Hemispherical Solar Distiller Performance Utilizing Hybrid Storage Media, Paraffin Wax with Nanoparticles: An Experimental Study
Abstract
:1. Introduction
2. Preparation of PCM with Nanoparticle
Characterization of Nanoparticles
3. Experimental Setup and Procedure
4. Results and Discussion
5. Comparative Analysis of Fresh Water Produced from Different Solar Stills in Previous Literature and the Present Study
6. Economic Evaluation
7. Conclusions
- The daily distillate production from CHD is equal to 4.85 L/m2. However, it is equal to 6.2 L/m2 from the distiller CHD-PCM and 8.3 L/m2 from the distiller CHD-N-PCM.
- The average daily efficiencies of CHD, CHD-PCM, and CHD-N-PCM are 40.66%, 51.79%, and 69.18%, respectively.
- The addition of paraffin wax increases the daily yield and efficiency of a hemispherical distiller to 27.84% and 27.38%, respectively, compared to the CHD.
- Adding nanoparticles of Al2O3 to paraffin wax enhances the daily yield and efficiency of a hemispherical solar distiller with 71.13% and 70.16%, respectively, compared to the CHD.
- Compared to the distiller CHD-PCM, improved yield and efficiency in the distiller CHD-N-PCM are achieved, with higher rates of 33.87% and 33.58%, respectively.
- The payback period required to recover a conventional hemispherical solar distiller is 31 days. This period is equal to 25 days for a hemispherical distiller using paraffin wax (CHD-PCM). However, a hemispherical distiller using paraffin wax via Al2O3 nanoparticles (CHD-N-PCM) is even less, 19 days.
- Increasing the fresh water production and efficiency of the hemispherical solar distiller may be accomplished by the use of paraffin wax that has been modified with Al2O3 nanoparticles. Therefore, using paraffin wax with Al2O3 nanoparticles is recommended to be considered in such applications. However, the use of metallic oxide nanoparticles with paraffin wax is limited to less than 0.5%, as the increase in volume concentration leads to particle agglomeration and sedimentation. It is also seen that the increase in the volume concentration of nanoparticles with paraffin wax leads to a reduction in the thermophysical property (thermal conductivity).
Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PCM | Phase change materials |
SS | Solar still |
CHD | Conventional hemispherical distiller |
CHD-PCM | Conventional hemispherical distiller with PCM |
CHD-N-PCM | Conventional hemispherical distiller with nano-Al2O3 and PCM |
References
- Attia, M.E.H.; Kabeel, A.E.; Abdelgaied, M. Optimal concentration of El Oued sand grains as energy storage materials for enhancement of hemispherical distillers performance. J. Energy Storage 2021, 36, 102415. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Kabeel, A.E.; Abdelgaied, M.; Driss, Z. Productivity Enhancement of traditional solar still by using sandbags of El Oued-Algeria. Heat Transf. 2021, 50, 768–783. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Kabeel, A.E.; Abdelgaied, M.; El-Maghlany, W.; Bellila, A. Comparative study of hemispherical solar distillers iron-fins. J. Clean. Prod. 2021, 292, 12607. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Driss, Z.; Kabeel, A.E.; Abdelgaied, M.; Manokar, A.; Sathyamurthy, R.; Hussein, A.K. Performance evaluation of modified solar still using Aluminum foil sheet as absorber cover—A comparative study. J. Test. Eval. 2021, 49, 5. [Google Scholar] [CrossRef]
- Aqib, M.; Hussain, A.; Ali, H.M.; Naseer, A.; Jamil, F. Experimental case studies of the effect of Al2O3 and MWCNTs nanoparticles on heating and cooling of PCM. Case Stud. Therm. Eng. 2020, 22, 100753. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M. Observational study of modified solar still coupled with oil serpentine loop from cylindrical parabolic concentrator and phase changing material under basin. Sol. Energy 2017, 144, 71–78. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Karthick, A.; Manokar, A.M.; Driss, Z.; Kabeel, A.E.; Sathyamurthy, R.; Sharifpur, M. Sustainable potable water production from conventional solar still during the winter season at Algerian dry areas: Energy and exergy analysis. J. Therm. Anal. Calorim. 2021, 145, 1215–1225. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M.; Eisa, A. Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials. J. Clean. Prod. 2018, 183, 20–25. [Google Scholar] [CrossRef]
