The Ultrasound-Assisted Extraction of Polyphenols from Mexican Firecracker (Hamelia patens Jacq.): Evaluation of Bioactivities and Identification of Phytochemicals by HPLC-ESI-MS
Abstract
:1. Introduction
2. Results
2.1. Optimization of Polyphenols Extraction
2.2. Characterization of Phytochemicals Extracted from H. patens
2.3. HPLC-ESI-MS Characterization
3. Discussion
3.1. Total Polyphenols Content
3.2. Characterization of Extracted Bioactive Compounds
3.2.1. Chemical Identification and Antioxidant Properties
3.2.2. Antibacterial Activity of the Purified Phytochemicals Fraction of H. patens
3.3. HPLC-ESI-MS Analysis
4. Materials and Methods
4.1. Plant Material and Extracts
4.2. Optimization of Extraction Conditions
4.3. Quantification of Total Polyphenols Content
4.4. Optimization of the Extraction Conditions
4.5. Concentration of Total Polyphenols by Open-Column Chromatography
4.6. Characterization of Bioactive Compounds
Antioxidant Activities
4.7. Identification of Phytochemicals by HPLC-ESI-MS2
4.8. Inhibitory Effect and Minimum Inhibitory Concentration (MIC)
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiziltas, H.; Bingol, Z.; Goren, A.C.; Pinar, S.M.; Ortaakarsu, A.B.; Alwasel, S.H.; Gulcin, İ. Comprehensive Metabolic Profiling of Acantholimon caryophyllaceum Using LC–HRMS and Evaluation of Antioxidant Activities, Enzyme Inhibition Properties and Molecular Docking Studies. S. Afr. J. Bot. 2022, 151, 743–755. [Google Scholar] [CrossRef]
- Kiziltas, H.; Goren, A.C.; Alwasel, S.H.; Gulcin, İ. Sahlep (Dactylorhiza osmanica): Phytochemical Analyses by LC-HRMS, Molecular Docking, Antioxidant Activity, and Enzyme Inhibition Profiles. Molecules 2022, 27, 6907. [Google Scholar] [CrossRef]
- Ahmad, A.; Pandurangan, A.; Singh, N.; Ananad, P. A Mini Review on Chemistry and Biology of Hamelia patens (Rubiaceae). Pharmacogn. J. 2012, 4, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Noor, G.; Ahmad, M.A.; Ahsan, F.; Mahmood, T.; Arif, M.; Khushtar, M. A Phytochemical and Ethnopharmacological Recapitulation on Hamelia patens. Drug Res. 2020, 70, 188–198. [Google Scholar] [CrossRef]
- Rubio Fontanills, Y.; Valdivia Ávila, A.L.; Camacho Campos, C.; Matos Trujillo, M.; Sosa del Castillo, M.; Pérez Hernández, Y. Phytochemical Composition and Antibacterial Activity of Hamelia patens Jacq Leaf Extracts. Biotecnol. Veg. 2018, 18, 37–45. [Google Scholar]
- Mushtaq, Z.; Iqbal, T.; Ahmed, N.; Jamil, A. Antioxidants from Selected Indigenous Plants Possessing Cyclotides. Oxid. Commun. 2017, 40, 102–119. [Google Scholar]
- Perez-Meseguer, J.; Delgado-Montemayor, C.; Ortíz-Torres, T.; Salazar-Aranda, R.; Cordero-Perez, P.; de Torres, N.W. Antioxidant and Hepatoprotective Activity of Hamelia patens Extracts. Pak. J. Pharm. Sci. 2016, 29, 343–348. [Google Scholar] [PubMed]
