Volatile Profiles and Sensory Characteristics of Cabernet Sauvignon Dry Red Wines in the Sub-Regions of the Eastern Foothills of Ningxia Helan Mountain in China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oenological Parameters of Wines from Different Sub-Regions
2.2. Volatile Profiles of Cabernet Sauvignon Wines from Different Sub-Regions
2.3. Sensory Characteristics of Cabernet Sauvignon Wines from Different Sub-Regions of Ningxia
2.4. Typical Characteristics of Cabernet Sauvignon Wines in Different Sub-regions of the Eastern Foothills of Helan Mountain
2.4.1. Volatile Compounds
2.4.2. Sensory Characteristics
3. Materials and Methods
3.1. Wine Samples
3.2. Reagents and Standard
3.3. Analysis of Volatile Compounds
3.4. Sensory Analysis
3.4.1. CATA
3.4.2. QDA
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ricardo-Rodrigues, S.; Laranjo, M.; Coelho, R.; Martins, P.; Rato, A.E.; Vaz, M.; Valverde, P.; Shahidian, S.; Véstia, J.; Agulheiro-Santos, A.C. Terroir influence on quality of ‘Crimson’ table grapes. Sci. Hortic. 2018, 245, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Clingeleffer, P. Terroir: The Application of an Old Concept in Modern Viticulture. Encycl. Agric. Food Syst. 2014, 5, 277–288. [Google Scholar] [CrossRef]
- King, E.S.; Stoumen, M.; Buscema, F.; Hjelmeland, A.K.; Ebeler, S.E.; Heymann, H.; Boulton, R.B. Regional sensory and chemical characteristics of Malbec wines from Mendoza and California. Food Chem. 2014, 143, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Blackman, J.W.; Schmidtke, L.M. Exploring the regional typicality of Australian Shiraz wines using untargeted metabolomics. Aust. J. Grape Wine Res. 2021, 27, 378–391. [Google Scholar] [CrossRef]
- Pearson, W.; Schmidtke, L.; Francis, I.; Carr, B.; Blackman, J. Characterising inter- and intra-regional variation in sensory profiles of Australian Shiraz wines from six regions. Aust. J. Grape Wine Res. 2020, 26, 372–384. [Google Scholar] [CrossRef]
- Heymann, H.; Robinson, A.L.; Buscema, F.; Stoumen, M.E.; King, E.S.; Hopfer, H.; Boulton, R.B.; Ebeler, S.E. Effect of Region on the Volatile Composition and Sensory Profiles of Malbec and Cabernet Sauvignon Wines. In Advances in Wine Research; American Chemical Society: New York, NY, USA, 2015; pp. 109–122. [Google Scholar]
- Gonzaga, L.S.; Capone, D.L.; Bastian, S.E.; Danner, L.; Jeffery, D.W. Sensory typicity of regional Australian Cabernet Sauvignon wines according to expert evaluations and descriptive analysis. Food Res. Int. 2020, 138 Pt A, 109760. [Google Scholar] [CrossRef]
- Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Lan, Y.; Liu, M.; Zhang, X.; Li, S.; Shi, Y.; Duan, C. Regional Variation of Chemical Characteristics in Young Marselan (Vitis vinifera L.) Red Wines from Five Regions of China. Foods 2022, 11, 787. [Google Scholar] [CrossRef]
- Jiang, B.; Sun, Z.-Y. Phenolic compounds, total antioxidant capacity and volatile components of Cabernet Sauvignon red wines from five different wine-producing regions in China. Food Sci. Technol. 2019, 39, 735–746. [Google Scholar] [CrossRef]
