Safe Sialidase Production by the Saprophyte Oerskovia paurometabola: Gene Sequence and Enzyme Purification
Abstract
:1. Introduction
2. Results
2.1. Purification of the Novel Sialidase Enzyme of O. paurometabola O129
2.2. Biochemical Characterization of the Enzyme
2.2.1. Substrate Specificity
2.2.2. Induction
2.2.3. Thermal Stability
2.2.4. Stability at 37 °C
2.3. O. paurometabola O129 Sialidase Gene Sequencing and Analysis
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain and Maintenance
4.2. Isolation of DNA, PCR, and Sialidase Gene Sequence Analysis
4.3. Sialidase Activity Assay
4.4. Purification of the Extracellular Sialidase from O. paurometabola O129
4.5. SDS-PAGE and Glycoprotein Staining
4.6. Enzyme Characterization and Kinetic Parameters
4.7. Induction
4.8. Thermal Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Schauer, R.; Kamerling, J.P. Exploration of the Sialic Acid World. Adv. Carbohydr. Chem. Biochem. 2018, 75, 1–213. [Google Scholar] [CrossRef] [PubMed]
- Giacopuzzi, E.; Bresciani, R.; Schauer, R.; Monti, E.; Borsani, G. New insights on the sialidase protein family revealed by a phylogenetic analysis in metazoa. PLoS ONE 2012, 7, e44193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eneva, R.; Engibarov, S.; Abrashev, R.; Krumova, E.; Angelova, M. Sialic acids, sialoconjugates and enzymes of their metabolism in fungi. Biotechnol. Biotechnol. Equip. 2021, 35, 346–357. [Google Scholar] [CrossRef]
- Roggentin, P.; Schauer, R.; Hoyer, L.; Vimr, E. The sialidase superfamily and its spread by horizontal gene transfer. Mol. Microbiol. 1993, 9, 915–992. [Google Scholar] [CrossRef]
- Vimr, E.R. Unified theory of bacterial sialometabolism: How and why bacteria metabolize host sialic acids. ISRN Microbiol. 2013, 2013, 816713. [Google Scholar] [CrossRef] [Green Version]
- Almagro-Moreno, S.; Boyd, E.F. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol. Biol. 2009, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Almagro-Moreno, S.; Boyd, E.F. Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut. Gut Microbes 2010, 1, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Minami, A.; Kurebayashi, Y.; Takahashi, T.; Otsubo, T.; Ikeda, K.; Suzuki, T. The function of sialidase revealed by sialidase activity imaging probe. Int. J. Mol. Sci. 2021, 22, 3187. [Google Scholar] [CrossRef] [PubMed]
- Juge, N.; Tailford, L.; Owen, C.D. Sialidases from gut bacteria: A mini-review. Biochem. Soc. Trans. 2016, 44, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Corfield, T. Bacterial sialidases-roles in pathogenicity and nutrition. Glycobiology 1992, 2, 509–521. [Google Scholar] [CrossRef]
- Mizan, S.; Henk, A.; Stallings, A.; Maier, M.; Lee, M.D. Cloning and characterization of sialidases with 2-6′ and 2-3′ sialyl lactose specificity from Pasteurella multocida. J. Bacteriol. 2000, 182, 6874–6883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minami, A.; Ishibashi, S.; Ikeda, K.; Ishitsubo, E.; Hori, T.; Tokiwa, H.; Taguchi, R.; Ieno, D.; Otsubo, T.; Matsuda, Y.; et al. Catalytic preference of Salmonella typhimurium LT2 sialidase for N-acetylneuraminic acid residues over N-glycolylneuraminic acid residues. FEBS Open Bio. 2013, 3, 231–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariño, K.; Bones, J.; Kattla, J.J.; Rudd, P.M. A systematic approach to protein glycosylation analysis: A path through the maze. Nat. Chem. Biol. 2010, 6, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Mountney, A.; Zahner, M.R.; Lorenzini, I.; Oudega, M.; Schramm, L.P.; Schnaar, R.L. Sialidase enhances recovery from spinal cord contusion injury. Proc. Natl. Acad. Sci. USA 2010, 107, 11561–11566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solá, R.J.; Griebenow, K. Glycosylation of therapeutic proteins: An effective strategy to optimize efficacy. BioDrugs 2010, 24, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Oh, D.-B.; Kang, H.A.; Kwon, O. Features and applications of bacterial sialidases. Appl. Microbiol. Biotechnol. 2011, 91, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Merck products: Sialidase. Available online: https://www.sigmaaldrich.com/BG/en/search/sialidase?facet=facet_product_category%3Aenzymes&focus=products&page=1&perpage=30®ion=global&sort=relevance&term=sialidase&type=product (accessed on 11 October 2022).
- Creative Enzymes® Products: Sialidase. Available online: https://www.creative-enzymes.com/search.html (accessed on 11 October 2022).