- Rugeiro-Escalona, C.; Ordaz-Pichardo, C.; Becerra-Martínez, E.; Cruz-López, M.d.C.; López-y-López, V.E.; Mendieta-Moctezuma, A.; Maldonado-Mendoza, I.; Jiménez-Montejo, F.E. Diabetes and Metabolism Disorders Medicinal Plants: A Glance at the Past and a Look to the Future 2018. Evid.-Based Complement. Altern. Med. 2018, 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Maamoun, M.A.I.; El-Sawi, S.A.; Motawae, H.M.; Fekry, M.I.; Kawy, M.A.A. Chemical Characterization of Constituents Isolated from Hamelia patens and Investigating Its Cytotoxic Activity. Egypt. J. Chem. 2019, 62, 1685–1697. [Google Scholar] [CrossRef]
- Corrales, M.; Fernández García, A.; Butz, P.; Tauscher, B. Extraction of Anthocyanins from Grape Skins Assisted by High Hydrostatic Pressure. J. Food Eng. 2009, 90, 415–421. [Google Scholar] [CrossRef]
- Belova, V.; Voshkin, A.A.; Payrtm, A. Solvent Extraction of Some Lanthanides from Chloride and Nitrate Solutions by Binary Extractants. Hydrometallurgy 2009, 97, 198–203. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, A.Y.; Aguilar-Zárate, P.; Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Rojas, R.; Ascacio-Valdés, J.A.; Martínez-Ávila, G.C.G. Effect of Ultrasound Treatment on the Extraction of Antioxidants from Ardisia compressa Kunth Fruits and Identification of Phytochemicals by HPLC-ESI-MS. Heliyon 2019, 5, e03058. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ávila, G.C.G.; Aguilar-Zarate, P.; Rojas, R. Currently Applied Extraction Processes for Secondary Metabolites from Lippia turbinata and Turnera diffusa and Future Perspectives. Separations 2021, 8, 158. [Google Scholar] [CrossRef]
- Wong Paz, J.E.; Muñiz Márquez, D.B.; Martínez Ávila, G.C.G.; Belmares Cerda, R.E.; Aguilar, C.N. Ultrasound-Assisted Extraction of Polyphenols from Native Plants in the Mexican Desert. Ultrason. Sonochem. 2015, 22, 474–481. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.S.; Farid, C. Ultrasound-Assisted Extraction. In Natural Product Extraction: Principles and Applications; Rostagno, M.A., Prado, J.M., Eds.; RSC Publishing: Cambridge, UK, 2013; Volume 1, pp. 89–112. [Google Scholar]
- Picó, Y. Ultrasound-Assisted Extraction for Food and Environmental Samples. TrAC-Trends Anal. Chem. 2013, 43, 84–99. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Martínez-Ávila, G.C.; Wong-Paz, J.E.; Belmares-Cerda, R.; Rodríguez-Herrera, R.; Aguilar, C.N. Ultrasound-Assisted Extraction of Phenolic Compounds from Laurus nobilis L. and Their Antioxidant Activity. Ultrason. Sonochem. 2013, 20, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Muñiz-Márquez, D.B.; Wong-Paz, J.E.; Aguilar-Zárate, P.; Sepúlveda, L.; Buenrostro-Figueroa, J.; Ascacio-Valdés, J.A.; Aguilar, C.N. Effect of Ultrasound on the Extraction of Ellagic Acid and Hydrolysis of Ellagitannins from Pomegranate Husk. Environ. Technol. Innov. 2021, 24, 102063. [Google Scholar] [CrossRef]
