Modeling and Optimization of the Isolation of Blackcurrant and Black Cumin Seeds Oils Using Supercritical Fluid Extraction
Abstract
:1. Introduction
2. Results
2.1. Blackcurrant Seeds Extraction
2.2. Black Cumin Seeds Extraction
3. Discussion
3.1. Blackcurrant Seeds Extraction
3.1.1. Extraction Yield
3.1.2. Fatty Acids Content
3.2. Black Cumin Seeds Extraction
3.2.1. Extraction Yield
3.2.2. Fatty Acids Content
3.3. Other Dependencies Affecting the Obtained Results
4. Materials and Methods
4.1. Plant Material
4.2. Supercritical Extraction on a Laboratory Scale
4.3. Experimental Design of Oil Extraction
4.4. Gas Chromatography of Fatty Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ying, Q.; Wojciechowska, P.; Siger, A.; Kaczmarek, A.; Rudzińska, M. Phytochemical Content, Oxidative Stability, and Nutritional Properties of Unconventional Cold-pressed Edible Oils. J. Food Nutr. Res. 2018, 6, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Husain, A.; Mujeeb, M. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Ligor, M.; Rafińska, K.; Wrona, O.; Kiełbasa, A.; Krakowska-Sieprawska, A.; Buszewski, B. Plant materials and natural products—New hopes for the future generations. Plant. Wiadomości Chem. 2021, 75, 7–8. [Google Scholar]
- Helbig, D.; Böhm, V.; Wagner, A.; Schubert, R.; Jahreis, G. Berry seed press residues and their valuable ingredients with special regard to black currant seed press residues. Food Chem. 2008, 111, 1043–1049. [Google Scholar] [CrossRef]
- Şesan, T.E.; Enache, E.; Iacomi, B.M.; Oprea, M.; Oancea, F.; Iacomi, C. In vitro antifungal activity of some plant extracts against Fusarium oxysporum in blackcurrant (Ribes nigrum L.). Acta Sci. Pol. Hortorum Cultus. 2017, 16, 167–176. [Google Scholar] [CrossRef]
- Budzyń, M.; Iskra, M.; Wielkoszyński, T.; Małecka, M.; Gryszczyńska, B. The influence of black currant (Ribes nigrum) seed extract on effectiveness of human ceruloplasmin in Fe(II) ions elimination. J. Elementol. 2009, 14, 217–227. [Google Scholar]
- Krzepiłko, A.; Prażak, R.; Skwaryło-Bednarz, B.; Święciło, A. Buds, leaves, and seeds of blackcurrant—Source of bioactive substances with pro-health properties. Żywność. Nauka. Technologia. Jakość. 2018, 25, 24–33. [Google Scholar] [CrossRef]
- Jessa, J.; Hozyasz, K.K. Blackcurrant and blackcurrant seed oil—A phytotherapeutic panacea? Probl. Hig. Epidemiol. 2016, 97, 14–23. [Google Scholar]
- Piras, A.; Rosa, A.; Marongiu, B.; Porcedda, S.; Falconieri, D.; Dessì, M.A.; Ozcelik, B.; Koca, U. Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide. Ind. Crops. Prod. 2013, 46, 317–323. [Google Scholar] [CrossRef]
- Silva, A.F.C.; Haris, P.I.; Serralheiro, M.L.; Pacheco, R. Mechanism of action and the biological activities of Nigella sativa oil components. Food Biosci. 2020, 38, 100783. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Dordević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Godevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Yahya, A.; Yunus, R.M. Influence of sample preparation and extraction time on chemical composition of steam distillation derived patchouli oil. Proc. Eng. 2013, 53, 1–6. [Google Scholar] [CrossRef]
