Acute Toxicity Evaluation of Lindane-Waste Contaminated Soils Treated by Surfactant-Enhanced ISCO
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soil and DNAPL Characterization
2.2. Toxicity of Elutriates from Soil-Aqueous Phase Contact
2.3. ISCO and S-ISCO Experiments
2.4. Microtox® Toxicity Evaluation
3. Materials and Methods
3.1. Landfill Soil Samples
3.2. Chemicals
3.3. ISCO and S-ISCO Experiments
3.4. Analysis
3.5. Microtox® Toxicity Bioassays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wise, W.S.; Abbott, A.H.A.; Robinson, F.A. Abstracts of papers published in other journals. Agric. Analyst 1948, 73, 108–109. [Google Scholar] [CrossRef]
- Vijgen, J.; de Borst, B.; Weber, R.; Stobiecki, T.; Forter, M. HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue. Environ. Pollut. 2019, 248, 696–705. [Google Scholar] [CrossRef]
- Fernández, J.; Arjol, M.; Cacho, C. POP-contaminated sites from HCH production in Sabiñánigo, Spain. Environ. Sci. Pollut. Res. 2013, 20, 1937–1950. [Google Scholar] [CrossRef]
- Santos, A.; Fernandez, J.; Guadano, J.; Lorenzo, D.; Romero, A. Chlorinated organic compounds in liquid wastes (DNAPL) from lindane production dumped in landfills in Sabinanigo (Spain). Environ. Pollut. 2018, 242, 1616–1624. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Romero, A.; Santos, A. Selective removal of chlorinated organic compounds from lindane wastes by combination of nonionic surfactant soil flushing and Fenton oxidation. Chem. Eng. J. 2019, 376, 120009. [Google Scholar] [CrossRef]
- Baciocchi, R.; D’Aprile, L.; Innocenti, I.; Massetti, F.; Verginelli, I. Development of technical guidelines for the application of in-situ chemical oxidation to groundwater remediation. J. Clean. Prod. 2014, 77, 47–55. [Google Scholar] [CrossRef]
- Santos, A.; Fernandez, J.; Rodriguez, S.; Dominguez, C.M.; Lominchar, M.A.; Lorenzo, D.; Romero, A. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Sci. Total Environ. 2018, 615, 1070–1077. [Google Scholar] [CrossRef]
- Diao, Z.-H.; Chu, W. FeS2 assisted degradation of atrazine by bentonite-supported nZVI coupling with hydrogen peroxide process in water: Performance and mechanism. Sci. Total Environ. 2021, 754, 142155. [Google Scholar] [CrossRef]
- Diao, Z.-H.; Qian, W.; Zhang, Z.-W.; Jin, J.-C.; Chen, Z.-L.; Guo, P.-R.; Dong, F.-X.; Yan, L.; Kong, L.-J.; Chu, W. Removals of Cr(VI) and Cd(II) by a novel nanoscale zero valent iron/peroxydisulfate process and its Fenton-like oxidation of pesticide atrazine: Coexisting effect, products and mechanism. Chem. Eng. J. 2020, 397, 125382. [Google Scholar] [CrossRef]
- Diao, Z.-H.; Zhang, W.-X.; Liang, J.-Y.; Huang, S.-T.; Dong, F.-X.; Yan, L.; Qian, W.; Chu, W. Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxymonosulfate process from soil: Synergistic effect and mechanism. Chem. Eng. J. 2021, 409, 127684. [Google Scholar] [CrossRef]