- Aguilar-Zarate, P.; Cruz-Hernandez, M.A.; Montañez, J.C.; Belmares-Cerda, R.E.; Aguilar, C.N. Enhancement of Tannase Production by Lactobacillus plantarum CIR1: Validation in Gas-Lift Bioreactor. Bioprocess Biosyst. Eng. 2014, 37, 2305–2316. [Google Scholar] [CrossRef]
- Ávila-Hernández, J.G.; Aguilar-Zárate, P.; Carrillo-Inungaray, M.L.; Michel, M.R.; Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Rojas-Molina, R.; Ascacio-Valdés, J.A.; Martínez-Ávila, G.C.G. The Secondary Metabolites from Beauveria bassiana PQ2 Inhibit the Growth and Spore Germination of Gibberella moniliformis LIA. Braz. J. Microbiol. 2022, 53, 143–152. [Google Scholar] [CrossRef]
- Phadke, M.S.; Dehnad, K. Optimization of Product and Process Design for Quality and Cost. Qual. Reliab. Eng. 1988, 4, 105–112. [Google Scholar] [CrossRef]
- Rigane, G.; Ben Younes, S.; Ghazghazi, H.; Ben Salem, R. Investigation into the Biological Activities and Chemical Composition of Calendula officinalis L. Growing in Tunisia. Int. Food Res. J. 2013, 20, 3001–3007. [Google Scholar]
- de Souza, L.M.; Cipriani, T.R.; Iacomini, M.; Gorin, P.A.J.; Sassaki, G.L. HPLC/ESI-MS and NMR Analysis of Flavonoids and Tannins in Bioactive Extract from Leaves of Maytenus ilicifolia. J. Pharm. Biomed. Anal. 2008, 47, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Rockenbach, I.I.; Jungfer, E.; Ritter, C.; Santiago-Schübel, B.; Thiele, B.; Fett, R.; Galensa, R. Characterization of Flavan-3-Ols in Seeds of Grape Pomace by CE, HPLC-DAD-MS n and LC-ESI-FTICR-MS. Food Res. Int. 2012, 48, 848–855. [Google Scholar] [CrossRef]
- El Sayed, A.M.; Ezzat, S.M.; El Naggar, M.M.; El Hawary, S.S. In Vivo Diabetic Wound Healing Effect and HPLC–DAD–ESI–MS/MS Profiling of the Methanol Extracts of Eight Aloe Species. Rev. Bras. Farmacogn. 2016, 26, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Benayad, S.; Gómez-Cordovés, C.; Es-Safi, N.E. Characterization of Flavonoid Glycosides from Fenugreek (Trigonella foenum-graecum) Crude Seeds by HPLC-DAD-ESI/MS Analysis. Int. J. Mol. Sci. 2014, 15, 20668–20685. [Google Scholar] [CrossRef] [Green Version]
- Souilem, F.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Harzallah-Skhiri, F.; Ferreira, I.C.F.R. Phenolic Profile and Bioactive Properties of Carissa macrocarpa (Eckl.) A.DC.: An in Vitro Comparative Study between Leaves, Stems, and Flowers. Molecules 2019, 24, 1696. [Google Scholar] [CrossRef] [Green Version]
- Hernández, L.; Carranza, P.; Cobos, L.E.; López, L.I.; Ascasio, J.A.; Silva Belmares, S.Y. Bioguided Fractionation from Solanum elaeagnifolium to Evaluate Toxicity on Cellular Lines and Breast Tumor Explants. Vitae 2017, 24, 124–131. [Google Scholar] [CrossRef] [Green Version]
- ReSpect for Phytochemicals. Available online: http://spectra.psc.riken.jp/menta.cgi/respect/search/fragment?hideGraph=hideGraph&openList=openList&filter=2&peak=407.04 424.98 451.12 289.12 299.1&fpeak=01101&tolerance=0.5&polarity=Negative&positiveAdducts=&negativeAdducts=1&neutralAdducts=&threshold=20 (accessed on 4 June 2021).