- Hadjadj, N.; Acheheb, H.; Aitchaouche, F.S.; Belhachat, D.; Ferradji, A. Optimization of oil extraction from Nigell sativa seeds by pressing using response surface methodology. Am. J. Food Technol. 2014, 9, 136–143. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Karacabey, E. Optimization of microwave-assisted extraction of thymoquinone from Nigella sativa L. seeds. Maced. J. Chem. Chem. Eng. 2016, 35, 209–216. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Danlami, J.M.; Arsad, A.; Zaini, M.A.A.; Sulaiman, H. A comprehensive study of various oil extraction techniques from plants. Rev. Chem. Eng. 2014, 30, 605–626. [Google Scholar] [CrossRef]
- Rój, E. Supercritical Fluid Extractions, Supercritical Fluids—The Current State and Outlook; New Chemical Syntheses Institute: Pulawy, Poland, 2016; ISBN 978-83-935354-1-5. [Google Scholar]
- Ramsey, E.D. Analytical Supercritical Fluid Extraction Techniques; Springer Dordrecht: Dordrecht, The Netherlands, 1998; ISBN 978-94-011-4948-8. [Google Scholar]
- Pereira, C.G.; Meireles, M.A.A. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Ahangari, H.; King, J.W.; Ehsani, A.; Yousefi, M. Supercritical fluid extraction of seed oils—A short review of current trends. Trends Food Sci. Technol. 2021, 111, 249–260. [Google Scholar] [CrossRef]
- Salea, R.; Wodjojokusumo, E.; Hartanti, A.W.; Veriansyah, B.; Jandrawinata, R.R. Supercritical fluid carbon dioxide extraction of Nigella sativa (black cumin) seeds using taguchi method ald full factorial design. Biochem. Compd. 2013, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gawron, G.; Krzyczkowski, W.; Łyżeń, R.; Kadziński, L.; Banecki, B. Influence of supercritical carbon dioxide extraction conditions on extraction yield and composition of Nigella sativa L. seed oil—Modeling, optimization and extraction kinetics regarding fatty acid and thymoquinone content. Molecules 2021, 26, 6419. [Google Scholar] [CrossRef]
- Güçlü-Üstündag, O.; Temelli, F. Correlating the solubility behavior of fatty acids, mono-, di-, and triglycerides, and fatty acid esters in supercritical carbon dioxide. Ind. Eng. Chem. Res. 2000, 39, 4756–4766. [Google Scholar] [CrossRef]
- Güçlü-Üstündag, O.; Temelli, F. Correlating the solubility behavior of minor lipid components in supercritical carbon dioxide. J. Supercrit. Fluids 2004, 31, 235–253. [Google Scholar] [CrossRef]
- Yu, Z.-R.; Singh, B.; Rizvi, S.S.H.; Zollweg, J.A. Solubilities of fatty acids, fatty acid esters, triglycerides, and fats and oils in supercritical carbon dioxide. J. Supercrit. Fluids 1994, 7, 51–59. [Google Scholar] [CrossRef]
- Solati, Z.; Baharin, B.S.; Bagheri, H. Supercritical carbon dioxide (SC-CO2) extraction of Nigella sativa L. oil using full factorial design. Ind. Crops. Prod. 2012, 36, 519–523. [Google Scholar] [CrossRef]
- Rój, E. Supercritical CO2 Extraction and Its Applications; Chapter: Extraction of plant material with supercritical CO2; OIC Poland: Lublin, Poland, 2014; ISBN 978-83-86499-96-0. [Google Scholar]