- Yu, C.; Yang, Y.; Huang, Z.; Zhang, X.; Zhu, W.; Liu, J.; Yang, M. The difference in volatile flavoring components of Cabernet Sauvignon dry red wine from five different producing places in China. Liquor.-Mak. Sci. Tech. 2015, 23–26. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, R.; Qin, Q.; Sun, Q. Soil affected the variations in grape and wine properties along the eastern foot of Helan Mountain, China. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2019, 69, 494–502. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Zhang, J.; Xue, J.; Zhang, J.X. Aroma characteristics of aged ‘Cabernet Sauvignon’ dry red wine from Eastern Foothill of Helan Mountain. Food Sci. 2019, 40, 203–209. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Gu, X.; Sun, X.; Jin, G.; Zhang, J.; Ma, W. Flavor Chemical Profiles of Cabernet Sauvignon Wines: Six Vintages from 2013 to 2018 from the Eastern Foothills of the Ningxia Helan Mountains in China. Foods 2021, 11, 22. [Google Scholar] [CrossRef]
- Ge, Q.; Wang, X.L.; Yan, Y.; Zhang, J.; Wu, Y.; Gou, C.L.; Li, C.H. Characteristics analysis of volatile aroma substances in ‘Cabernet Sauvignon’ wines from different producing regions at the eastern foot of Helan Mountain in Ningxia. Chn. Brw. 2022, 41, 98–106. [Google Scholar] [CrossRef]
- Valentin, D.; Chollet, S.; Lelièvre, M.; Abdi, H. Quick and dirty but still pretty good: A review of new descriptive methods in food science. Int. J. Food Sci. Tech. 2012, 47, 1563–1578. [Google Scholar] [CrossRef]
- Ares, G. Methodological challenges in sensory characterization. Curr. Opin. Food Sci. 2015, 3, 1–5. [Google Scholar] [CrossRef]
- Rinaldi, A.; Moine, V.; Moio, L. Astringency subqualities and sensory perception of Tuscan Sangiovese wines. OENO ONE. 2020, 54, 75–85. [Google Scholar] [CrossRef]
- Rinaldi, A.; Vecchio, R.; Moio, L. Differences in Astringency Subqualities Evaluated by Consumers and Trained Assessors on Sangiovese Wine Using Check-All-That-Apply (CATA). Foods 2021, 10, 218. [Google Scholar] [CrossRef]
- Schumaker, M.R.; Diako, C.; Castura, J.C.; Edwards, C.G.; Ross, C.F. Influence of wine composition on consumer perception and acceptance of Brettanomyces metabolites using temporal check-all-that-apply methodology. Food Res. Int. 2018, 116, 963–972. [Google Scholar] [CrossRef]
- Li, Z.J.; Niu, G.C.; Li, X.G.; Zuo, F.; Guan, C.; Zhai, A.H. Application of quantitative descriptive analysis (QDA) method in sensory evaluation of wine. Chn. Brw. 2009, 6, 1619–1625. [Google Scholar] [CrossRef]
- Su, P.F.; Yuan, C.L.; Yang, L.; Zhou, Y.L.; Yan, X.Y. Effect of different harvest dates on the quality of Pinot Noir grape and the resulting wine. Mod. Food Sci. Technol. 2016, 32, 234–240. [Google Scholar] [CrossRef]