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.W.; Vennos, C. Bioactive Phenolics of the Genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS Profile of the Siberian Species and Their Inhibitory Potential against α-Amylase and α-Glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Giraldo Vásquez, L.M.; Ramírez Aristizabal, L.S. Evaluation of Antioxidant Activity of Palicourea Guianensis (Rubiaceae) Extracts. Rev. Cuba. Farm. 2013, 47, 483–491. [Google Scholar]
- Vázquez-Flores Alma, A.; Emilio, Á.-P.; Alberto, L.-D.J.; Abraham, W.-M.; De la Rosa Laura, A. Hydrolyzable and Condensed Tannins: Chemistry, Advantages and Disadvantages of Their Intake. Tecnociencia Chihuah. 2012, 6, 84–93. [Google Scholar]
- Van Dijk, C.; Ebbenhorst-Selles, T.; Ruisch, H.; Stolle-Smits, T.; Schijvens, E.; Van Deelen, W.; Boeriu, C. Product and Redox Potential Analysis of Sauerkraut fermentation. J. Agric. Food Chem. 2000, 48, 132–139. [Google Scholar] [CrossRef]
- Reyes, A.; Arias, L.E.; Pimentel, D.J.; Carrillo, M.L. Antioxidant Activity and Microencapsulation of Yellow Plum (Spondias purpurea L.) Infusions. Wulfenia J. 2015, 22, 351–357. [Google Scholar]
- Muedas Taipe, G.; La Rosa Toro Gómez, A.; Robles Caycho, J. Electrochemical Evaluation of the Antioxidant Activity of Alcoholic Extract of Bauhinia guianensis Var. Kuntiana Aubl. Rev. Soc. Química Perú 2008, 74, 233–246. [Google Scholar]
- Sánchez Balcázar, D.; Tanta Flores, M. Comparación de La Actividad Antihemolítica y Antioxidante in vitro Entre El Fruto de Vaccinium floribundum “Pushgay” y El Fruto de Vaccinium corymbosum “Arándano”. BSc. Thesis, Universidad Privada Antonio Guillermo Urrelo, Cajamarca, Perú, February 2020. [Google Scholar]
- Peláez Gutiérrez, E.C. Actividad Antioxidante Del Extracto En Diclorometano de Palicourea guianensis Aubl. (Rubiaceae). BSc. Thesis, Universidad Tecnológica de Pereira, Pereira, Colombia, January 2009. [Google Scholar]
- Kaushik, C.; Singh, M.V. An Updated Phytopharmacological Review on Hamelia patens Jacq. Int. J. Pharmacogn. 2020, 7, 52–61. [Google Scholar] [CrossRef]
- Pacheco-Coello, F.; Peraza-Marrero, M.; Orosco-Vargas, C.; Ramirez-Azuaje, D.; Pinto-Catari, I. Determination of Total Phenolic Compounds and Evaluation of the Antioxidant Activity of Commercial and Artisanal Green Tea Traded in Maracay, Venezuela. Rev. Boliv. Química 2020, 37, 28–33. [Google Scholar] [CrossRef]
- Isaza Maya, Y.L.; Restrepo Molina, D.A.; López Vargas, J.H. Efecto de la Inclusión de un Extracto de Cereza (Prunus avium L.) sobre el Estado de Oxidación y las Características Fisicoquímicas y Sensoriales de Salchichas Tipo Frankfurt. Rev. Fac. Nac. Agron. 2012, 65, 6541–6552. [Google Scholar]
- Wong-Paz, J.E.; Rubio-Contreras, C.; Reyes-Munguía, A.; Aguilar, C.N.; Carrillo-Inungaray, M.L. Phenolic Content and Antibacterial Activity of Extracts of Hamelia patens Obtained by Different Extraction Methods. Braz. J. Microbiol. 2018, 49, 656–661. [Google Scholar] [CrossRef]
- Capra, V. Ethyl Alcohol as an Antiseptic and Disinfectant. 2020. Available online: https://aafh.org.ar/upload1/wf4x19dV4S7aGcKOWGInexh1yosx4Zd2hFQMgEbF.pdf (accessed on 5 October 2021).