- Rój, E.; Dobrzyńska-Inger, A.; Grzęda, K.; Kostrzewa, D. Supercritical extraction of plant material. Chem. Ind. Przemysł Chem. 2013, 92, 1358–1363. [Google Scholar]
- King, M.B.; Bott, T.R. Extraction of Natural Products Using Near-Critical Solvents; Springer: Dordrecht, The Netherlands, 1993; ISBN 978-94-011-2138-5. [Google Scholar]
- Gustinelli, G.; Eliasson, L.; Svelander, C.; Andlid, T.; Lundin, L.; Ahrne, L.; Alminger, M. Supercritical fluid extraction of berry seeds: Chemical composition and antioxidant activity. J. Food Qual. 2018, 2018, 6046074. [Google Scholar] [CrossRef]
- Johansson, A.; Laakso, P.; Kallio, H. Characterization of seed oils of wild edible Finnish berries. Z. Fur Lebensm. Und-Forsch. A 1997, 204, 300–307. [Google Scholar] [CrossRef]
- Shen, Z.; Palmer, M.V.; Ting, S.S.T.; Fairclough, R.J. Pilot scale extraction and fractionation of rice bran oil using supercritical carbon dioxide. J. Agric. Food Chem. 1997, 45, 4540–4544. [Google Scholar] [CrossRef]
- Sovova, H.; Zarevucka, M.; Vacek, M.; Stransky, K. Solubility of two vegetables oils in supercritical CO2. J. Supercrit. Fluids 2001, 20, 15–28. [Google Scholar] [CrossRef]
- Cheung, P.C.K. Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chem. 1999, 65, 399–403. [Google Scholar] [CrossRef]
Run Order | Temperature, °C | X1 | Pressure, bar | X2 | Time, min | X3 | WCP (%) | CFA (% w/w) |
---|---|---|---|---|---|---|---|---|
1 | 50 | 0 | 130 | −1 | 5 | −1 | 1.57 | 77.34 |
2 | 40 | −1 | 230 | 0 | 45 | 1 | 9.90 | 92.52 |
3 | 40 | −1 | 330 | 1 | 25 | 0 | 9.56 | 82.11 |
4 | 50 | 0 | 330 | 1 | 45 | 1 | 11.19 | 82.67 |
5 | 40 | −1 | 230 | 0 | 5 | −1 | 3.48 | 93.67 |
6 | 50 | 0 | 230 | 0 | 25 | 0 | 9.71 | 95.99 |
7 | 60 | 1 | 330 | 1 | 25 | 0 | 9.56 | 95.76 |
8 | 60 | 1 | 130 | −1 | 25 | 0 | 2.40 | 76.06 |
9 | 50 | 0 | 230 | 0 | 25 | 0 | 9.24 | 93.79 |
10 | 50 | 0 | 230 | 0 | 25 | 0 | 9.13 | 95.06 |
11 | 60 | 1 | 230 | 0 | 45 | 1 | 10.18 | 91.44 |
12 | 60 | 1 | 230 | 0 | 5 | −1 | 5.38 | 88.54 |
13 | 50 | 0 | 130 | −1 | 45 | 1 | 3.99 | 80.83 |
14 | 40 | −1 | 130 | −1 | 25 | 0 | 4.24 | 91.49 |
15 | 50 | 0 | 330 | 1 | 5 | −1 | 6.95 | 92.40 |
Source | WCP (%) | CFA (% w/w) | ||
---|---|---|---|---|
Regression Coefficient, β | p-Value | Regression Coefficient, β | p-Value | |
Model | 0.0032 | 0.0021 | ||
LOF | 0.0586 | 0.1933 | ||
β0 | 9.360 | 94.95 | ||
X1 | 0.042 | 0.9072 | −0.999 | 0.1997 |
X2 | 3.133 | 0.0003 | 3.403 | 0.0040 |
X3 | 2.235 | 0.0013 | −0.561 | 0.4443 |
X1X2 | 0.460 | 0.3913 | 7.270 | 0.0006 |
X1X3 | −0.405 | 0.4465 | 1.013 | 0.3381 |
X2X3 | 0.455 | 0.3961 | −3.305 | 0.0181 |
X12 | −0.805 | 0.1756 | −0.180 | 0.8639 |
X22 | −2.115 | 0.0090 | −8.412 | 0.0004 |
X32 | −1.320 | 0.0491 | −3.225 | 0.0229 |
R2 | 0.9676 | 0.9726 | ||
R2 adjusted | 0.9092 | 0.9234 | ||
R2 predicted | 0.4985 | 0.6123 |
Source | WCP (%) | CFA (% w/w) | ||
---|---|---|---|---|
Regression Coefficient, β | p−Value | Regression Coefficient, β | p−Value | |
Model | <0.0001 | <0.0001 | ||
LOF | 0.1493 | 0.4187 | ||
β0 | 8.865 | 94.836 | ||
X1 | ||||
X2 | 3.133 | <0.0001 | 3.403 | 0.0007 |
X3 | 2.235 | 0.0001 | ||
X1X2 | 7.270 | <0.0001 | ||
X1X3 | ||||
X2X3 | −3.305 | 0.0073 | ||