- Prasad, A.R.; Attia, M.E.H.; Al-Kouz, W.; Afzal, A.; Manokar, A.M.; Sathyamurthy, R. Energy and exergy efficiency analysis of solar still incorporated with copper plate and phosphate pellets as energy storage material. Environ. Sci. Pollut. Res. 2021, 28, 48628–48636. [Google Scholar] [CrossRef] [PubMed]
- Chandrika, V.S.; Attia, M.E.H.; Manokar, A.M.; Márquez, F.P.G.; Driss, Z.; Sathyamurthy, R. Performance enhancements of conventional solar still using reflective aluminium foil sheet and reflective glass mirror: Energy and exergy analysis. Environ. Sci. Pollut. Res. 2021, 28, 32508–32516. [Google Scholar] [CrossRef] [PubMed]
- Al-harahsheh, M.; Abu-Arabi, M.; Mousa, H.; Alzghoul, Z. Solar desalination using solar still enhanced by external solar collector and PCM. Appl. Therm. Eng. 2018, 128, 1030–1040. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Essa, F.A.; Bacha, H.B.; Omara, Z.M. Improving the trays solar still performance using reflectors and phase change material with nanoparticles. J. Energy Storage 2020, 31, 101744. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Omara, Z.M.; Essa, F.A.; Younes, M.M.; Shanmugan, S.; Abdelgaied, M.; Amro, M.I.; Kabeel, A.E.; Farouk, W.M. Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters. J. Energy Storage 2020, 40, 102782. [Google Scholar] [CrossRef]
- Al-Jethelah, M.; Tasnim, S.H.; Mahmud, S.; Dutta, A. Nano-PCM filled energy storage system for solar-thermal applications. Renew. Energy 2018, 126, 137–155. [Google Scholar] [CrossRef]
- Al-Jethelah, M.; Ebadi, S.; Venkateshwar, K.; Tasnim, S.H.; Mahmud, S.; Dutta, A. Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: An experimental investigation. Appl. Therm. Eng. 2019, 148, 1029–1042. [Google Scholar] [CrossRef]
- Arıcı, M.; Tütüncü, E.; Yıldız, Ç.; Li, D. Enhancement of PCM melting rate via internal fin and nanoparticles. Int. J. Heat Mass Transf. 2020, 156, 119845. [Google Scholar] [CrossRef]
- Behura, A.; Gupta, H.K. Use of nanoparticle-embedded phase change material in solar still for productivity enhancement. Mater. Today Proc. 2021, 45, 3904–3907. [Google Scholar] [CrossRef]
- Rufuss, D.D.W.; Suganthi, L.; Iniyan, S.; Davies, P.A. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J. Clean. Prod. 2018, 192, 9–29. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Yang, L.; Lin, W.; Chen, J.; Mao, X.; Ma, Z. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J. Energy Storage 2019, 25, 100874. [Google Scholar] [CrossRef]
- Kandeal, A.W.; El-Shafai, N.M.; Abdo, M.R.; Thakur, A.K.; El-Mehasseb, I.M.; Maher, I.; Ibrahim, R.; Kabeel, A.E.; Yang, N.; Sharshir, S.W. Improved thermo-economic performance of solar desalination via copper chips, nanofluid, and nano-based phase change material. Sol. Energy 2021, 224, 1313–1325. [Google Scholar] [CrossRef]
- Liu, X.; Tie, J.; Wang, Z.; Xia, Y.; Wang, C.-A.; Tie, S. Improved thermal conductivity and stability of Na2SO4⋅10H2O PCMs system by incorporation of Al/C hybrid nanoparticles. J. Mater. Res. Technol. 2021, 12, 982–988. [Google Scholar] [CrossRef]
- Mahdi, J.M.; Mohammed, H.I.; Hashim, E.T.; Talebizadehsardari, P.; Nsofor, E.C. Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system. Appl. Energy 2020, 257, 113993. [Google Scholar] [CrossRef]
- Kumar, P.M.; Sudarvizhi, D.; Prakash, K.B.; Anupradeepa, A.M.; Raj, S.B.; Shanmathi, S.; Sumithra, K.; Surya, S. Investigating a single slope solar still with a nano-phase change material. Mater. Today Proc. 2021, 45, 7922–7925. [Google Scholar] [CrossRef]
