Solid Sampling Pyrolysis Adsorption-Desorption Thermal Conductivity Method for Rapid and Simultaneous Detection of N and S in Seafood
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Design of Solid Sampling System
2.1.1. Design of Two-Stage Purging
2.1.2. High-Temperature Decomposition
2.1.3. Carrier Gas
2.2. Establishment of Standard Curves
2.3. Linearity Range, Recovery Rate, Precision, and Sensitivity of the Method
2.4. Detection and Validation of Real Sample
3. Experimental Materials and Methods
3.1. Instrumentation
3.2. Chemicals and Standards
3.3. Analytical Procedures by Solid Sampling System
3.4. Sample Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rizzoli, R.; Biver, E.; Bonjour, J.P.; Coxam, V.; Goltzman, D.; Kanis, J.A.; Reginster, J.Y. Benefits and safety of dietary protein for bone health—an expert consensus paper endorsed by the European Society for Clinical and Economical Aspects of Osteopororosis, Osteoarthritis, and Musculoskeletal Diseases and by the International Osteoporosis Foundation. Osteoporosis Int. 2018, 29, 1933–1948. [Google Scholar]
- FAO A. The State of World Fisheries and Aquaculture 2020; Sustainability in Action: Rome, Italy, 2020. [Google Scholar]
- Zhu, X.; Zhao, M.; Wang, Y.; Sun, H. Comparative study on edible rate and protein contribution of aquatic products. Chi. Fish Qua Stand. 2021, 11, 32–39. [Google Scholar]
- Kumari, R.; Sanjukta, S.; Sahoo, D.; Rai, A.K. Functional peptides in Asian protein rich fermented foods: Production and health benefits. Syst. Microbiol. Biomanuf. 2021, 1–13. [Google Scholar] [CrossRef]
- GB 5009.5-2016; National Standard of Food Safety-Determination of Protein in Food. National Food Safety Standard: Beijing, China, 2016.
- Chang, S.; Zhang, Y.; Liu, G.; Xu, X.; Huang, X.; Lv, J.; Xu, D. Comparative Studies on Determination of Crude Protein in Common Vegetables by Dumas Combustion Method and Kjeldahl Method. China Veget. 2021, 6, 68–73. [Google Scholar]
- Zhang, Y. Method for measuring protein in food. Chi. Food Ind. 2013, 9, 23–24. [Google Scholar]
- Xu, C. Rapid determination of total nitrogen in soil by dumas combustion method. Mod. Agri. Sci. Tec. 2018, 1, 187+190. [Google Scholar]
- Liang, S.; Li, H.; Chen, L.; Chen, L.; Li, Y.; Yang, H. Comparison between kjeldahl method and Dumas combustion method for the detection of crude protein content in feed. Chi. Feed 2019, 17, 108–111. [Google Scholar]
- Zhang, L.; Yu, K. Determination of protein in food by FOSS KjeltecTM 8200 automatic KjeltecTM apparatus. Light Ind. Sci. Tec. 2017, 33, 6–7. [Google Scholar]
- Li, M.; He, L. Determination of Nitrogen Content in Coal by Automatic Kjeldahl Nitrogen Determination Instrument. China Pet. Chem. Stand. Qual. 2019, 39, 59–60+62. [Google Scholar]
- Qin, L.; Huang, S.; Zhong, L.; Fu, C.; Zhou, H.; Zhao, S.; Xiang, B.; Lei, S. Comparison of kjeldahl and dumas combustion methods for determination of protein content in rice. China Rice 2019, 25, 69–74. [Google Scholar]
- Zhang, X.; Zhao, H.; Zhang, Z.; Xu, S.; Li, H.; Zhang, Y. Comparison between combustion and kjeldahl methods for determination of protein content in ginseng. Spec. Wild Econ. Anim. Plant Res. 2015, 37, 38–40. [Google Scholar]
- Fan, X.; Xiao, Z.; Zhang, W.; Song, R.; Deng, T. Comparison of Kjeldahl and Dumas combustion methods for the determination of crude protein in feedstuffs. Feed Ind. 2014, 35, 47–53. [Google Scholar]
- Huo, L. Research and analysis of the dumas combustion method and kjeldahl method to determine nitrogen and protein content in milk powder and grain. Fujian Anal. Test. 2021, 30, 38–42. [Google Scholar]
- Yang, M.; Cao, Z.; Jiang, K.; Li, X. Discussion on the related problems of dumas nitrogen analyzer in the process of nitrogen content determination. Instrum 2020, 03, 107–110. [Google Scholar]
- Yan, M.; Li, C.; Zhang, L.; Chen, X.; Yang, X.; Shan, A.; Li, X.; Wu, H.; Ma, Z.; Zhang, Y.; et al. Association between long-term exposure to Sulfur dioxide pollution and hypertension incidence in northern China: A 12-year cohort study. Environ. Sci. Pollut. Res. 2020, 27, 21826–21835. [Google Scholar] [CrossRef]
- Goudarzi, G.; Geravandi, S.; Idani, E.; Hosseini, S.A.; Baneshi, M.M.; Yari, A.R.; Vosoughi, M.; Dobaradaran, S.; Shirali, S.; Marzooni, M.B.; et al. An evaluation of hospital admission respiratory disease attributed to sulfur dioxide ambient concentration in Ahvaz from 2011 through 2013. Environ. Sci. Pollut. Res. 2016, 23, 22001–22007. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Santos, J.M.; Mill, J.G.; Reis Junior, N.C.; Andreão, W.L.; de A Albuquerque, T.T.; Stuetz, R.M. Mortality risks due to long-term ambient sulphur dioxide exposure: Large variability of relative risk in the literature. Environ. Sci. Pollut. Res. 2020, 27, 35908–35917. [Google Scholar] [CrossRef]
- GB 5009.34-2016; National Standard of Food Safety-Determination of SO2 in Food. National Food Safety Standard: Beijing, China, 2016.