- Besha, A.T.; Bekele, D.N.; Naidu, R.; Chadalavada, S. Recent advances in surfactant-enhanced In-Situ Chemical Oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers. Environ. Technol. Innov. 2018, 9, 303–322. [Google Scholar] [CrossRef]
- Xu, J.-C.; Yang, L.-H.; Yuan, J.-X.; Li, S.-Q.; Peng, K.-M.; Lu, L.-J.; Huang, X.-F.; Liu, J. Coupling surfactants with ISCO for remediating of NAPLs: Recent progress and application challenges. Chemosphere 2022, 303, 135004. [Google Scholar] [CrossRef]
- Garcia-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Simultaneous addition of surfactant and oxidant to remediate a polluted soil with chlorinated organic compounds: Slurry and column experiments. J. Environ. Chem. Eng. 2022, 10, 107625. [Google Scholar] [CrossRef]
- Lominchar, M.A.; Lorenzo, D.; Romero, A.; Santos, A. Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions. J. Chem. Technol. Biotechnol. 2018, 93, 1270–1278. [Google Scholar] [CrossRef]
- Garcia-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Partition of a mixture of chlorinated organic compounds in real contaminated soils between soil and aqueous phase using surfactants: Influence of pH and surfactant type. J. Environ. Chem. Eng. 2021, 9, 105908. [Google Scholar] [CrossRef]
- Garcia-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Abatement of chlorobenzenes in aqueous phase by persulfate activated by alkali enhanced by surfactant addition. J. Environ. Manag. 2022, 306, 114475. [Google Scholar] [CrossRef]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar] [CrossRef]
- Santos, A.; Lorenzo, D.; Dominguez, C.M. Persulfate in remediation of soil and groundwater contaminated by organic compounds. In Electrochemically Assisted Remediation of Contaminated Soils; Springer: Berlin/Heidelberg, Germany, 2021; pp. 221–262. [Google Scholar]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y. A comprehensive review on persulfate activation treatment of wastewater. Sci. Total Environ. 2022, 831, 154906. [Google Scholar] [CrossRef]
- Checa-Fernández, A.; Santos, A.; Conte, L.O.; Romero, A.; Domínguez, C.M. Enhanced remediation of a real HCH-polluted soil by the synergetic alkaline and ultrasonic activation of persulfate. Chem. Eng. J. 2022, 440, 135901. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Romero, A.; Checa-Fernandez, A.; Santos, A. Remediation of HCHs-contaminated sediments by chemical oxidation treatments. Sci. Total Environ. 2021, 751, 141754. [Google Scholar] [CrossRef]
- García-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Remediation of soil contaminated by lindane wastes using alkaline activated persulfate: Kinetic model. Chem. Eng. J. 2020, 393, 124646. [Google Scholar] [CrossRef]
- Checa-Fernández, A.; Santos, A.; Romero, A.; Domínguez, C.M. Remediation of real soil polluted with hexachlorocyclohexanes (α-HCH and β-HCH) using combined thermal and alkaline activation of persulfate: Optimization of the operating conditions. Sep. Purif. Technol. 2021, 270, 118795. [Google Scholar] [CrossRef]