- Lee, J.-Y.; Seo, S.; Shin, B.; Hong, S.H.; Kwon, E.; Park, S.; Hur, Y.M.; Lee, D.-K.; Kim, Y.J.; Han, S.B. Development of a new biomarker model for predicting preterm birth in cervicovaginal fluid. Metabolites 2022, 12, 734. [Google Scholar] [CrossRef]
- Rzewuska, M.; Kwiecień, E.; Chrobak-Chmiel, D.; Kizerwetter-Świda, M.; Stefańska, I.; Gieryńska, M. Pathogenicity and Virulence of Trueperella pyogenes: A Review. Int. J. Mol. Sci. 2019, 20, 2737. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Deng, Z.; Cao, L. Isolation and characterization of actinomycetes from healthy goat faeces. Lett. Appl. Microbiol. 2009, 49, 248–253. [Google Scholar] [CrossRef]
- Eneva, R.; Engibarov, S.; Gocheva, Y.; Mitova, S.; Petrova, P. Novel sialidase from non-pathogenic bacterium Oerskovia paurometabola strain O129. Z. Naturforsch. C 2022. Available online: https://www.degruyter.com/document/doi/10.1515/znc-2022-0051/html (accessed on 7 November 2022).
- Neelima, S.; Sharma, R.; Rajput, Y.S.; Mann, B. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: A review. Dairy Sci. Technol. 2013, 93, 21–43. [Google Scholar] [CrossRef]
- Kim, S.; Oh, D.-B.; Kwon, O.; Kang, H.A. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. J. Biochem. 2010, 147, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Ugai, H.; Nakayama-Imaohji, H.; Tada, A.; Elahi, M.; Houchi, H.; Kuwahara, T. Characterization of a recombinant Bacteroides fragilis sialidase expressed in Escherichia coli. Anaerobe 2018, 50, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Wasik, B.R.; Barnard, K.N.; Ossiboff, R.J.; Khedri, Z.; Feng, K.H.; Yu, H.; Chen, X.; Perez, D.R.; Varki, A.; Parrish, C.R. Distribution of O-acetylated sialic acids among target host tissues for influenza virus. mSphere 2017, 2, e00379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaskell, A.; Crennell, S.; Taylor, G. The three domains of a bacterial sialidase: A beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 1995, 3, 1197–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eneva, R.; Engibarov, S.; Petrova, P.; Abrashev, R.; Strateva, T.; Kolyovska, V.; Abrashev, I. High production of neuraminidase by a Vibrio cholerae non-O1 strain—The first possible alternative to toxigenic producers. Appl. Biochem. Biotechnol. 2015, 176, 412–427. [Google Scholar] [CrossRef]
- Traving, C.; Schauer, R. Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci. 1998, 54, 1330–1349. [Google Scholar] [CrossRef]
- Tanaka, H.; Ito, F.; Iwasaki, T. Purification and characterization of a sialidase from Bacteroides fragilis SBT3182. Biochem. Biophys. Res. Commun. 1992, 189, 524–529. [Google Scholar] [CrossRef]
- Byers, H.L.; Tarelli, E.; Homer, K.A.; Beighton, D. Isolation and characterisation of sialidase from a strain of Streptococcus oralis. J. Med. Microbiol. 2000, 49, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Eichler, J.; Koomey, M. Sweet New Roles for Protein Glycosylation in Prokaryotes. Trends Microbiol. 2017, 25, 662–672. [Google Scholar] [CrossRef]
- Eneva, R.; Engibarov, S.; Sirakov, I.; Kolyovska, V.; Pavlova, M.; Petrov, P.; Nenova, R.; Abrashev, I. Sialidase nanH of the non-toxigenic Vibrio cholerae strain V13 is a glycoprotein. Comptes Rendus L’académie Bulg. Sci. 2017, 70, 375–380. [Google Scholar]
- Kiyohara, M.; Tanigawa, K.; Chaiwangsri, T.; Katayama, T.; Ashida, H.; Yamamoto, K. An exo-α-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology 2011, 21, 437–447. [Google Scholar] [CrossRef]
- Frey, A.M.; Satur, M.J.; Phansopa, C.; Honma, K.; Urbanowicz, P.A.; Spencer, D.I.R.; Pratten, J.; Bradshaw, D.; Sharma, A.; Stafford, G. Characterization of Porphyromonas gingivalis sialidase and disruption of its role in host-pathogen interactions. Microbiology 2019, 165, 1181–1197. [Google Scholar] [CrossRef]
- Franca, R.D.G.; Vieira, A.; Carvalho, G.; Oehmen, A.; Pinheiro, H.M.; Crespo, M.T.B.; Lourenco, N.D. Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite. Ecotoxicol. Environ. Saf. 2020, 191, 110007. [Google Scholar] [CrossRef]
- Ghazaei, C.; Ahmadi, M.; Jazani, N.H. Detection of neuraminidase activity in Pseudomonas aeruginosa PAO1. IJBMS 2010, 13, 69–75. [Google Scholar] [CrossRef]
- Gualdi, L.; Hayre, J.K.; Gerlini, A.; Bidossi, A.; Colomba, L.; Trappetti, C.; Pozzi, G.; Docquier, J.-D.; Andrew, P.; Ricci, S.; et al. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol. 2012, 12, 200. [Google Scholar] [CrossRef] [Green Version]