- Chen, X.; Deng, G.; Wang, S.; Wei, L.; Chen, H.; Fu, H.; Lan, W. Advances in New Methods for Detection of Sulfur Dioxide Residues. Chem. Reag. 2021, 43, 1668–1676. [Google Scholar]
- Lin, X. Theoretical shallow exploration of total sulfur in coal by infrared spectroscopy. Energy Environ. 2021, 6, 41–42. [Google Scholar]
- Lin, D. Study on determination of carbon, hydrogen and total sulfur in coal by infrared spectroscopy. Energy Environ. 2017, 6, 50–52+54. [Google Scholar]
- Qu, J.; Li, J.; Shang, Q. A New Automatic Coulometric Sulfur Meter Based on Acid-Base Titration Constr. Des. Eng. 2019, 10, 123–124. [Google Scholar]
- Wu, Y.; Liu, H.; Lu, X. A brief discussion on the determination of total sulfur in coal by Coulomb sulfur meter. Shandong Coal Sci. Technol. 2012, 4, 151–152. [Google Scholar]
- Zhao, J. Thinking about the Determination of Total Sulfur in Coal. Energy Energy Conserv. 2015, 10, 105–106. [Google Scholar]
- Gryglewicz, G.; Gryglewicz, S. Determination of elemental sulfur in coal by gas chromatography—Mass spectrometry. Fresenius’ J. Anal. Chem. 2001, 370, 60–63. [Google Scholar] [CrossRef] [PubMed]
- ASTM D4239-18e1; Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM E775-15; Standard Test Methods for Total Sulfur in the Analysis Sample of Refuse-Derived Fuel. ASTM International: West Conshohocken, PA, USA, 2021.
- BS EN ISO 16948; Solid Biofuels-Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO: Geneva, Switzerland, 2015.
- DIN CEN/TS 15104; Solid—Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods. DIN: Berlin, Germany, 2005.
- UNE-CEN/TS 15104; EX. Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods. National Standards Authority of Ireland: Nashua, UK, 2008.
- Cheng, S.; Chen, D.; Wang, F. Rapid determination of sulfur content in marine sediment by elemental analyzer. Chem. Anal. Meterage 2010, 19, 32–35. [Google Scholar]
- Yin, J.; Zhu, J.; Li, J. Origin and determination method of sulfur dioxide in foods. Food Sci. Technol. 2009, 34, 292–296. [Google Scholar]
- Chen, Y.; Liu, H.; Zhu, Z.; Liu, G. Field rapid detection method of sulfur dioxide in food matrices. J. Food Saf. Qual. 2014, 5, 3230–3237. [Google Scholar]
- Ling, Y.; Si, T.; Li, X. Study on the determination method of sulfur dioxide residue. J. Food Saf. Int. 2021, 9, 129+132. [Google Scholar]
- Chen, W.; Cui, Y.; Wang, S.; Ni, S.; Zhang, H. Determination of Total Sulfur Dioxide in Wine with Continous Flow Analyzer Method. Food Res. Dev. 2017, 38, 158–160. [Google Scholar]
- Zhou, S.; Chen, L. Reflux method determination of sulfur dioxide residues in foods. J. Food Saf. Qual. 2011, 2, 235–238. [Google Scholar]
- Shang, D.; Zhao, Y.; Zhai, Y.; Ning, J.; Duan, D.; Zhou, Y. Direct determination of lead in foods by solid sampling electrothermal vaporization atomic fluorescence spectrometry. Anal. Sci. 2016, 32, 1007–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, D.; Zhai, Y.; Ning, J.; Zhao, Y.; Yang, Y.; Sheng, X.; Ding, H.; Kang, X. Rapid determination of arsenic in food by solid injection coating quartz furnace electrothermal evaporation atomic fluorescence spectrometry. J. Food Saf. Qual. 2019, 10, 8012–8016. [Google Scholar]
- Lan, G.; Li, X.; Jia, H.; Yu, X.; Wang, Z.; Yao, J.; Mao, X. Fast and Sensitive Determination of Cadmium and Selenium in Rice by Direct Sampling Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry. Molecules 2022, 27, 8176. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Li, X.; Lan, G.; Wang, Z.; Feng, L.; Mao, X. Fast Detection of Cadmium in Chocolate by Solid Sampling Electrothermal Vaporization Atomic Absorption Spectrometry and Its Application on Dietary Exposure Risk Assessment. Molecules 2022, 27, 6197. [Google Scholar] [CrossRef] [PubMed]
