Extraction and Purification of Flavonoids from Buddleja officinalis Maxim and Their Attenuation of H2O2-Induced Cell Injury by Modulating Oxidative Stress and Autophagy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of the Results of the Single Factor Test
2.2. Fitting the Response Surface Model
0.08X2X3 − 0.32X2X4 + 0.09X3X4 − 1.44X12 − 0.22X22 − 0.99X32 − 0.61X42
2.3. Determination Results of Three Active Components (Luteolin, Apigenin, and Acacetin)
2.4. Effects of H2O2 and BMFs on the Synergistic Consequence of Cells
2.5. Results of BMFs on SOD, GSH-Px, and MDA Content and the Ability to Produce·OH in Rabbit Lens Epithelial Cells
2.6. Effect of BMFs on Autophagy of Lens Epithelial Cells after Oxidative Injury
3. Materials and Methods
3.1. Main Reagents and Main Instruments
3.1.1. Main Reagents
3.1.2. Main Instruments
3.2. Methods
Preparation of Standard Flavonoid Products
3.3. Optimization of the Crude BMF Extraction Conditions
3.3.1. Single Factor Test
3.3.2. Response Surface Test Design
3.4. Purification of Crude BMF
3.5. Determination of Luteolin, Apigenin, and Acacetin
3.5.1. Standard Product Solution Preparation
3.5.2. Preparation of the BMF Sample Fluid
3.5.3. HPLC Detection Conditions
3.6. Cell-Related Processing and Experiments
3.6.1. Determination of the Half-Inhibitory Concentration of H2O2 on the Survival of Rabbit Lens Epithelial Cells by CCK-8 Method
3.6.2. CCK-8 Method to Determine the Half-Inhibitory Concentration of BMFs on the Survival of Rabbit Lens Epithelial Cells
3.6.3. CCK-8 Assay to Detect the Protective Effect of BMF on H2O2-Induced Cytotoxicity of Rabbit Lens Epithelial Cells
3.7. Detection of SOD, GSH-Px, and MDA Content and the Ability to Produce·OH in Rabbit Lens Epithelial Cells
3.7.1. Preprocessing of Cells
3.7.2. Detection of SOD Activity
3.7.3. Detection of MDA Content
3.7.4. Detection of GSH-Px Activity
3.7.5. Generate OH Group
3.8. Transfection of mRFP-GFP-LC3 Tandem Fluorescent Proteins into Cells by Adenovirus
3.9. Detection of Autophagy Marker Protein Expression in Rabbit Lens Epithelial Cells by Western Blotting
3.10. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lee, C.M.; Afshari, N.A. The global state of cataract blindness. Curr. Opin. Ophthalmol. 2017, 28, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Prokofyeva, E.; Wegener, A.; Zrenner, E. Cataract prevalence and prevention in Europe: A literature review. Acta Ophthalmol. 2013, 91, 395–405. [Google Scholar] [CrossRef]
- Thompson, J.; Lakhani, N. Cataracts. Prim. Care 2015, 42, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Pinga, X.; Liang, J.; Shi, K.; Bao, J.; Wu, J.; Yu, X.; Tang, X.; Zou, J.; Shentu, X. Rapamycin relieves the cataract caused by ablation of Gja8b through stimulating autophagy in zebrafish. Autophagy 2021, 17, 3323–3337. [Google Scholar] [CrossRef] [PubMed]
- Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic Needs. Cell Death Differ. 2015, 22, 377–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuaiwei, Q. Effects of Exercise on Oxidative Stress and Autophagy-Related Gene Expression in Skeletal Muscle. Masters’s Thesis, East China Normal University, Shanghai, China, 2012. [Google Scholar]