- Lorenzo, D.; García-Cervilla, R.; Romero, A.; Santos, A. Partitioning of chlorinated organic compounds from dense non-aqueous phase liquids and contaminated soils from lindane production wastes to the aqueous phase. Chemosphere 2020, 239, 124798. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Oturan, N.; Romero, A.; Santos, A.; Oturan, M.A. Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics. Water Res. 2018, 135, 220–230. [Google Scholar] [CrossRef]
- Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J. Hazard. Mater. 2016, 306, 149–174. [Google Scholar] [CrossRef]
- García-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase. Sci. Total Environ. 2021, 751, 141782. [Google Scholar] [CrossRef]
- Doherty, F.G. A review of the Microtox® toxicity test system for assessing the toxicity of sediments and soils. Water Qual. Res. J. 2001, 36, 475–518. [Google Scholar] [CrossRef]
- Domínguez, C.M.; Ventura, P.; Checa-Fernández, A.; Santos, A. Comprehensive study of acute toxicity using Microtox® bioassay in soils contaminated by lindane wastes. Sci. Total Environ. 2023, 856, 159146. [Google Scholar] [CrossRef]
- García-Cervilla, R.; Romero, A.; Santos, A.; Lorenzo, D. Surfactant-Enhanced Solubilization of Chlorinated Organic Compounds Contained in DNAPL from Lindane Waste: Effect of Surfactant Type and pH. Int. J. Environ. Res. Public Health 2020, 17, 4494. [Google Scholar] [CrossRef]
- Bond, G.P.; Martin, J. Microtox. In Encyclopedia of Toxicology, 2nd ed.; Wexler, P., Ed.; Elsevier: New York, NY, USA, 2005; pp. 110–111. [Google Scholar]
- Doe, K.; Jackman, P.; Scroggins, R.; McLeay, D.; Wohlgeschaffen, G. Solid-phase test for sediment toxicity using the luminescent bacterium, Vibrio fischeri. In Small-Scale Freshwater Toxicity Investigations; Springer: Berlin/Heidelberg, Germany, 2005; pp. 107–136. [Google Scholar]
- Microbics Corporation. Microtox® Acute Toxicity Basic Test Procedures; Microbics Corporation: Carlsbad, CA, USA, 1995. [Google Scholar]
- Santos, A.; Yustos, P.; Quintanilla, A.; García-Ochoa, F.; Casas, J.A.; Rodriguez, J.J. Evolution of Toxicity upon Wet Catalytic Oxidation of Phenol. Environ. Sci. Technol. 2004, 38, 133–138. [Google Scholar] [CrossRef]
- Mowat, F.S.; Bundy, K.J. Experimental and mathematical/computational assessment of the acute toxicity of chemical mixtures from the Microtox® assay. Adv. Environ. Res. 2002, 6, 547–558. [Google Scholar] [CrossRef]
- Joly, P.; Bonnemoy, F.; Charvy, J.-C.; Bohatier, J.; Mallet, C. Toxicity assessment of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their corresponding commercial formulations, alone and in mixtures, using the Microtox® test. Chemosphere 2013, 93, 2444–2450. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lu, C.-L. An analysis of the combined effects of organic toxicants. Sci. Total Environ. 2002, 289, 123–132. [Google Scholar] [CrossRef]