- Parsa, S.M.; Rahbar, A.; Koleini, M.H.; Aberoumand, S.; Afrandd, M.; Amidpour, M. A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination. Desalination 2020, 480, 114354. [Google Scholar] [CrossRef]
- Parsa, S.M.; Yazdani, A.; Dhahad, H.; Alawee, W.H.; Hesabi, S.; Norozpour, F.; Javadi, D.; Ali, H.M.; Afrand, M. Effect of Ag, Au, TiO2 metallic/metal oxide nanoparticles in double-slope solar stills via thermodynamic and environmental analysis. J. Clean. Prod. 2021, 311, 127689. [Google Scholar] [CrossRef]
- Shanmugan, S.; Palani, S.; Janarthanan, B. Productivity enhancement of solar still by PCM and Nanoparticles miscellaneous basin absorbing materials. Desalination 2018, 433, 186–198. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Rahbar, N. Effects of nano-enhanced phase change material and nano-coated on the performance of solar stills. J. Energy Storage 2021, 42, 103061. [Google Scholar] [CrossRef]
- Vigneswaran, V.S.; Kumaresan, G.; Dinakar, B.V.; Kamal, K.K.; Velraj, R. Augmenting the productivity of solar still using multiple PCMs as heat energy storage. J. Energy Storage 2019, 26, 101019. [Google Scholar] [CrossRef]
- Vivekananthan, M.; Amirtham, V.A. Characterisation and thermophysical properties of graphene nanoparticles dispersed erythritol PCM for medium temperature thermal energy storage applications. Thermochim. Acta 2019, 676, 94–103. [Google Scholar] [CrossRef]
- Rufuss, D.D.W.; Iniyan, S.; Suganthi, L.; Pa, D. Nanoparticles Enhanced Phase Change Material (NPCM) as Heat Storage in Solar Still Application for Productivity Enhancement. Energy Procedia 2017, 141, 45–49. [Google Scholar] [CrossRef]
- Yang, L.; Huang, J.N.; Zhou, F. Thermophysical properties and applications of nano-enhanced PCMs: An update review. Energy Convers. Manag. 2020, 214, 112876. [Google Scholar] [CrossRef]
- Zhou, S.S.; Almarashi, A.; Talabany, Z.J.; Selim, M.M.; Issakhov, A.; Li, Y.M.; Yao, S.W.; Li, Z. Augmentation of performance of system with dispersion of nanoparticles inside PCM. J. Mol. Liq. 2021, 333, 115921. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Suresh, S.; Bose, A.C. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci. 2010, 34, 210–216. [Google Scholar] [CrossRef]
- Ali, A.H.; Ibrahim, S.I.; Jawad, Q.A.; Jawad, R.S.; Chaichan, M.T. Effect of nanomaterial addition on the thermophysical properties of Iraqi paraffin wax. Case Stud. Therm. Eng. 2019, 15, 100537. [Google Scholar] [CrossRef]
- Rashidi, S.; Bovand, M.; Rahbar, N.; Esfahani, J.A. Steps optimization and productivity enhancement in a nanofluid cascade solar still. Renew. Energy 2018, 118, 536–545. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Omara, Z.M.; Essa, F.A. Improving the performance of solar still by using nanofluids and providing vacuum. Energy Convers. Manag. 2014, 86, 268–274. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M.; Harby, K.; Eisa, A. Augmentation of diurnal and nocturnal distillate of modified tubular solar still having copper tubes filled with PCM in the basin. J. Energy Storage 2020, 32, 101992. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A. Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Sol. Energy 2018, 164, 370–381. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Omara, Z.M.; Essa, F.A. Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach. Energy Convers. Manag. 2014, 78, 493–498. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M. Enhancement of pyramid-shaped solar stills performance using a high thermal conductivity absorber plate and cooling the glass cover. Renew. Energy 2020, 146, 769–775. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Omara, Z.M.; Essa, F.A.; Abdullah, A.S.; Arunkumar, T.; Sathyamurthy, R. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alex. Eng. J. 2017, 56, 433–438. [Google Scholar] [CrossRef]
Property | Melting Temperature (°C) | Latent Heat (kJ/kg) | Thermal Conductivity (W/m K) | Density (kg/m3) | Specific Heat Capacity (kJ/kg K) | |
---|---|---|---|---|---|---|