- Nicolli, K.P.; Biasoto, A.C.; Souza-Silva, É.A.; Guerra, C.C.; Dos Santos, H.P.; Welke, J.E.; Zini, C.A. Sensory, olfactometry and comprehensive two-dimensional gas chromatography analyses as appropriate tools to characterize the effects of vine management on wine aroma. Food Chem. 2018, 243, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Guld, Z.; Sárdy, D.N.; Gere, A.; Rácz, A. Comparison of sensory evaluation techniques for Hungarian wines. J. Chemom. 2020, 34, e3219. [Google Scholar] [CrossRef] [Green Version]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Qian, X.; Lan, Y.; Han, S.; Liang, N.; Zhu, B.; Shi, Y.; Duan, C. Comprehensive investigation of lactones and furanones in icewines and dry wines using gas chromatography-triple quadrupole mass spectrometry. Food Res. Int. 2020, 137, 109650. [Google Scholar] [CrossRef]
- Kögel, S.; Botezatu, A.; Hoffmann, C.; Pickering, G. Methoxypyrazine composition of Coccinellidae-tainted Riesling and Pinot noir wine from Germany. J. Sci. Food Agric. 2014, 95, 509–514. [Google Scholar] [CrossRef]
- Bogart, K.; Bisson, L. Persistence of vegetal characters in winegrapes and wine. Pract. Winery Vineyard J. 2006, 86, 13–20. [Google Scholar]
- Koch, A.; Ebeler, S.E.; Williams, L.E.; Matthews, M.A. Fruit ripening in Vitis vinifera: Light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries. Physiol. Plant. 2012, 145, 275–285. [Google Scholar] [CrossRef]
- Ryona, I.; Pan, B.S.; Intrigliolo, D.S.; Lakso, A.N.; Sacks, G.L. Effects of Cluster Light Exposure on 3-Isobutyl-2-methoxypyrazine Accumulation and Degradation Patterns in Red Wine Grapes (Vitis vinifera L. Cv. Cabernet Franc). J. Agric. Food Chem. 2008, 56, 10838–10846. [Google Scholar] [CrossRef]
- De Boubée, D.R.; Van Leeuwen, C.; Dubourdieu, D. Organoleptic Impact of 2-Methoxy-3-isobutylpyrazine on Red Bordeaux and Loire Wines. Effect of Environmental Conditions on Concentrations in Grapes during Ripening. J. Agric. Food Chem. 2000, 48, 4830–4834. [Google Scholar] [CrossRef]
- Kotseridis, Y.; Anocibar Beloqui, A.; Bayonove, C.L.; Baumes, R.L.; Bertrand, A. Effects of selected viticultural and enological factors on levels of 2-methoxy-3-isobutylpyrazine in wines. Int. J. Vine Wine Sci. 1999, 33, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.-Q.; Liu, B.; Zhu, B.-Q.; Lan, Y.-B.; Gao, Y.; Wang, D.; Reeves, M.J.; Duan, C.-Q. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions. Plant Physiol. Biochem. 2015, 89, 123–133. [Google Scholar] [CrossRef]
- Zea, L.; Moyano, L.; Moreno, J.; Cortes, B.; Medina, M. Discrimination of the aroma fraction of Sherry wines obtained by oxidative and biological ageing. Food Chem. 2001, 75, 79–84. [Google Scholar] [CrossRef]
- Feng, H.; Yuan, F.; Skinkis, P.A.; Qian, M.C. Influence of cluster zone leaf removal on Pinot noir grape chemical and volatile composition. Food Chem. 2015, 173, 414–423. [Google Scholar] [CrossRef]
- Chen, W.-K.; Yu, K.-J.; Liu, B.; Lan, Y.-B.; Sun, R.-Z.; Li, Q.; He, F.; Pan, Q.-H.; Duan, C.-Q.; Wang, J. Comparison of transcriptional expression patterns of carotenoid metabolism in ‘Cabernet Sauvignon’ grapes from two regions with distinct climate. J. Plant Physiol. 2017, 213, 75–86. [Google Scholar] [CrossRef]
- Asproudi, A.; Petrozziello, M.; Cavalletto, S.; Ferrandino, A.; Mania, E.; Guidoni, S.; Uidoni, S. Bunch Microclimate Affects Carotenoids Evolution in cv. Nebbiolo (V. vinifera L.). Appl. Sci. 2020, 10, 3846. [Google Scholar] [CrossRef]