- Fernández-Albarral, J.A.; de Julián-López, E.; Soler-Domínguez, C.; de Hoz, R.; López-Cuenca, I.; Salobrar-García, E.; Ramírez, J.M.; Pinazo-Durán, M.D.; Salazar, J.J.; Ramírez, A.I. The Role of Autophagy in Eye Diseases. Life 2021, 11, 189. [Google Scholar] [CrossRef]
- Li, T.; Huang, Y.; Zhou, W.; Yan, Q. Let-7c-3p Regulates Autophagy under Oxidative Stress by Targeting ATG3 in Lens Epithelial Cells. Biomed. Res. Int. 2020, 2020, 6069390. [Google Scholar] [CrossRef] [Green Version]
- Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (Part 1); China Medical Science and Technology Press: Beijing, China, 2015. [Google Scholar]
- Torres-Vega, J.; Gómez-Alonso, S.; Pérez-Navarro, J.; Alarcón-Enos, J.; Pastene-Navarrete, E. Polyphenolic Compounds Extracted and Purified from Buddleja Globosa Hope (Buddlejaceae) Leaves Using Natural Deep Eutectic Solvents and Centrifugal Partition Chromatography. Molecules 2021, 26, 2192. [Google Scholar] [CrossRef]
- Lu, S.; Guoyong, X.; Sa, W.; Yu, M.; Minjian, Q. Pharmacy research progress of Buddleja officinalis Maxim. Chin. Wild Plant Resour. 2016, 35, 34–40. [Google Scholar]
- Chenglu, Z.; Feng, L. Optimization of Enzymatic Extraction of Flavonoids from Mimeng Flower and Research on Antioxidant Activity. China Food Addit. 2017, 6, 6. [Google Scholar] [CrossRef]
- Junzi, L.; Hua, Z. Optimization of microwave extraction of total flavonoids from Brassica chinensis by response surface methodology. Chin. J. Food Sci. 2011, 11, 8. [Google Scholar]
- Peng, Q.H.; Yao, X.L.; Wu, Q.L.; Tan, H.Y.; Zhang, J.R. Effects of eye drops of Buddleja officinalis Maxim. Zhong Xi Yi Jie He Xue Bao 2010, 8, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhu, W.C.; Liu, Y.T.; Wu, J.Y.; Zheng, A.Q.; Liu, Y.L. Response surface optimized extraction of flavonoids from mimenghua and its antioxidant activities in vitro. Food Sci. Biotechnol. 2013, 22, 1–8. [Google Scholar] [CrossRef]
- Xiong, Y.; Xiong, Y.; Yang, Q. Study on the extraction and antioxidant activity of total flavonoids from the medicinal plant Buddleja officinalis Maxim. Biotechnology 2011, 3, 87–89. [Google Scholar]
- Shen, Y.; Xu, M.; Chen, Y.; Wang, H.; Zhou, Y.; Zhu, Y.; Yang, H.; Yu, J. Integrated extraction and purification of total bioactive flavonoids from Toona sinensis leaves. Nat. Prod. Res. 2019, 33, 3025–3028. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Gao, Y.; Liu, P. Optimization of microwave-assisted extraction, antioxidant capacity, and characterization of total flavonoids from the leaves of Alpinia oxyphylla Miq. Prep. Biochem. Biotechnol. 2019, 50, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Zeng, X.; Yan, H.; Xu, M.; Zeng, Q.; Xu, C.; Xu, Q.; Liang, Y.; Zhang, J. Flavonoids composition and antioxidant potential assessment of extracts from Gannanzao Navel Orange (Citrus sinensis Osbeck Cv. Gannanzao) peel. Nat. Prod. Res. 2021, 35, 702–706. [Google Scholar] [CrossRef]