- Kampf, G.; Kramer, A. Epidemiologic Background of Hand Hygiene and Evaluation of the Most Important Agents for Scrubs and Rubs. Clin. Microbiol. Rev. 2004, 17, 863–893. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Mendoza-Wilson, A.; Vallejo-Galland, B.; Acedo-Félix, B.; Sánchez-Escalante, J.; Peñalba-Garmendia, M.; Sánchez-Escalante, A. Mechanisms Involved in Antioxidant and Antibacterial Activity of Propolis. Rev. Cienc. Biol. Salud Biotecnia 2014, 16, 32–37. [Google Scholar]
- Calvo, J.; Martínez-Martínez, L. Antimicrobial Mechanisms of Action. Enferm. Infecc. Microbiol. Clínica 2009, 27, 44–52. [Google Scholar] [CrossRef]
- Pájaro, N.P.; Granados Conde, C.; Torrenegra Alarcón, M.E. Antibacterial Activity of the Ethanolic Extract of the Petiole from Rheum rhabarbarum. Rev. Colomb. Cienc. Químico-Farm. 2018, 47, 26–36. [Google Scholar] [CrossRef]
- Yerlikaya, S.; Baloglu, M.C.; Altunoglu, Y.C.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Zengin, G. Exploring of Coronilla varia L. Extracts as a Source of High-Value Natural Agents: Chemical Profiles and Biological Connections. S. Afr. J. Bot. 2021, 143, 382–392. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Hassan, W.H.B.; Abdelaziz, S.; Al Yousef, H.M. Chemical Composition and Biological Activities of the Aqueous Fraction of Parkinsonea aculeata L. Growing in Saudi Arabia. Arab. J. Chem. 2019, 12, 377–387. [Google Scholar] [CrossRef]
- Tan, W.S.; Arulselvan, P.; Ng, S.F.; Taib, C.N.M.; Sarian, M.N.; Fakurazi, S. Healing Effect of Vicenin-2 (VCN-2) on Human Dermal Fibroblast (HDF) and Development VCN-2 Hydrocolloid Film Based on Alginate as Potential Wound Dressing. BioMed Res. Int. 2020, 2020, 4730858. [Google Scholar] [CrossRef] [PubMed]
- Di Majo, D.; La Guardia, M.; Leto, G.; Crescimanno, M.; Flandina, C.; Giammanco, M. Flavonols and Flavan-3-Ols as Modulators of Xanthine Oxidase and Manganese Superoxide Dismutase Activity. Int. J. Food Sci. Nutr. 2014, 65, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Vicente, L.; Prieto, M.; Morales, A.I. Efficacy and Safety of Quercetin as Dietary Supplement. Toxicología 2013, 30, 171–181. [Google Scholar]
- Brito, A.; Ramirez, J.E.; Areche, C.; Sepúlveda, B.; Simirgiotis, M.J. HPLC-UV-MS Profiles of Phenolic Compounds and Antioxidant Activity of Fruits from Three Citrus Species Consumed in Northern Chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Cabello, L.; Cruz-Monterrosa, R.G.; Martínez-Casares, R.M.; Valencia-Ledezma, O.E.; López-Luna, A.; Velázquez-Luna, R.G.; Ramírez-Lubianos, C. Use of Flavonoids As Active Ingredient in Functional Foods. AGRO Product. 2018, 11, 121–127. [Google Scholar]
