRef]
Compounds | Inhibition (%) at 400 µM of GlG6PD::6PGL * | Inhibition (%) at 400 µM of TvG6PD::6PGL * |
---|---|---|
H-BZM1 | 62 ± 5 | 7 ± 5 |
H-BZM2 | 100 ± 5 | 47 ± 5 |
H2N-BZM6 | 100 ± 5 | 12 ± 5 |
O2N-BZM7 | 100 ± 5 | 95 ± 5 |
O2N-BZM9 | 100 ± 5 | 72 ± 5 |
Compounds | GlG6PD::6PGL | TvG6PD::6PGL | ||||
---|---|---|---|---|---|---|
Inhibition (%) | IC50 (µM) | k2 (M−1·s−1) | Inhibition (%) | IC50 (µM) | k2 (M−1·s−1) | |
H-BZM2 | 100 | 24 | 3.3 | 47.5 | - | - |
O2N-BZM7 | 100 | 11 | 1.9 | 94.9 | 22 | 0.8 |
O2N-BZM9 | 100 | 15 | 6.1 | 71.9 | 240 | 1.6 |
Compound | O2N-BZM7 µM (SI) | O2N-BZM9 µM (SI) | Metronidazole µM (SI) |
---|---|---|---|
T. vaginalis IC50 | 6 (106) | 4 (160) | 12 (1.6) |
G. lamblia IC50 | 14 (45) | 17 (39) | 4.8 (3.9) |
Caco-2 (SI) CC50 | 640 | 663 | 19 [19] |
Compounds | ||||
---|---|---|---|---|
Model | O2N−BZM7 | O2N−BZM9 | Comments | |
A | Human intestinal absorption | (+) High | (+) High | |
Caco-2 permeability | −4.509 | −4.562 | Optimal: higher than −5.15 log units | |
MDCK permeability | 0.00025 | 0.00018 | High passive permeability: >2.0 × 10−5 cm/s | |
Bioavailability (F) | >30% | >30% | ||
D | Volume distribution | 0.338 L/kg | 0.358 L/kg | Optimal: 0.04–20 L/kg |
BBB penetration | 0.572 | ++ | Probability of being BBB+ | |
Plasma protein binding | 94 | 100 | Optimal: <95%. | |
M | CYP2C19 substrate | (+) Yes | (+) Yes | |
CYP2C19 inhibitor | 0.202 | 0.204 | Probability of inhibition/blockage | |
CYP3A4 substrate | (+) Yes | (+) Yes | ||
CYP3A4 inhibitor | 0.23 | 0.21 | Probability of inhibition/blockage | |
E | Clearance (Cl) | 2.908 | 4.026 | mL/min/kg |
Half-life (T1/2) | >3 h | >3 h | ||
T | hERG blockers | 0.024 inactive | 0.018 | Probability of inhibition |
Rat oral acute toxicity | − | − |
Compound | Formula Weight (g/mol) | λmax (nm) | ε (M−1·cm−1) |
---|---|---|---|
H−BZM1 | 257.31 | 299 | 15, 456 |
H−BZM2 | 315.39 | 299 | 17, 304 |
H2N−BZM6 | 384.37 | 306 | 13, 790 |
O2N−BZM7 | 302.30 | 345 | 17, 599 |
O2N−BZM9 | 414.35 | 345 | 14, 369 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Ochoa, B.; Martínez-Rosas, V.; Morales-Luna, L.; Calderón-Jaimes, E.; Rocha-Ramírez, L.M.; Ortega-Cuellar, D.; Rufino-González, Y.; González-Valdez, A.; Arreguin-Espinosa, R.; Enríquez-Flores, S.; et al. Pyridyl Methylsulfinyl Benzimidazole Derivatives as Promising Agents against Giardia lamblia and Trichomonas vaginalis. Molecules 2022, 27, 8902. https://doi.org/10.3390/molecules27248902
Hernández-Ochoa B, Martínez-Rosas V, Morales-Luna L, Calderón-Jaimes E, Rocha-Ramírez LM, Ortega-Cuellar D, Rufino-González Y, González-Valdez A, Arreguin-Espinosa R, Enríquez-Flores S, et al. Pyridyl Methylsulfinyl Benzimidazole Derivatives as Promising Agents against Giardia lamblia and Trichomonas vaginalis. Molecules. 2022; 27(24):8902. https://doi.org/10.3390/molecules27248902
Chicago/Turabian StyleHernández-Ochoa, Beatriz, Víctor Martínez-Rosas, Laura Morales-Luna, Ernesto Calderón-Jaimes, Luz María Rocha-Ramírez, Daniel Ortega-Cuellar, Yadira Rufino-González, Abigail González-Valdez, Roberto Arreguin-Espinosa, Sergio Enríquez-Flores, and et al. 2022. "Pyridyl Methylsulfinyl Benzimidazole Derivatives as Promising Agents against Giardia lamblia and Trichomonas vaginalis" Molecules 27, no. 24: 8902. https://doi.org/10.3390/molecules27248902
APA StyleHernández-Ochoa, B., Martínez-Rosas, V., Morales-Luna, L., Calderón-Jaimes, E., Rocha-Ramírez, L. M., Ortega-Cuellar, D., Rufino-González, Y., González-Valdez, A., Arreguin-Espinosa, R., Enríquez-Flores, S., Castillo-Rodríguez, R. A., Cárdenas-Rodríguez, N., Wong-Baeza, C., Baeza-Ramírez, I., & Gómez-Manzo, S. (2022). Pyridyl Methylsulfinyl Benzimidazole Derivatives as Promising Agents against Giardia lamblia and Trichomonas vaginalis. Molecules, 27(24), 8902. https://doi.org/10.3390/molecules27248902