- Lv, H.; Wang, X.; He, Y.; Wang, H.; Suo, Y. Identification and quantification of flavonoid aglycones in rape bee pollen from Qinghai-Tibetan Plateau by HPLC-DAD-APCI/MS. J. Food Compos. Anal. 2015, 38, 49–54. [Google Scholar] [CrossRef]
- Dong, J.; Zhou, K.; Ge, X.; Xu, N.; Wang, X.; He, Q.; Zhang, C.; Chu, J.; Li, Q. Effects of Extraction Technique on the Content and Antioxidant Activity of Flavonoids from Gossypium Hirsutum linn. Flowers. Molecules 2022, 27, 5627. [Google Scholar] [CrossRef]
- Yip, K.M.; Xu, J.; Tong, W.S.; Zhou, S.S.; Yi, T.; Zhao, Z.Z.; Chen, H.B. Ultrasound-assisted extraction may not be a better alternative approach than conventional boiling for extracting polysaccharides from herbal medicines. Molecules 2016, 21, 1569. [Google Scholar] [CrossRef] [Green Version]
- Yuzi, L.; Hong, Z. Study on the free radical scavenging activity of total flavonoids from Flos Lonicerae. For. Chem. Ind. 2012, 32, 5. [Google Scholar]
- Piao, M.S.; Kim, M.; Lee, D.G.; Park, Y.; Hahm, K.S.; Moon, Y.H.; Woo, E.R. Antioxidative constituents from Buddleia officinalis. Arch. Pharm. Res. 2003, 26, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Jianfeng, C.; Lu, J.; Shuxue, T. Protective effect of flavonoids from Flos Lonicerae on acute liver injury induced by carbon tetrachloride in mice. Mod. Food Sci. Technol. 2016, 10, 9–13. [Google Scholar] [CrossRef]
- Myhrstad, M.C.; Carlsen, H.; Nordström, O.; Blomhoff, R.; Moskaug, J. Flavonoids increase the intracellular glutathione level by transactivation of the γ-glutamylcysteine synthetase catalytical subunit promoter. Free Radic. Biol. Med. 2002, 32, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Birt, D.F.; Hendrich, S.; Wang, W. Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol. Ther. 2001, 90, 155–157. [Google Scholar] [CrossRef]
- Singh, R.P. Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: Structure-activity relationship with linarin and linarin acetate. Carcinogenesis 2005, 26, 845–854. [Google Scholar] [CrossRef]
- Pan, M.H.; Lai, C.; Wang, Y.J.; Ho, C.T. Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem. Pharmacol. 2006, 12, 1293–1303. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, W.; Liu, C. Momordin protects H9c2 myocardial cells from hypoxia reoxygenation injury through PI3K-Akt/m-TOR signal pathway. Chin. Mater. Med. 2020, 43, 1445–1450. [Google Scholar]
- Wang, W.; Wang, F.; Yang, Z.; Li, M.; Tian, X. Research progress on pharmacological effects of stamen glycosides. Int. J. Pharm. Res. 2020, 47, 1078–1087. [Google Scholar]
- Yun, J.J.; Won, L.C.; Mi, P.S.; Hwan, J.K.; Kwang, K.J.; Park, C.A. Activation of AMPK by Buddleja officinalis Maxim. Flower Extract Contributes to Protecting Hepatocytes from Oxidative Stress. Evid. Based Complement. Altern. Med. 2017, 2017, 9253462. [Google Scholar]
- Guan, X.; Zhou, J.; Hui, Y.; Zhang, Z.; Wei, Q.; Zhang, L. Effects of hydrogen peroxide on human lens epithelial cell proliferation and VEGF expression. Int. J. Ophthalmol. 2008, 8, 4. [Google Scholar]