- Campisi, T.; Abbondanzi, F.; Casado-Martinez, C.; DelValls, T.A.; Guerra, R.; Iacondini, A. Effect of sediment turbidity and color on light output measurement for Microtox® Basic Solid-Phase Test. Chemosphere 2005, 60, 9–15. [Google Scholar] [CrossRef]
- Čvančarová, M.; Křesinová, Z.; Cajthaml, T. Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils. J. Hazard. Mater. 2013, 254–255, 116–124. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Checa-Fernandez, A.; Romero, A.; Santos, A. Degradation of HCHs by thermally activated persulfate in soil system: Effect of temperature and oxidant concentration. J. Environ. Chem. Eng. 2021, 9, 105668. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Romero, A.; Fernandez, J.; Santos, A. In situ chemical reduction of chlorinated organic compounds from lindane production wastes by zero valent iron microparticles. J. Water Process Eng. 2018, 26, 146–155. [Google Scholar] [CrossRef]
- Kaiser, K.L.E.; Palabrica, V.S. Photobacterium phosphoreum toxicity data index. Water Pollut. Res. J. Can. 1991, 26, 361–431. [Google Scholar] [CrossRef]
- Kwan, K.K.; Dutka, B.J. Comparative assessment of two solid-phase toxicity bioassays: The direct sediment toxicity testing procedure (DSTTP) and the microtox® solid-phase test (SPT). Bull. Environ. Contam. Toxicol. 1995, 55, 338–346. [Google Scholar] [CrossRef]
COMPOUND | M (g/mol) | CDNAPL (mg/kg) | %w DNAPL | CB1 (mg/kg) | %w B1 | CB2 (mg/kg) | %w B2 | |
---|---|---|---|---|---|---|---|---|
Name | Acronym | |||||||
Chlorobenzene | CB | 112.5 | 96,610.1 | 10.0 | 0.00 | 0.00 | 0.00 | 0.00 |
1,3-dichlorobenzene | 1,3-DCB | 147.0 | 5954.1 | 0.6 | 0.00 | 0.00 | 0.05 | 0.00 |
1,4-dichlorobenzene | 1,4-DCB | 147.0 | 54,140.5 | 5.6 | 0.00 | 0.00 | 0.00 | 0.00 |
1,2-dichlorobenzene | 1,2-DCB | 147.0 | 43,743.0 | 4.5 | 0.00 | 0.00 | 4.84 | 0.13 |
1,3,5-trichlorobenzene | 1,3,5-TCB | 181.5 | 1812.8 | 0.2 | 0.00 | 0.00 | 0.50 | 0.01 |
1,2,4-trichlorobenzene | 1,2,4-TCB | 181.5 | 129,035.3 | 13.4 | 2.00 | 9.82 | 7.97 | 0.22 |
1,2,3-trichlorobenzene | 1,2,3-TCB | 181.5 | 20,061.7 | 2.1 | 0.30 | 1.47 | 5.72 | 0.16 |
1,2,4,5 and 1,2,3,5-tetrachlorobenzene | TetraCB-a | 216.0 | 52,347.6 | 5.4 | 2.00 | 9.82 | 32.95 | 0.89 |
1,2,3,4-tetrachlorobenzene | TetraCB-b | 216.0 | 72,957.8 | 7.6 | 4.00 | 19.64 | 79.87 | 2.17 |
γ-Pentachlorocyclohexene | γ-PentaCX | 254.0 | 21,236.8 | 2.2 | 1.80 | 8.84 | 80.37 | 2.18 |
1,2,3,4,5-Pentachlorobenzene | PCB | 250.0 | 5642.4 | 0.6 | 0.30 | 1.47 | 13.69 | 0.37 |
δ-Pentachlorocyclohexene | δ-PentaCX | 254.0 | 19,435.2 | 2.0 | 3.50 | 17.18 | 194.26 | 5.28 |
θ-Pentachlorocyclohexene | θ-PentaCX | 254.0 | 1548.0 | 0.2 | 0.00 | 0.00 | 16.35 | 0.44 |
Hexachlorocyclohexene-a | HexaCX-a | 289.0 | 6762.4 | 0.7 | 0.33 | 1.62 | 51.26 | 1.39 |
β-Pentachlorocyclohexene | β-PentaCX | 254.0 | 2612.6 | 0.3 | 0.00 | 0.00 | 43.59 | 1.18 |
η-Pentachlorocyclohexene | η-Penta CX | 254.0 | 1612.2 | 0.2 | 0.03 | 0.15 | 2.28 | 0.06 |