- Lee, S.H.; Seo, M.J.; Riu, M.; Cotta, J.P.; Block, D.E.; Dokoozlian, N.K.; Ebeler, S.E. Vine microclimate and norisoprenoid concentration—291 vine microclimate and norisoprenoid concentration in Cabernet Sauvignon grapes and wines. Am. J. Enol. Viticult. 2007, 58, 291–301. [Google Scholar] [CrossRef]
- Kwasniewski, M.T.; Vanden Heuvel, J.E.V.; Pan, B.S.; Sacks, G.L. Timing of Cluster Light Environment Manipulation during Grape Development Affects C13 Norisoprenoid and Carotenoid Concentrations in Riesling. J. Agric. Food Chem. 2010, 58, 6841–6849. [Google Scholar] [CrossRef]
- Antalick, G.; Perello, M.-C.; de Revel, G. Esters in Wines: New Insight through the Establishment of a Database of French Wines. Am. J. Enol. Vitic. 2014, 65, 293–304. [Google Scholar] [CrossRef]
- Qian, X.; Jia, F.; Cai, J.; Shi, Y.; Duan, C.; Lan, Y. Characterization and Evolution of Volatile Compounds of Cabernet Sauvignon Wines from Two Different Clones during Oak Barrel Aging. Foods 2021, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.; Marques, J.; Câmara, J. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Tsachaki, M.; Gady, A.-L.; Kalopesas, M.; Linforth, R.S.T.; Athès, V.; Marin, M.; Taylor, A.J. Effect of Ethanol, Temperature, and Gas Flow Rate on Volatile Release from Aqueous Solutions under Dynamic Headspace Dilution Conditions. J. Agric. Food Chem. 2008, 56, 5308–5315. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agr. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; del Alamo-Sanza, M.; Nevares, I. Volatile composition of oak wood from different customised oxygenation wine barrels: Effect on red wine. Food Chem. 2020, 329, 127181. [Google Scholar] [CrossRef]
- Delgado, J.; Sánchez-Palomo, E.; Alises, M.O.; Viñas, M.G. Chemical and sensory aroma typicity of La Mancha Petit Verdot wines. LWT 2022, 162, 113418. [Google Scholar] [CrossRef]
- Ge, Q.; Guo, C.; Yan, Y.; Sun, X.; Ma, T.; Zhang, J.; Li, C.; Gou, C.; Yue, T.; Yuan, Y. Contribution of non-Saccharomyces yeasts to aroma-active compound production, phenolic composition and sensory profile in Chinese Vidal icewine. Food Biosci. 2021, 46, 101152. [Google Scholar] [CrossRef]
- Ferreira, V.; Jarauta, I.; Ortega, L.; Cacho, J. Simple strategy for the optimization of solid-phase extraction procedures through the use of solid–liquid distribution coefficients: Application to the determination of aliphatic lactones in wine. J. Chromatogr. A 2004, 1025, 147–156. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M. Carotenoid breakdown products the—norisoprenoids—in wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef]
- Villamor, R.R.; Ross, C.F. Wine Matrix Compounds Affect Perception of Wine Aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef]
- Ling, M.; Zhou, Y.; Lan, Y.; Cheng, C.; Wu, G.; Duan, C.; Shi, Y. Modification of Sensory Expression of 3-Isobutyl-2-methoxypyrazine in Wines through Blending Technique. Molecules 2021, 26, 3172. [Google Scholar] [CrossRef]