- Nossa González, D.L.; Talero Pérez, Y.V.; Rozo Núñez, W.E. Determination of Polyphenols and Antioxidant Activity of Polar Extracts of Comfrey (Symphytum officinale L). Rev. Cuba. Plantas Med. 2016, 21, 125–132. [Google Scholar]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin-Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- De la Rosa Hernández, M. Actividad Antioxidante y Antimicrobiana de Compuestos Bioactivos de Cáscara de Toronja (Citrus paradisi L.) Obtenidos Por Fermentación En Estado Sólido (FES); Universidad Autónoma de San Luis Potosí Campus Huasteca: Ciudad Valles, SLP, Mexico, 2017. [Google Scholar]
- Chigodi, M.O.; Samoei, D.K.; Muthangya, M. Phytochemical Screening of Agave sisalana Perrine Leaves (Waste). Int. J. Appl. Biol. Pharm. Technol. 2013, 4, 200–204. [Google Scholar]
- Martínez-Cruz, N.d.S.; Arévalo-Niño, K.; Verde-Star, M.J.; Rivas-Morales, C.; Oranday-Cárdenas, A.; Adriana Núñez-González, M.; Morales-Rubio, M.E.; Nieves, C.M.C.A.; Socorro, D.; Cruz, M. Anthocyanins and Anti Free-Radical activityof Rubus adenotrichus Schltdl (Blackberry). Rev. Mex. Ciencias Farm. 2011, 42, 66–71. [Google Scholar]
- Wong-Paz, J.E.; Guyot, S.; Aguilar-Zárate, P.; Muñiz-Márquez, D.B.; Contreras-Esquivel, J.C.; Aguilar, C.N. Structural Characterization of Native and Oxidized Procyanidins (Condensed tannins) from Coffee Pulp (Coffea arabica) Using Phloroglucinolysis and Thioglycolysis-HPLC-ESI-MS. Food Chem. 2020, 340, 127830. [Google Scholar] [CrossRef]
- Reyes Munguía, A.; Azuara Nieto, E.; Beristain, C.I.; Cruz Sosa, F.; Vernon Carter, E.J. Purple Maguey (Rhoeo discolor) Antioxidant Properties. CyTA—J. Food 2010, 7, 209–216. [Google Scholar] [CrossRef]
- Castro-López, C.; Bautista-Hernández, I.; González-Hernández, M.D.; Martínez-Ávila, G.C.G.; Rojas, R.; Gutiérrez-Díez, A.; Medina-Herrera, N.; Aguirre-Arzola, V.E. Polyphenolic Profile and Antioxidant Activity of Leaf Purified Hydroalcoholic Extracts from Seven Mexican Persea americana Cultivars. Molecules 2019, 24, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Recillas, A.; Aragón-Castillo, S.L.; Arroyo-Herrera, A.L.; Araujo-León, J.A.; Ortiz-Andrade, R.R. Spasmolytic and Antibacterial Effect of the Bursera graveolens (Kunth) Triana & Planch Species. Polibotánica 2020, 49, 135–147. [Google Scholar] [CrossRef]
- Aguilar-Zárate, P.; Wong-Paz, J.E.; Michel, M.; Buenrostro-Figueroa, J.; Díaz, H.R.; Ascacio, J.A.; Contreras-Esquivel, J.C.; Gutiérrez-Sánchez, G.; Aguilar, C.N. Characterisation of Pomegranate-Husk Polyphenols and Semi-Preparative Fractionation of Punicalagin. Phytochem. Anal. 2017, 28, 433–438. [Google Scholar] [CrossRef]
- Ramírez, L.S.; Marin-Castaño, D. Methodologies for Evaluating the In Vitro Antibacterial Activity of Natural Compounds of Plant Origin. Sci. Tech. Año 2009, 15, 42. [Google Scholar]
Run | Solid/Liquid Ratio (w/v) | Time (min) | Ethanol (%) | Total Content of Polyphenols (GAE mg/100 g) * |