Hexachlorocyclohexene-b | HexaCX-b | 289.0 | 2375.3 | 0.2 | 0.00 | 0.00 | 10.32 | 0.28 |
Hexachlorocyclohexene-c | HexaCX-c | 289.0 | 7274.5 | 0.8 | 0.00 | 0.00 | 106.87 | 2.90 |
α-Hexachlorocyclohexane | α-HCH | 291.0 | 38,295.0 | 4.0 | 1.00 | 4.91 | 340.11 | 9.24 |
Hexachlorocyclohexene-d | HexaCX-d | 289.0 | 16.8 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
β-hexachlorocyclohexane | β-HCH | 291.0 | 0.4 | 0.0 | 0.11 | 0.54 | 11.53 | 0.31 |
γ-HCH (Lindane) | γ-HCH | 291.0 | 126,985.3 | 13.2 | 3.00 | 14.73 | 958.44 | 26.03 |
Heptachlorocyclohexane-1 | HeptaCH-1 | 325.0 | 106,325.6 | 11.0 | 0.00 | 0.00 | 551.88 | 14.99 |
δ-Hexachlorocyclohexane | δ-HCH | 291.0 | 71,041.2 | 7.4 | 1.20 | 5.89 | 610.32 | 16.58 |
ε-Hexachlorocyclohexane | ε-HCH | 291.0 | 16,327.8 | 1.7 | 0.50 | 2.45 | 115.00 | 3.12 |
Heptachlorocyclohexane-2 | HeptaCH-2 | 325.0 | 40,659.8 | 4.2 | 0.20 | 0.98 | 319.79 | 8.69 |
Heptachlorocyclohexane-3 | HeptaCH-3 | 325.0 | 19,245.1 | 2.0 | 0.10 | 0.49 | 123.92 | 3.37 |
Total | 964,059.3 | 100 | 20.37 | 100.00 | 3681.87 | 100.00 |
Acronym | (mg/L) | C B1 aq (mg/L) | C B2 aq (mg/L) | CB2 Pv Alkaline Pretreatment (mg/L) |
---|---|---|---|---|
CB | 11.30 | 0.00 | 0.00 | 0.00 |
1,3-DCB | 5.10 | 0.00 | 0.06 | 0.05 |
1,4-DCB | 4.50 | 0.00 | 0.43 | 0.04 |
1,2-DCB | 4.05 | 0.00 | 0.41 | 0.23 |
1,3,5-TCB | 3.44 | 0.00 | 0.03 | 0.14 |
1,2,4-TCB | 3.44 | 0.00 | 1.97 | 6.96 |
1,2,3-TCB | 0.82 | 0.00 | 0.12 | 1.27 |
TetraCB-a | 0.61 | 0.00 | 0.24 | 0.28 |
TetraCB-b | 0.61 | 0.01 | 0.35 | 0.49 |
γ-PentaCX | - | 0.00 | 0.85 | 0.00 |
PCB | - | 0.00 | 0.00 | 0.01 |
δ-PentaCX | - | 0.01 | 7.10 | 0.00 |
θ-PentaCX | - | 0.00 | 0.79 | 0.00 |
HexaCX-a | - | 0.00 | 0.20 | 0.00 |
β-PentaCX | - | 0.00 | 2.48 | 0.00 |
η-Penta CX | - | 0.00 | 0.29 | 0.00 |
HexaCX-b | - | 0.00 | 0.01 | 0.00 |
HexaCX-c | - | 0.00 | 1.32 | 0.00 |
α-HCH | - | 0.00 | 3.14 | 0.00 |
HexaCX-d | - | 0.00 | 0.00 | 0.00 |
β-HCH | - | 0.00 | 0.65 | 0.00 |
γ-HCH | 2.03 | 0.03 | 7.79 | 0.00 |
HeptaCH-1 | - | 0.01 | 2.24 | 0.00 |
δ-HCH | 3.50 | 0.02 | 15.15 | 0.00 |
ε-HCH | - | 0.00 | 7.29 | 0.00 |
HeptaCH-2 | - | 0.00 | 2.03 | 0.00 |
HeptaCH-3 | - | 0.00 | 1.94 | 0.00 |
Total COCs | 0.06 | 56.89 | 9.47 | |
TUs exp Equation (6) | Non-detected | 17.24 | 5.72 | |
TUs estim Equation (8) | 0.03 | 10.07 | 4.95 |
Acronym | Cj (mg/kg) | Cj (mg/kg) | Cj (mg/kg) |
---|---|---|---|
T1 (ISCO) | T2 (S-ISCO-5) | T3 (S-ISCO-10) | |
CB | 0.00 | 0.00 | 0.00 |
1,3-DCB | 0.00 | 0.14 | 0.03 |
1,4-DCB | 0.00 | 0.00 | 0.05 |
1,2-DCB | 0.00 | 1.27 | 1.30 |
1,3,5-TCB | 3.52 | 0.55 | 0.56 |
1,2,4-TCB | 98.06 | 6.92 | 6.65 |
1,2,3-TCB | 17.39 | 1.39 | 1.21 |
TetraCB-a | 36.41 | 10.15 | 9.06 |
TetraCB-b | 66.06 | 12.19 | 17.25 |
γ-PentaCX | 0.00 | 12.91 | 20.63 |
PCB | 3.00 | 2.1 | 2.03 |
δ-PentaCX | 0.00 | 0.00 | 0.00 |
θ-PentaCX | 0.00 | 0.00 | 0.00 |
HexaCX-a | 0.00 | 0.00 | 0.00 |
β-PentaCX | 0.00 | 0.00 | 0.00 |