- Lan, Y.-B.; Xiang, X.-F.; Qian, X.; Wang, J.-M.; Ling, M.-Q.; Zhu, B.-Q.; Liu, T.; Sun, L.-B.; Shi, Y.; Reynolds, A.G.; et al. Characterization and differentiation of key odor-active compounds of ‘Beibinghong’ icewine and dry wine by gas chromatography-olfactometry and aroma reconstitution. Food Chem. 2019, 287, 186–196. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Zea, L.; Moyano, L.; A Moreno, J.; Medina, M. Aroma series as fingerprints for biological ageing in fino sherry-type wines. J. Sci. Food Agric. 2007, 87, 2319–2326. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China). LWT -Food Sci. Technol. 2010, 43, 1550–1556. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z. Volatile Compounds of Young Wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay Varieties Grown in the Loess Plateau Region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef] [Green Version]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
Indexes | SZS | HL | XX | YN | QTX | HSP |
---|---|---|---|---|---|---|
Alcohol (%vol) | 14.57 ± 0.12 ab | 15.36 ± 0.75 a | 14.81 ± 0.61 ab | 14.47 ± 0.77 ab | 14.43 ± 0.66 ab | 14.17 ± 0.81 b |
Total acidity (g/L) | 5.60 ± 0.14 a | 5.95 ± 0.6 a | 5.71 ± 0.62 a | 5.55 ± 0.43 a | 5.60 ± 0.33 a | 5.87 ± 0.67 a |
Volatile acidity (g/L) | 0.82 ± 0.08 a | 0.63 ± 0.1 b | 0.70 ± 0.11 ab | 0.66 ± 0.1 b | 0.67 ± 0.12 b | 0.56 ± 0.01 b |
Total sugar (g/L) | 3.44 ± 0.52 a | 4.28 ± 2.25 a | 3.28 ± 0.78 a | 3.27 ± 0.66 a | 3.00 ± 0.78 a | 4.23 ± 0.83 a |
pH | 3.93 ± 0.16 a | 3.87 ± 0.12 ab | 3.84 ± 0.13 ab | 3.78 ± 0.17 ab | 3.88 ± 0.15 a | 3.68 ± 0.09 b |
Compounds | Class b | OAV | ||||
---|---|---|---|---|---|---|
HL c | XX | YN | QTX | HSP | ||
Isobutanol | H | 3.06 | 2.69 | 2.47 | 2.66 | 2.18 |
Isopentanol | H | 14.45 | 13.54 | 12.39 | 12.35 | 10.74 |
1-Pentanol | H | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
3-Methylpentanol | H | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
2-Ethylhexanol | H | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
2-Heptanol | H | - d | - | - | - | - |
2-Nonanol | H | - | - | - | - | - |
1-Decanol | H | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Methionol | H | 3.52 | 3.51 | 3.23 | 2.70 | 2.90 |
Benzyl alcohol | H | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Ethyl octanoate | E | 107.84 | 71.67 | 64.85 | 47.21 | 48.79 |
Ethyl decanoate | E | 1.90 | 1.06 | 1.06 | 1.44 | 0.61 |
Ethyl butanoate | E | 8.89 | 7.86 | 7.05 | 7.17 | 6.26 |
Ethyl hexanoate | E | 82.93 | 69.56 | 56.55 | 66.78 | 47.75 |
Ethyl (E)-3-hexenoate | E | - | - | - | - | - |
Hexyl acetate | E | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Isoamyl acetate | E | 25.27 | 16.17 | 13.56 | 14.40 | 15.13 |
Methyl salicylate | E | - | - | - | - | - |
Isoamyl hexanoate | E | - | - | - | - | - |
Isoamyl octanoate | E | 0.04 | 0.04 | 0.03 | 0.04 | 0.03 |
Methyl octanoate | E | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
4-Terpinenol | T | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
β-Damascenone | I | 58.60 | 56.60 | 56.00 | 61.40 | 37.00 |
3-Isobutyl-2-methoxypyrazine | MP | 3.63 | 2.46 | 1.24 | 2.97 | 0.86 |
Acetic acid | FA | 2.54 | 2.84 | 2.69 | 2.76 | 1.97 |
Hexanoic acid | FA | 3.63 | 3.35 | 3.56 | 3.98 | 2.72 |