- Engibarov, S.; Eneva, R.; Abrashev, I. Neuraminidase (sialidase) from Aeromonas sp. strain A40/02—Isolation and partial purification. Ann. Microbiol. 2015, 65, 1515–1523. [Google Scholar] [CrossRef]
- Therit, B.; Cheung, J.K.; Rood, J.I.; Melville, S. NanR, a transcriptional regulator that binds to the promoters of genes involved in sialic acid metabolism in the anaerobic pathogen Clostridium perfringens. PLoS ONE 2015, 10, e0133217. [Google Scholar] [CrossRef]
- Abrashev, I.; Orozova, P. Erysipelothrix rhusiopathiae neuraminidase and its role in pathogenecity. Z. Nat. 2006, 61c, 434–438. [Google Scholar] [CrossRef]
- Li, J.; McClane, B. The sialidases of Clostridium perfringens type D strain CN3718 differ in their properties and sensitivities to inhibitors. Appl. Environ. Microbiol. 2014, 80, 1701–11709. [Google Scholar] [CrossRef] [Green Version]
- Jost, B.H.; Songer, G.J.; Billington, S.J. Cloning, expression and characterization of a neuraminidase gene from Arcanobacterium pyogenes. Infect. Immun. 2001, 69, 4430–4437. [Google Scholar] [CrossRef] [Green Version]
- Schwerdtfeger, S.M.; Melzig, M.F. Sialidases in biological systems. Pharmazie 2010, 65, 551–561. [Google Scholar] [CrossRef]
- Copley, R.R.; Russell, R.B.; Ponting, C.P. Sialidase-like Asp-boxes: Sequence-similar structures within different protein folds. Protein Sci. 2001, 10, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Crennel, S.; Garman, E.; Laver, G.; Vimr, E.; Taylor, G. Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure 1994, 2, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Vimr, E.R.; Kalivoda, K.A.; Deszo, E.L.; Steenbergen, S.M. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 2004, 68, 132–153. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, K.B. Genedoc: A tool for editing and annotating multiple sequence alignments. Embnew. News. 1997, 4, 1. Available online: http://www.pscedu/biomed/genedoc,1997 (accessed on 1 November 2022).
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Uchida, Y.; Tsukada, Y.; Sugimori, T. Distribution of neuraminidase in Arthrobacter and its purification by affinity chromatography. J. Biochem. 1977, 82, 1425–1433. [Google Scholar] [CrossRef]
- Abrashev, I.; Velcheva, P.; Nikolov, P.; Kourteva, J. Substrate for Colorimetric Determination of Enzyme Activity. Bulgaria Patent N 47647/IIR, 1980. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Chevallet, M.; Luche, S.; Rabilloud, T. Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 2006, 1, 1852–1858. [Google Scholar] [CrossRef] [Green Version]
- Lineweaver, H.; Burk, D. Determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 659–665. [Google Scholar] [CrossRef]
Fraction | Volume (mL) | Enzyme Activity (U/mL) | Total Activity (U) | Protein (mg/mL) | Specific Activity (U/mg) | Purification (Fold) | Yield (%) |
---|---|---|---|---|---|---|---|
Culture liquid | 50 | 31 | 1550 | 0,1 | 310 | 1 | 100 |
(NH4)2SO4 precipitation | 5 | 136 | 680 | 0.02 | 6800 | 22 | 44 |
DEAE cellulose | 1.3 | 328 | 427 | 0.04 | 8200 | 26 | 28 |
Q-Sepharose | 1 | 227 | 227 | 0.02 | 11350 | 37 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eneva, R.; Engibarov, S.; Gocheva, Y.; Mitova, S.; Arsov, A.; Petrov, K.; Abrashev, R.; Lazarkevich, I.; Petrova, P. Safe Sialidase Production by the Saprophyte Oerskovia paurometabola: Gene Sequence and Enzyme Purification. Molecules 2022, 27, 8922. https://doi.org/10.3390/molecules27248922
Eneva R, Engibarov S, Gocheva Y, Mitova S, Arsov A, Petrov K, Abrashev R, Lazarkevich I, Petrova P. Safe Sialidase Production by the Saprophyte Oerskovia paurometabola: Gene Sequence and Enzyme Purification. Molecules. 2022; 27(24):8922. https://doi.org/10.3390/molecules27248922
Chicago/Turabian StyleEneva, Rumyana, Stephan Engibarov, Yana Gocheva, Simona Mitova, Alexander Arsov, Kaloyan Petrov, Radoslav Abrashev, Irina Lazarkevich, and Penka Petrova. 2022. "Safe Sialidase Production by the Saprophyte Oerskovia paurometabola: Gene Sequence and Enzyme Purification" Molecules 27, no. 24: 8922. https://doi.org/10.3390/molecules27248922
APA StyleEneva, R., Engibarov, S., Gocheva, Y., Mitova, S., Arsov, A., Petrov, K., Abrashev, R., Lazarkevich, I., & Petrova, P. (2022). Safe Sialidase Production by the Saprophyte Oerskovia paurometabola: Gene Sequence and Enzyme Purification. Molecules, 27(24), 8922. https://doi.org/10.3390/molecules27248922