X12 | ||||
X22 | −2.053 | 0.0023 | −8.398 | <0.0001 |
X32 | −1.258 | 0.0325 | −3.211 | 0.0103 |
R2 | 0.9356 | 0.9506 | ||
R2 adjusted | 0.9098 | 0.9232 | ||
R2 predicted | 0.8453 | 0.8325 |
Run Order | Temp. °C | X1 | Pressure, bar | X2 | Time, min | X3 | WBC (%) | CFA (% w/w) |
---|---|---|---|---|---|---|---|---|
1 | 50 | 0 | 130 | −1 | 5 | −1 | 6.34 | 95.55 |
2 | 40 | −1 | 230 | 0 | 45 | 1 | 37.42 | 81.89 |
3 | 40 | −1 | 330 | 1 | 25 | 0 | 32.28 | 63.41 |
4 | 50 | 0 | 330 | 1 | 45 | 1 | 35.19 | 63.97 |
5 | 40 | −1 | 230 | 0 | 5 | −1 | 13.18 | 82.75 |
6 | 50 | 0 | 230 | 0 | 25 | 0 | 34.83 | 87.62 |
7 | 60 | 1 | 330 | 1 | 25 | 0 | 34.28 | 63.32 |
8 | 60 | 1 | 130 | −1 | 25 | 0 | 10.28 | 84.43 |
9 | 50 | 0 | 230 | 0 | 25 | 0 | 35.07 | 88.79 |
10 | 50 | 0 | 230 | 0 | 25 | 0 | 34.26 | 83.80 |
11 | 60 | 1 | 230 | 0 | 45 | 1 | 37.58 | 77.89 |
12 | 60 | 1 | 230 | 0 | 5 | −1 | 12.72 | 92.63 |
13 | 50 | 0 | 130 | −1 | 45 | 1 | 18.47 | 86.50 |
14 | 40 | −1 | 130 | −1 | 25 | 0 | 18.38 | 92.58 |
15 | 50 | 0 | 330 | 1 | 5 | −1 | 18.37 | 60.48 |
Source | WBC (%) | CFA (% w/w) | ||
---|---|---|---|---|
Regression Coefficient, β | p-Value | Regression Coefficient, β | p-Value | |
Model | 0.0042 | 0.0025 | ||
LOF | 0.0079 | 0.3315 | ||
β0 | 34.720 | 86.737 | ||
X1 | −0.800 | 0.5601 | −0.295 | 0.8160 |
X2 | 8.330 | 0.0013 | −13.490 | 0.0001 |
X3 | 9.756 | 0.0006 | −2.645 | 0.0791 |
X1X2 | 2.525 | 0.2224 | 2.015 | 0.2893 |
X1X3 | 0.155 | 0.9352 | −3.470 | 0.0968 |
X2X3 | 1.173 | 0.5463 | 3.135 | 0.1246 |
X12 | −2.642 | 0.2204 | −1.818 | 0.3514 |
X22 | −8.275 | 0.0071 | −8.983 | 0.0038 |
X32 | −6.853 | 0.0150 | −1.128 | 0.5519 |
R2 | 0.9640 | 0.9707 | ||
R2 adjusted | 0.8991 | 0.9180 | ||
R2 predicted | 0.4259 | 0.6265 |
Source | WBC (%) | CFA (% w/w) | ||
---|---|---|---|---|
Regression Coefficient, β | p-Value | Regression Coefficient, β | p-Value | |
Model | <0.0001 | <0.0001 | ||
LOF | 0.0668 | 0.6281 | ||
β0 | 33.094 | 85.053 | ||
X1 | ||||
X2 | 8.330 | 0.0001 | −13.490 | <0.0001 |
X3 | 9.756 | <0.0001 | −2.645 | 0.0428 |
X1X2 | ||||
X1X3 | −3.470 | 0.0565 | ||
X2X3 | 3.135 | 0.0796 | ||
X12 | ||||
X22 | −8.072 | 0.0014 | −8.773 | 0.0005 |
X32 | −6.650 | 0.0050 | ||
R2 | 0.9300 | 0.9541 | ||
R2 adjusted | 0.9020 | 0.9287 | ||
R2 predicted | 0.8271 | 0.8686 |
No. | T/p/t °C/bar/min | Palmitic Acid C16:0 | Stearic Acid C18:0 | Oleic Acid C18:1 ω9 | Linoleic Acid C18:2 ω6 | Gamma Linolenic Acid C18:3 ω6 | Alfa Linolenic Acid C18:3 ω3 | Sum (% w/w) |
---|---|---|---|---|---|---|---|---|
1 | 50/130/5 | 7.48 | 0.82 | 9.38 | 38.39 | 11.90 | 9.37 | 77.34 |
2 | 40/230/45 | 7.04 | 1.17 | 11.55 | 45.95 | 14.92 | 11.88 | 92.51 |
3 | 40/330/25 | 5.78 | 0.97 | 10.42 | 41.22 | 13.24 | 10.49 | 82.11 |
4 | 50/330/45 | 5.79 | 1.03 | 10.46 | 41.53 | 13.32 | 10.53 | 82.67 |
5 | 40/230/5 | 7.01 | 1.17 | 12.06 | 46.36 | 15.06 | 12.02 | 93.67 |
6 | 50/230/25 | 7.34 | 1.17 | 11.97 | 47.30 | 15.90 | 12.32 | 95.99 |
7 | 60/330/25 | 6.76 | 1.26 | 12.19 | 47.55 | 15.61 | 12.39 | 95.76 |
8 | 60/130/25 | 5.43 | 0.98 | 9.78 | 38.57 | 11.84 | 9.47 | 76.06 |
9 | 50/230/25 | 7.78 | 1.27 | 11.69 | 46.13 | 15.25 | 11.68 | 93.79 |