---|---|---|---|---|
1 | 1:8 | 10 | 0 | 1074.16 ± 75.87 |
2 | 1:8 | 20 | 35 | 956.28 ± 61.56 |
3 | 1:8 | 30 | 70 | 868.05 ± 31.28 |
4 | 1:12 | 10 | 35 | 1196.54 ± 27.45 |
5 | 1:12 | 20 | 70 | 1191.95 ± 9.98 |
6 | 1:12 | 30 | 0 | 912.07 ± 93.34 |
7 | 1:16 | 10 | 70 | 1636.80 ± 79.20 |
8 | 1:16 | 20 | 0 | 1048.09 ± 86.52 |
9 | 1:16 | 30 | 35 | 1652.33 ± 1.33 |
Effect | SS | Df | MS | F | p | Contribution (%) |
---|---|---|---|---|---|---|
Solid/liquid ratio | 367,362.70 | 2 | 183,681.40 | 3.39 | 0.23 | 54.09 |
Time | 87,467.16 | 2 | 43,733.58 | 0.81 | 0.55 | 12.88 |
Ethanol concentration | 116,086.30 | 2 | 58,043.14 | 1.07 | 0.48 | 17.09 |
Error | 108,233.50 | 2 | 54,116.77 | 15.94 | ||
Total | 679,149.66 | 8 | 100.00 |
Factor | Level | Value | Effect Size | Standard Error |
---|---|---|---|---|
Solid/liquid ratio | 3 | 1:16 | 275.04 | 134.31 |
Time (min) | 1 | 10 | 131.81 | 134.31 |
Ethanol concentration (%) | 2 | 35 | 97.69 | 134.31 |
Expected | 1675.23 | |||
Experimental validation (GAE mg/100 g) | 1689.98 ± 86.43 |
Test | Result |
---|---|
Total polyphenols (GAE mg/100 g *) | 3552.84 ± 7.25 |
Flavonoids (CatE mg/100 g *) | 1316.17 ± 0.27 |
Condensed tannins (PC-B1E mg/100 g *) | 1694.87 ± 22.21 |
Redox potential (mV) | 553.93 ± 1.22 |
DPPH reduction (%) | 63.08 ± 0.42 |
Half-maximal inhibitory concentration (IC50) (mg/L) | 67.49 |
Lipid oxidation inhibition (%) | 77.78 ± 2.78 |
Strain | Control Inhibition * (mm) | H. patens Polyphenols Inhibition ** (mm) | H. patens Polyphenols Inhibition *** (%) | Minimum Inhibitory Concentration (μg/mL) |
---|---|---|---|---|
Gram-negative bacteria | ||||
P. aureuginosa ATCC 10145 | 30.00 | 0.00 | 0.00 | - |
E. cloacae (Clinical Isolate) | 0.00 | 0.00 | 0.00 | - |
E. coli ATCC 15597 | 25.00 | 0.00 | 0.00 | - |
E. coli β (-) | 21.00 | 19.00 | 90.50 | 94.00 |
K. pneumoniae | 12.00 | 9.00 | 75.00 | 250.00 |
Gram-positive bacteria | ||||
S. aureus ATCC 29213 | 0.00 | 0.00 | 0.00 | - |
S. epidermidis | 20.00 | 0.00 | 0.00 | - |
E. faecalis ATCC 19433 | 25.00 | 20.00 | 80.00 | 125.00 |
Peak No. | Retention Time (min) | UV λmáx (nm) | M.W. | [M-H]− m/z | Fragments (m/z)2 | Tentative Identification | Molecular Formula | Phenolic Group | References |
---|---|---|---|---|---|---|---|---|---|
1 | 15.90 | 281, 329 | 354.31 | 352.9 | 191.05, 192.03, 179.10, 173.10 | Scopoletin-7-O-glucoside isomer | C16H18O9 | Coumarin | [22] |
2 | 18.44 | 281, 329 | 354.31 | 352.9 | 191.05, 192.03, 179.10, 173.10 | Scopoletin-7-O-glucoside isomer | C16H18O9 | Coumarin | [22] |
3 | 19.78 | 281 | 578.5 | 576.9 | 407.04, 424.98, 451.12, 289.12, 299.10 | (E)Cat–(E)Cat (Epicatechin) | C30H26O12 | Proanthocyanidin | [23] |