- Cuicui, C. Experimental Study on the Effect of Mimeng Huafang on TGF-β Signal Transduction Pathway in Vascular Endothelial Cells under Hypoxia. Master’s Thesis, Chinese Academy of Chinese Medical Sciences, Beijing, China, 2010. [Google Scholar]
- Wang, Z.J.; Zhang, F.M.; Wang, L.S.; Yao, Y.W.; Zhao, Q.; Gao, X. Lipopolysaccharides can protect mesenchymal stem cells (MSCs) from oxidative stress-induced apoptosis and enhance proliferation of MSCs via toll-like receptor (TLR)-4 and PI3K/Akt. Cell Biol. Int. 2009, 33, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, H.; Lai, F.; Wu, H. Germinating peanut (Arachis hypogaea L.) seedlings attenuated selenite-induced toxicity by activating the antioxidant enzymes and mediating the ascorbate–glutathione cycle. J. Agric. Food Chem. 2016, 64, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Song, J.; Zhao, X.; Zhang, Y.; Wang, H.; Liu, X.; Suo, H. Silkworm pupa oil attenuates acetaminophen-induced acute liver injury by inhibiting oxidative stress-mediated NF-kappaB signaling. Food Sci. Nutr. 2020, 8, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Huang, G.; Tan, F.; Yi, R.; Zhou, X.; Mu, J.; Zhao, X. Lactobacillus plantarum KSFY06 on d-galactose-induced oxidation and aging in Kunming mice. Food Sci. Nutr. 2020, 8, 379–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Lu, J.; Teng, S.; Ren, C.; Chen, H. Antioxidative and immunomodulatory effects of total flavonoids of Mimeng flower. Henan Agric. Sci. 2016, 45, 130–134. [Google Scholar]
- Chang, C.C.; Huang, T.; Chen, H.Y.; Huang, T.C.; Lin, L.C.; Chang, Y.J.; Hsia, S.M. Protective Effect of Melatonin against Oxidative Stress-Induced Apoptosis and Enhanced Autophagy in Human Retinal Pigment Epithelium Cells. Oxid. Med. Cell. Longev. 2018, 2018, 9015765. [Google Scholar] [CrossRef]
- Jingling, L.; Kuangyuan, L.; Xiyan, C. Purification and antioxidant activity of flavonoids from Mimonella. Food Res. Dev. 2018, 7, 52–55. [Google Scholar]
Test Number | (X1) Solid-to-Liquid Ratio (g/mL) | (X2) The Ethanol Volume Fraction (%) | (X3) Extract Temperature (°C) | (X4) Extract Time (h) | (Y) Extraction Rate (%) |
---|---|---|---|---|---|
1 | 0 | −1 | 0 | 1 | 18.84 ± 0.52 |
2 | 0 | −1 | 0 | −1 | 17.73 ± 0.20 |
3 | 1 | 0 | −1 | 0 | 17.86 ± 0.88 |
4 | 0 | 0 | −1 | −1 | 18.61 ± 0.33 |
5 | 0 | 1 | 0 | −1 | 18.25 ± 0.57 |
6 | −1 | 1 | 0 | 0 | 16.55 ± 0.37 |
7 | −1 | 0 | 1 | 0 | 16.40 ± 0.11 |
8 | 0 | 0 | 0 | 0 | 19.51 ± 0.63 |
9 | 1 | 0 | 0 | 1 | 18.32 ± 0.50 |
10 | 0 | −1 | 1 | 0 | 18.21 ± 0.43 |
11 | 0 | 0 | −1 | 1 | 18.48 ± 0.71 |
12 | 0 | 0 | 1 | 1 | 17.25 ± 0.82 |
13 | 0 | 0 | 0 | 0 | 19.24 ± 0.82 |
14 | −1 | 0 | −1 | 0 | 16.00 ± 0.68 |
15 | 1 | 0 | 1 | 0 | 16.24 ± 0.93 |
16 | 0 | 1 | 0 | 1 | 18.07 ± 0.67 |
17 | 1 | −1 | 0 | 0 | 18.16 ± 0.26 |
18 | 1 | 1 | 0 | 0 | 18.48 ± 0.19 |
19 | 0 | 0 | 1 | −1 | 17.03 ± 0.84 |
20 | 0 | 0 | 0 | 0 | 19.11 ± 0.18 |
21 | 1 | 0 | 0 | −1 | 17.25 ± 0.63 |
22 | 0 | 1 | 1 | 0 | 17.66 ± 0.94 |
23 | −1 | −1 | 0 | 0 | 17.96 ± 0.82 |
24 | 0 | 0 | 0 | 0 | 19.17 ± 0.37 |
25 | −1 | 0 | 0 | 1 | 16.40 ± 0.09 |
26 | 0 | −1 | −1 | 0 | 18.43 ± 0.73 |