10 | 50/230/25 | 7.11 | 1.19 | 11.76 | 46.34 | 15.81 | 12.36 | 95.06 |
11 | 60/230/45 | 6.51 | 1.14 | 11.66 | 45.51 | 14.93 | 11.69 | 91.44 |
12 | 60/230/5 | 6.66 | 1.05 | 11.13 | 44.44 | 14.28 | 10.97 | 88.54 |
13 | 50/130/45 | 6.42 | 1.04 | 10.06 | 40.43 | 12.89 | 9.98 | 80.83 |
14 | 40/130/25 | 7.84 | 1.18 | 11.34 | 44.99 | 14.94 | 11.19 | 91.49 |
15 | 50/330/5 | 7.39 | 1.13 | 11.46 | 45.47 | 15.34 | 11.59 | 92.40 |
No. | T/p/t °C/bar/min | Palmitic Acid C16:0 | Stearic Acid C18:0 | Oleic Acid C18:1 ω9 | Linoleic Acid C18:2 ω6 | Alfa Linolenic Acid C18:3 ω3 | Sum (% w/w) |
---|---|---|---|---|---|---|---|
1 | 50/130/5 | 13.77 | 2.88 | 22.63 | 56.13 | 0.14 | 95.55 |
2 | 40/230/45 | 10.75 | 2.24 | 19.55 | 49.02 | 0.33 | 81.89 |
3 | 40/330/25 | 7.83 | 1.69 | 15.60 | 38.19 | 0.11 | 63.41 |
4 | 50/330/45 | 7.94 | 1.84 | 15.81 | 38.28 | 0.11 | 63.97 |
5 | 40/230/5 | 10.93 | 2.28 | 19.69 | 49.71 | 0.14 | 82.75 |
6 | 50/230/25 | 11.48 | 2.39 | 21.01 | 52.59 | 0.14 | 87.62 |
7 | 60/330/25 | 7.92 | 1.78 | 15.46 | 38.02 | 0.14 | 63.32 |
8 | 60/130/25 | 10.42 | 2.23 | 20.77 | 50.86 | 0.15 | 84.43 |
9 | 50/230/25 | 12.22 | 2.53 | 21.14 | 52.75 | 0.15 | 88.79 |
10 | 50/230/25 | 10.87 | 2.43 | 20.36 | 50.00 | 0.14 | 83.80 |
11 | 60/230/45 | 9.83 | 2.23 | 19.03 | 46.65 | 0.15 | 77.89 |
12 | 60/230/5 | 13.55 | 2.89 | 22.03 | 54.02 | 0.14 | 92.63 |
13 | 50/130/45 | 10.46 | 2.28 | 21.15 | 52.48 | 0.14 | 86.50 |
14 | 40/130/25 | 13.07 | 2.79 | 21.98 | 54.60 | 0.14 | 92.58 |
15 | 50/330/5 | 7.80 | 1.56 | 14.36 | 36.62 | 0.14 | 60.48 |
Coded Parameters | −1 | 0 | +1 | |
---|---|---|---|---|
X1 | T–temperature, °C | 40 | 50 | 60 |
X2 | p–pressure, bar | 130 | 230 | 330 |
X3 | t–time, min | 5 | 25 | 45 |
FA Name | RT, min CPE | RT, min BCE |
---|---|---|
Myristic acid | 11.07 | 11.06 |
Palmitic acid | 12.98 | 12.95 |
Stearic acid | 15.11 | 15.09 |
Oleic acid | 15.79 | 15.78 |
Linoleic acid | 17.00 | 16.98 |
Gamma–Linolenic acid | 17.95 | - |
Alfa –Linolenic acid | 18.61 | 18.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek, B.; Wójciak, M.; Kostrzewa, D.; Kondracka, M. Modeling and Optimization of the Isolation of Blackcurrant and Black Cumin Seeds Oils Using Supercritical Fluid Extraction. Molecules 2022, 27, 8921. https://doi.org/10.3390/molecules27248921
Mazurek B, Wójciak M, Kostrzewa D, Kondracka M. Modeling and Optimization of the Isolation of Blackcurrant and Black Cumin Seeds Oils Using Supercritical Fluid Extraction. Molecules. 2022; 27(24):8921. https://doi.org/10.3390/molecules27248921
Chicago/Turabian StyleMazurek, Barbara, Magdalena Wójciak, Dorota Kostrzewa, and Małgorzata Kondracka. 2022. "Modeling and Optimization of the Isolation of Blackcurrant and Black Cumin Seeds Oils Using Supercritical Fluid Extraction" Molecules 27, no. 24: 8921. https://doi.org/10.3390/molecules27248921
APA StyleMazurek, B., Wójciak, M., Kostrzewa, D., & Kondracka, M. (2022). Modeling and Optimization of the Isolation of Blackcurrant and Black Cumin Seeds Oils Using Supercritical Fluid Extraction. Molecules, 27(24), 8921. https://doi.org/10.3390/molecules27248921