Value | Solid | 56 | 226 | 0.228 | 886 | 2.17 |
Liquid | 0.251 | 753 | 3.06 |
Property | Thermal Conductivity (W/m K) | Density (g/cm3) | Specific Heat Capacity (J/kg K) | Color (Appearance) | Average Particle Size (nm) | Morphology |
---|---|---|---|---|---|---|
Present study | 38.5 | 3.89 | 880 | White | 13.6 nm | Spherical |
Chandrasekar et al. [33] | - | 3.88 | 729 | White | 43 nm | Spherical |
Ali et al. [34] | 29–38 | 4.43 | - | White | 30–60 nm | Spherical |
Composition of Nanoparticle in Paraffin Wax | Zeta Potential (ς/mV) | Behavior |
---|---|---|
0.1 | −15 | Incipient instability |
0.2 | −32 | Incipient instability |
0.3 | −45 | Good stability |
0.4 | −62 | Excellent stability |
0.5 | −42 | Good stability |
Instrument | Range | Accuracy | Uncertainty |
---|---|---|---|
Solar power meter | 0–3500 W/m2 | ±10 W/m2 | 3.1% |
Thermocouple | −150–600 °C | ±0.1 °C | 1.2% |
Graduated cylinder | 0–500 mL | ±1 mL | 3.6% |
Solar Still | Day Time Production (L/m2) | Overnight Fresh Water Yield (L/m2) | Cumulative Yield (L/m2) | Enhancement (%) |
---|---|---|---|---|
CHD | 4.85 | 0 | 4.85 | - |
CHD-PCM | 5.30 | 0.90 | 6.20 | 27.84 |
CHD-N-PCM | 7.35 | 0.95 | 8.30 | 71.13 |
Literature | Country | Solar Still Type | Medium of Enhancement | Improvement in Fresh Water Yield (%) |
---|---|---|---|---|
Parsa et al. [24] | Iran | Single slope | - Ag | 26.3 |
Rashidi et al. [35] | Iran | Cascade | - Al2O3 | 22 |
Kabeel et al. [36] | Egypt | Single slope | - Al2O3 with outside heat exchanger | 116 |
Kabeel et al. [37] | Egypt | Tubular | - PCM | 115.0 |
Chaichan and Kazem [38] | Iraq | Single slope | - PCM - Combination of PCM with a nano-Al2O3 | 10.38 60.53 |
Kabeel et al. [39] | Egypt | Single slope | - Al2O3 - Al2O3 with running fan | 89 125 |
Kabeel et al. [40] | Egypt | Pyramid shaped | - Graphite as absorber plate with cover cooling | 107.7 |
Kabeel et al. [41] | Egypt | Single slope | - Absorber plate coated with CuO nanoparticles | 25.3 |
Present work | Algeria | Hemispherical | - PCM - Mixed nano-Al2O3 with PCM | 27.84 71.13 |
CHD | CHD-PCM | CHD-N-PCM | |
---|---|---|---|
Manufacturing cost (USD) | 68 | 68 | 68 |
Al2O3 nanoparticle price (USD) | - | - | 0.5 |
PCM price (USD) | - | 1.5 | 1.5 |
Maintenance cost (USD) | 0.5 | 0.5 | 0.5 |
Total cost (USD) | 68 | 69 | 70 |
Potable water produced (L/m2/day) | 4.85 | 6.2 | 8.3 |
CPL of potable water produced (USD) | 0.5 | 0.5 | 0.5 |
The cost of daily water production (USD) | 2.2 | 2.8 | 3.75 |
Payback period (days) | 31 | 25 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathyamurthy, R.; El-Maghlany, W.M.; Attia, M.E.H.; Kabeel, A.E.; Abdelgaied, M.; M. Abdel-Aziz, M.; Abdullah, A.S.; Vasanthaseelan, S. Hemispherical Solar Distiller Performance Utilizing Hybrid Storage Media, Paraffin Wax with Nanoparticles: An Experimental Study. Molecules 2022, 27, 8988. https://doi.org/10.3390/molecules27248988
Sathyamurthy R, El-Maghlany WM, Attia MEH, Kabeel AE, Abdelgaied M, M. Abdel-Aziz M, Abdullah AS, Vasanthaseelan S. Hemispherical Solar Distiller Performance Utilizing Hybrid Storage Media, Paraffin Wax with Nanoparticles: An Experimental Study. Molecules. 2022; 27(24):8988. https://doi.org/10.3390/molecules27248988
Chicago/Turabian StyleSathyamurthy, Ravishankar, Wael M. El-Maghlany, Mohammed El Hadi Attia, A. E. Kabeel, Mohamed Abdelgaied, Moataz M. Abdel-Aziz, A. S. Abdullah, and S. Vasanthaseelan. 2022. "Hemispherical Solar Distiller Performance Utilizing Hybrid Storage Media, Paraffin Wax with Nanoparticles: An Experimental Study" Molecules 27, no. 24: 8988. https://doi.org/10.3390/molecules27248988
APA StyleSathyamurthy, R., El-Maghlany, W. M., Attia, M. E. H., Kabeel, A. E., Abdelgaied, M., M. Abdel-Aziz, M., Abdullah, A. S., & Vasanthaseelan, S. (2022). Hemispherical Solar Distiller Performance Utilizing Hybrid Storage Media, Paraffin Wax with Nanoparticles: An Experimental Study. Molecules, 27(24), 8988. https://doi.org/10.3390/molecules27248988