27 | 0 | 0 | 0 | 0 | 19.38 ± 0.39 |
28 | −1 | 0 | 0 | −1 | 17.18 ± 0.44 |
29 | 0 | 1 | −1 | 0 | 18.21 ± 0.72 |
Source | Sum of Squares | DF | Mean Square | F-Value | p-Value | Statistical Difference |
---|---|---|---|---|---|---|
Model | 25.91 | 14 | 1.85 | 16.79 | <0.0001 | ** |
X1 | 2.82 | 1 | 2.82 | 25.6 | 0.0002 | ** |
X2 | 0.371 | 1 | 0.371 | 3.36 | 0.0879 | ns |
X3 | 1.92 | 1 | 1.92 | 17.41 | 0.0009 | ** |
X4 | 0.143 | 1 | 0.143 | 1.3 | 0.2739 | ns |
X1X2 | 0.7482 | 1 | 0.7482 | 6.79 | 0.0208 | * |
X1X3 | 1.02 | 1 | 1.02 | 9.25 | 0.0088 | ** |
X1X4 | 0.8556 | 1 | 0.8556 | 7.76 | 0.0146 | * |
X2X3 | 0.0272 | 1 | 0.0272 | 0.2469 | 0.627 | ns |
X2X4 | 0.416 | 1 | 0.416 | 3.77 | 0.0725 | ns |
X3X4 | 0.0306 | 1 | 0.0306 | 0.2777 | 0.6064 | ns |
X12 | 13.45 | 1 | 13.45 | 121.94 | <0.0001 | ** |
X22 | 0.3168 | 1 | 0.3168 | 2.87 | 0.1122 | ns |
X32 | 6.39 | 1 | 6.39 | 57.92 | <0.0001 | ** |
X42 | 2.44 | 1 | 2.44 | 22.14 | 0.0003 | ** |
Residual | 1.54 | 14 | 0.1103 | |||
Lack of Fit | 1.44 | 10 | 0.1438 | 5.45 | 0.0582 | not significant |
Pure Error | 0.1055 | 4 | 0.0264 | |||
Cor Total | 27.46 | 28 | ||||
C.V.% | 1.85 | |||||
R2 | 0.9438 | |||||
Radj2 | 0.8876 |
Factors | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Solid-to-liquid ratio (g/mL) | 25 | 30 | 35 |
The ethanol volume fraction (%) | 60 | 70 | 80 |
Extraction temperature (°C) | 50 | 60 | 70 |
Extraction time (h) | 2 | 2.5 | 3 |
Time (min) | Acetonitrile (%) | 0.2% Phosphoric Acid an Aqueous Solution (%) |
---|---|---|
0–3 | 18 | 82 |
3–25 | 18→19 | 82→81 |
25–32 | 19→20 | 81→80 |
32–60 | 20→38 | 80→62 |
60–61 | 38→39 | 62→61 |
61–62 | 39→40 | 61→60 |
62–75 | 40→100 | 60→0 |
75–85 | 100 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Liu, X.; Hasan, K.M.F.; Peng, Y.; Xie, J.; Chen, S.; Zeng, Q.; Luo, P. Extraction and Purification of Flavonoids from Buddleja officinalis Maxim and Their Attenuation of H2O2-Induced Cell Injury by Modulating Oxidative Stress and Autophagy. Molecules 2022, 27, 8985. https://doi.org/10.3390/molecules27248985
Wei S, Liu X, Hasan KMF, Peng Y, Xie J, Chen S, Zeng Q, Luo P. Extraction and Purification of Flavonoids from Buddleja officinalis Maxim and Their Attenuation of H2O2-Induced Cell Injury by Modulating Oxidative Stress and Autophagy. Molecules. 2022; 27(24):8985. https://doi.org/10.3390/molecules27248985
Chicago/Turabian StyleWei, Shaofeng, Xiaoyi Liu, K. M. Faridul Hasan, Yang Peng, Jiao Xie, Shuai Chen, Qibing Zeng, and Peng Luo. 2022. "Extraction and Purification of Flavonoids from Buddleja officinalis Maxim and Their Attenuation of H2O2-Induced Cell Injury by Modulating Oxidative Stress and Autophagy" Molecules 27, no. 24: 8985. https://doi.org/10.3390/molecules27248985
APA StyleWei, S., Liu, X., Hasan, K. M. F., Peng, Y., Xie, J., Chen, S., Zeng, Q., & Luo, P. (2022). Extraction and Purification of Flavonoids from Buddleja officinalis Maxim and Their Attenuation of H2O2-Induced Cell Injury by Modulating Oxidative Stress and Autophagy. Molecules, 27(24), 8985. https://doi.org/10.3390/molecules27248985