Solid Sampling Analyzer | TCD | |||
---|---|---|---|---|
Program | Time (s) | Temperature (°C) | ||
The first purge | 20 | / | Thermal resistance | 8 KΩ |
The second purge | / | Amplification circuit | 7× | |
High-temperature decomposition | 100 | 900 | Carrier gas flow rate (mL/min) | 250 |
Adsorption tube 1 | Mg(ClO4)2, P2O5 (absorb H2O) | Reference gas flow rate (mL/min) | 50 | |
Adsorption tube 2 | Soda asbestos, P2O5 (absorb CO2) | Reading time (s) | 6 | |
Adsorption column | Carbon molecular sieves (absorb SO2) |
Linear Range (mg) | R | LOD (μg) | RSD (%) |
---|---|---|---|
2.0–100 | >0.9999 | 0.66 | 3.79 |
Linear Range (mg) | R | LOD (μg) | RSD (%) |
---|---|---|---|
2.0–100 | >0.9998 | 2.29 | 5.44 |
Pectinidae CRM (GBW10024) | Substance Number | Detection Result (g/100 g) | Standard Reference Values (g/100 g) | Recovery (%) |
---|---|---|---|---|
GB10024 | 12.8 ± 0.8 | |||
1 | ditto | 12.86 | ditto | 100.5 |
2 | ditto | 12.83 | ditto | 100.2 |
3 | ditto | 12.89 | ditto | 100.7 |
4 | ditto | 13.16 | ditto | 102.8 |
5 | ditto | 13.11 | ditto | 102.4 |
6 | ditto | 12.95 | ditto | 101.1 |
Pectinidae CRM (GBW10024) | Substance Number | Detection Result (g/100 g) | Standard Reference Values (g/100 g) | Recovery (%) |
---|---|---|---|---|
GB10024 | 1.5 ± 0.1 | |||
1 | ditto | 1.49 | ditto | 99.33 |
2 | ditto | 1.55 | ditto | 103.3 |
3 | ditto | 1.5 | ditto | 100 |
4 | ditto | 1.47 | ditto | 98 |
5 | ditto | 1.45 | ditto | 96.66 |
6 | ditto | 1.49 | ditto | 99.33 |
Detection Method | Weighed Sample (mg) | Time of Digestion or Distillation (h) | Detection Time (h) | GBW10025 (N = 10.6 ± 0.4%; S = 0.78 ± 0.08%) | RSD (%) | Shredded Squid (%) | RSD (%) | Recovery (%) |
---|---|---|---|---|---|---|---|---|
This method | 15.00 | 0 | 0.1 | N = 10.05 | 0.35 | N = 4.98 | 1.28 | 94.0–101.8 |
S = 0.76 | 5.68 | S = 0.41 | 3.67 | 91.0–103.8 | ||||
GB 5009.5-2016 (N) | 600.0 | 2.5 | 4.5 | N = 10.02 | 0.28 | N = 4.97 | 0.40 | 94.2–99.1 |
GB 5009.34-2016 (S) | 5000 | 1.0 | 2.5 | S = 0.79 | 5.38 | S = 0.40 | 7.80 | 94.9–107.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, D.; Gu, W.; Zhai, Y.; Ning, J.; Mao, X.; Sheng, X.; Zhao, Y.; Ding, H.; Kang, X. Solid Sampling Pyrolysis Adsorption-Desorption Thermal Conductivity Method for Rapid and Simultaneous Detection of N and S in Seafood. Molecules 2022, 27, 8909. https://doi.org/10.3390/molecules27248909
Shang D, Gu W, Zhai Y, Ning J, Mao X, Sheng X, Zhao Y, Ding H, Kang X. Solid Sampling Pyrolysis Adsorption-Desorption Thermal Conductivity Method for Rapid and Simultaneous Detection of N and S in Seafood. Molecules. 2022; 27(24):8909. https://doi.org/10.3390/molecules27248909
Chicago/Turabian StyleShang, Derong, Wenyan Gu, Yuxiu Zhai, Jinsong Ning, Xuefei Mao, Xiaofeng Sheng, Yanfang Zhao, Haiyan Ding, and Xuming Kang. 2022. "Solid Sampling Pyrolysis Adsorption-Desorption Thermal Conductivity Method for Rapid and Simultaneous Detection of N and S in Seafood" Molecules 27, no. 24: 8909. https://doi.org/10.3390/molecules27248909
APA StyleShang, D., Gu, W., Zhai, Y., Ning, J., Mao, X., Sheng, X., Zhao, Y., Ding, H., & Kang, X. (2022). Solid Sampling Pyrolysis Adsorption-Desorption Thermal Conductivity Method for Rapid and Simultaneous Detection of N and S in Seafood. Molecules, 27(24), 8909. https://doi.org/10.3390/molecules27248909