4 | 21.38 | 281 | 290.26 | 288.9 | 245.96, 255.94, 256.98, 227.02, 229, 266.92, 241.03, 213.07, 239.03, 199, 163.02, 197.05, 240.00, 228.10 | (Epi) Catechin | C15H14O6 | Flavonoid | [24] |
5 | 25.27 | 258, 360 | 594.5 | 593.0 | 353.12, 383.01 | Apigenin-6,8-C-di-glucoside (Vicenin II) | C27H30O15 | Flavonoid | [25] |
6 | 27.81 | 266, 351 | 610.5 | 609.0 | 301.11, 300.15, 302.13, 271.09, 255.10, 343.10 | Quercetin-deoxyhexosyl-hexoside | C27H30O16 | Flavonoid | [23] |
7 | 29.35 | 268, 352 | 594.5 | 593.0 | 383.01, 353.12 | Apigenin 6,8-di C-glucoside (Vicenin II isomer) | C27H30O15 | Flavonoid | [26] |
8 | 30.37 | 245, 333 | 594.5 | 593.0 | 285.1, 284.12, 286.09, 255.12, 327.11, 257.13, 256.14 | Kaempferol-3-O-rutinoside | C27H30O15 | Flavonoid | [27] |
9 | 31.67 | 239 | 396 | 395.0 | 363.05, 380.10, 319.11, 381.01, 364.08, 325.15, 320.10, 211.95 | Unknown | - | [28,29] | |
10 | 36.14 | 239 | 342.30 | 340.9 | 216.98, 219.01, 230.98, 179.03, 177.02, 218.00, 296.97, 322.88, 191.05, 280.96, 281.97, 190.07, 220.05, 216.10, 231.95, 203.00 | Caffeic acid-O-glucoside | C15H18O9 | Hydroxycinnamic acid | [30] |
No. | Factor | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|
1 | Solid/liquid ratio (w/v) | 1:8 | 1:12 | 1:16 |
2 | Extraction time (min) | 10 | 20 | 30 |
3 | Ethanol concentration (%) | 0 | 35 | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Sánchez, M.d.C.; Aguilar-Zárate, P.; Michel-Michel, M.R.; Ascacio-Valdés, J.A.; Reyes-Munguía, A. The Ultrasound-Assisted Extraction of Polyphenols from Mexican Firecracker (Hamelia patens Jacq.): Evaluation of Bioactivities and Identification of Phytochemicals by HPLC-ESI-MS. Molecules 2022, 27, 8845. https://doi.org/10.3390/molecules27248845
Gutiérrez-Sánchez MdC, Aguilar-Zárate P, Michel-Michel MR, Ascacio-Valdés JA, Reyes-Munguía A. The Ultrasound-Assisted Extraction of Polyphenols from Mexican Firecracker (Hamelia patens Jacq.): Evaluation of Bioactivities and Identification of Phytochemicals by HPLC-ESI-MS. Molecules. 2022; 27(24):8845. https://doi.org/10.3390/molecules27248845
Chicago/Turabian StyleGutiérrez-Sánchez, María del Carmen, Pedro Aguilar-Zárate, Mariela Ramona Michel-Michel, Juan Alberto Ascacio-Valdés, and Abigail Reyes-Munguía. 2022. "The Ultrasound-Assisted Extraction of Polyphenols from Mexican Firecracker (Hamelia patens Jacq.): Evaluation of Bioactivities and Identification of Phytochemicals by HPLC-ESI-MS" Molecules 27, no. 24: 8845. https://doi.org/10.3390/molecules27248845
APA StyleGutiérrez-Sánchez, M. d. C., Aguilar-Zárate, P., Michel-Michel, M. R., Ascacio-Valdés, J. A., & Reyes-Munguía, A. (2022). The Ultrasound-Assisted Extraction of Polyphenols from Mexican Firecracker (Hamelia patens Jacq.): Evaluation of Bioactivities and Identification of Phytochemicals by HPLC-ESI-MS. Molecules, 27(24), 8845. https://doi.org/10.3390/molecules27248845