Octanoic acid | FA | 2.66 | 2.12 | 2.22 | 2.89 | 1.74 |
n-Decanoic acid | FA | 0.21 | 0.16 | 0.16 | 0.19 | 0.15 |
Vanillin | PA | 2.78 | 1.42 | 2.16 | 1.59 | 0.44 |
Syringaldehyde | PA | - | - | - | - | - |
Coniferaldehyde | PA | - | - | - | - | - |
Acetosyringone | PA | - | - | - | - | - |
Acetovanillone | PA | - | - | - | - | - |
Phenol | VP | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
4-Ethylphenol | VP | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
4-Vinylguaiacol | VP | 0.01 | <0.01 | 0.02 | 0.05 | 0.03 |
Cresol | VP | - | - | - | - | - |
γ-Decalactone | L | 0.80 | 0.93 | 0.87 | 0.91 | 1.19 |
γ-Butyrolactone | L | 0.32 | 0.20 | 0.18 | 0.20 | 0.17 |
Acetylfuran | F | - | - | - | - | - |
2-Furanmethanol | F | - | - | - | - | - |
Sotolon | F | 0.32 | 0.54 | 0.56 | 0.58 | 0.69 |
(E)-2-Nonenal | O | - | - | - | - | - |
Attributes | HL | XX | YN | QTX | HSP |
---|---|---|---|---|---|
Herbaceous | 2.34 ± 0.36 a | 1.70 ± 0.42 a | 2.04 ± 0.66 a | 2.01 ± 0.15 a | 1.73 ± 0.04 a |
Black berry | 6.22 ± 0.15 a | 5.93 ± 0.30 a | 6.13 ± 0.20 a | 6.14 ± 0.38 a | 5.37 ± 0.77 b |
Red berry | 4.75 ± 0.24 a | 4.53 ± 0.37 a | 4.65 ± 0.26 a | 4.76 ± 0.22 a | 4.43 ± 0.40 a |
Fresh fruit | 2.59 ± 0.38 a | 2.44 ± 0.65 a | 2.66 ± 0.56 a | 2.82 ± 0.30 a | 2.29 ± 0.18 a |
Floral | 2.06 ± 0.25 b | 2.04 ± 0.28 b | 2.00 ± 0.38 b | 2.31 ± 0.59 b | 3.22 ± 1.09 a |
Spices | 1.89 ± 0.17 b | 1.98 ± 0.29 ab | 2.16 ± 0.42 ab | 2.05 ± 0.19 ab | 2.59 ± 1.00 a |
Vanilla | 1.91 ± 0.27 a | 2.16 ± 0.46 a | 2.20 ± 0.61 a | 1.90 ± 0.21 a | 1.69 ± 0.32 a |
Oak | 1.70 ± 0.37 a | 2.05 ± 0.62 a | 2.22 ± 0.74 a | 1.85 ± 0.28 a | 1.65 ± 0.27 a |
Caramel | 2.20 ± 0.16 a | 2.75 ± 0.66 a | 2.72 ± 0.83 a | 2.54 ± 0.41 a | 1.97 ± 0.35 a |
Smoke | 1.56 ± 0.36 b | 1.53 ± 0.14 b | 1.69 ± 0.37 b | 1.79 ± 0.28 ab | 2.27 ± 0.83 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Ling, M.; Li, D.; Zhu, B.; Shi, Y.; Duan, C.; Lan, Y. Volatile Profiles and Sensory Characteristics of Cabernet Sauvignon Dry Red Wines in the Sub-Regions of the Eastern Foothills of Ningxia Helan Mountain in China. Molecules 2022, 27, 8817. https://doi.org/10.3390/molecules27248817
Song X, Ling M, Li D, Zhu B, Shi Y, Duan C, Lan Y. Volatile Profiles and Sensory Characteristics of Cabernet Sauvignon Dry Red Wines in the Sub-Regions of the Eastern Foothills of Ningxia Helan Mountain in China. Molecules. 2022; 27(24):8817. https://doi.org/10.3390/molecules27248817
Chicago/Turabian StyleSong, Xixian, Mengqi Ling, Demei Li, Baoqing Zhu, Ying Shi, Changqing Duan, and Yibin Lan. 2022. "Volatile Profiles and Sensory Characteristics of Cabernet Sauvignon Dry Red Wines in the Sub-Regions of the Eastern Foothills of Ningxia Helan Mountain in China" Molecules 27, no. 24: 8817. https://doi.org/10.3390/molecules27248817
APA StyleSong, X., Ling, M., Li, D., Zhu, B., Shi, Y., Duan, C., & Lan, Y. (2022). Volatile Profiles and Sensory Characteristics of Cabernet Sauvignon Dry Red Wines in the Sub-Regions of the Eastern Foothills of Ningxia Helan Mountain in China. Molecules, 27(24), 8817. https://doi.org/10.3390/molecules27248817