η-Penta CX | 0.00 | 0.00 | 0.00 |
HexaCX-b | 0.00 | 0.00 | 0.00 |
HexaCX-c | 0.00 | 0.00 | 0.00 |
α-HCH | 0.00 | 0.00 | 0.00 |
HexaCX-d | 0.00 | 0.00 | 0.00 |
β-HCH | 0.00 | 0.00 | 0.00 |
γ-HCH | 0.00 | 0.00 | 0.00 |
HeptaCH-1 | 0.00 | 0.00 | 0.00 |
δ-HCH | 0.00 | 0.00 | 0.00 |
ε-HCH | 0.00 | 0.00 | 0.20 |
HeptaCH-2 | 0.00 | 0.00 | 0.00 |
HeptaCH-3 | 0.00 | 0.00 | 0.00 |
Total COCs | 224.43 | 47.62 | 62.08 |
Units | T1 (ISCO) | T2 (S-ISCO 5) | T3 (S-ISCO 10) | |
---|---|---|---|---|
Final COCs soil | mg/kg | 224.43 | 56.23 | 62.3 |
COCs in gathered aqueous phases from flushed Pvs with reagents (PS) | mg/L | 1.26 | 4.3 | 28.46 |
COCs in gathered aqueous phases from flushed Pvs with tap water | mg/L | 2.32 | 5.2 | 28.4 |
Mass of COCs in treated soil | mg | 11.22 | 2.81 | 3.1 |
Mass of COCs in gathered Pvs flushed with reagents | mg | 0.10 | 0.34 | 2.28 |
Mass of COCs in gathered aqueous phases from flushed Pvs with tap water | mg | 0.19 | 0.42 | 2.27 |
Initial mass of COCs in soil (pH = 7) | mg | 184.05 | 184.05 | 184.05 |
Initial mass of COCs in soil (pH = 12) | mg | 117.05 | 117.05 | 117.05 |
XCOCs | 0.90 | 0.97 | 0.94 |
Soil Columns | T1 | T2 | T3 |
---|---|---|---|
ISCO | S-ISCO | S-ISCO | |
Initial COCs (mg/kg) | 3682 | 3682 | 3682 |
Soil height (cm) | 4.7 | 4.7 | 4.7 |
Soil mass (g) | 53 | 51 | 52 |
Pv (mL) | 11.2 | 10.7 | 10.9 |
Alkaline Pretreatment | T1 | T2 | T3 |
CNaOH (mM) | 210 | 210 | 210 |
Pvs injected | 2 | 2 | 2 |
Time between next Pv injection (h) | 24 | 24 | 24 |
Reagents injected | T1 | T2 | T3 |
Csurf (g/L) | 0 | 5 | 10 |
CPS (mM) | 210 | 210 | 210 |
CNaOH (mM) | 210 | 210 | 210 |
Pvs injected | 8 | 8 | 8 |
Time between next Pv injection (h) | 96 | 96 | 96 |
Washing with tap water | T1 | T2 | T3 |
Pvs injected | 8 | 8 | 8 |
Time between next Pv injection (h) | 0.5 | 0.5 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.; García-Cervilla, R.; Checa-Fernández, A.; Domínguez, C.M.; Lorenzo, D. Acute Toxicity Evaluation of Lindane-Waste Contaminated Soils Treated by Surfactant-Enhanced ISCO. Molecules 2022, 27, 8965. https://doi.org/10.3390/molecules27248965
Santos A, García-Cervilla R, Checa-Fernández A, Domínguez CM, Lorenzo D. Acute Toxicity Evaluation of Lindane-Waste Contaminated Soils Treated by Surfactant-Enhanced ISCO. Molecules. 2022; 27(24):8965. https://doi.org/10.3390/molecules27248965
Chicago/Turabian StyleSantos, Aurora, Raúl García-Cervilla, Alicia Checa-Fernández, Carmen M. Domínguez, and David Lorenzo. 2022. "Acute Toxicity Evaluation of Lindane-Waste Contaminated Soils Treated by Surfactant-Enhanced ISCO" Molecules 27, no. 24: 8965. https://doi.org/10.3390/molecules27248965
APA StyleSantos, A., García-Cervilla, R., Checa-Fernández, A., Domínguez, C. M., & Lorenzo, D. (2022). Acute Toxicity Evaluation of Lindane-Waste Contaminated Soils Treated by Surfactant-Enhanced ISCO. Molecules, 27(24), 8965. https://doi.org/10.3390/molecules27248965