Fabrication of Ternary MoS2/CdS/Bi2S3-Based Nano Composites for Photocatalytic Dye Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Studies
2.2. Structural Studies
2.3. XRD Analysis
2.4. UV–Vis Absorbance Spectra
2.5. Photocatalytic Activity of CdS/MoS2/Bi2S3
3. Materials and Methods
3.1. Synthesis of MoS2 Photocatalyst
3.2. Synthesis of CdS Photocatalyst
3.3. Synthesis of CdS/MoS2/Bi2S3 Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hollaway, M.J.; Beven, K.J.; Benskin, C.M.H.; Collins, A.; Evans, R.; Falloon, P.; Forber, K.J.; Hiscock, K.M.; Kahana, R.; Macleod, C.J.A. The challenges of modelling phosphorus in a headwater catchment: Applying a ‘limits of acceptability’uncertainty framework to a water quality model. J. Hydrol. 2018, 558, 607–624. [Google Scholar] [CrossRef]
- Shah, V.D. Fluid Thoughts-Water: Structure and Mysticism; Notion Press: Chennai, India, 2017. [Google Scholar]
- Ashfaq, A.; Clochard, M.-C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M.J.P. Polymerization reactions and modifications of polymers by ionizing radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef] [PubMed]
- Boretti, A.; Rosa, L. Reassessing the projections of the world water development report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L. Seaweeds as source of bioactive substances and skin care therapy—cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 2018, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Hirschon, R. Essential Objects and the Sacred: Interior and Exterior Space in an Urban Greek Locality 1. In Women and Space; Routledge: Oxford, UK, 2021; pp. 70–86. [Google Scholar]
- Salgot, M.; Folch, M. Wastewater treatment and water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 64–74. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.I. Water chemistry in the biological studies by using nuclear analytical techniques. In Water Engineering Modeling and Mathematic Tools; Elsevier: Amsterdam, The Netherlands, 2021; pp. 133–156. [Google Scholar]
- Tan, L.; Dong, W.; Liu, K.; Luo, T.; Gu, X. Thermal decomposition in-situ preparation of gray rutile TiO2-x/Al2O3 composite and its enhanced visible-light-driven photocatalytic properties. Opt. Mater. 2021, 111, 110716. [Google Scholar] [CrossRef]
- Lewis, N.S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohn, Y.; Huang, W.; Taghipour, F. Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials. Appl. Surf. Sci. 2017, 396, 1696–1711. [Google Scholar] [CrossRef]
- Dong, W.; Liu, H.; Bao, Q.; Gu, X. Facile synthesis of metastable CaTi2O5 nanostructure and its photocatalytic properties. Opt. Mater. 2020, 105, 109921. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125. [Google Scholar] [CrossRef]
- Matos, J.; Ocares-Riquelme, J.; Poon, P.S.; Montaña, R.; García, X.; Campos, K.; Hernández-Garrido, J.C.; Titirici, M.M. C-doped anatase TiO2: Adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations. J. Colloid Interface Sci. 2019, 547, 14–29. [Google Scholar] [CrossRef]
- Qi, S.; Zhang, K.; Zhang, Y.; Zhang, R.; Xu, H. TiO2/Zn0.5Cd0.5S heterojunction for efficient photocatalytic degradation of methylene blue and its photocatalytic mechanism. Chem. Phys. Lett. 2022, 798, 139614. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Chandraprabha, M.; Krishna, R.H.; Samrat, K.; Sakunthala, A.; Sasikumar, M. Optical and antibacterial activity of biogenic core-shell ZnO@ TiO2 nanoparticles. J. Indian Chem. Soc. 2022, 99, 100361. [Google Scholar] [CrossRef]
- Peng, Y.; Zhou, H.; Wu, Y.; Ma, Z.; Zhang, R.; Tu, H.; Jiang, L. A new strategy to construct cellulose-chitosan films supporting Ag/Ag2O/ZnO heterostructures for high photocatalytic and antibacterial performance. J. Colloid Interface Sci. 2022, 609, 188–199. [Google Scholar] [CrossRef]
- Tahir, M.B.; Nabi, G.; Khalid, N.R. Enhanced photocatalytic performance of visible-light active graphene-WO3 nanostructures for hydrogen production. Mater. Sci. Semicond. Process. 2018, 84, 36–41. [Google Scholar] [CrossRef]
- Bilal Tahir, M.; Nabi, G.; Rafique, M.; Khalid, N.R. Role of fullerene to improve the WO3 performance for photocatalytic applications and hydrogen evolution. Int. J. Energy Res. 2018, 42, 4783–4789. [Google Scholar] [CrossRef]
- Luo, J.; Li, R.; Chen, Y.; Zhou, X.; Ning, X.; Zhan, L.; Ma, L.; Xu, X.; Xu, L.; Zhang, L.J.S.; et al. Rational design of Z-scheme LaFeO3/SnS2 hybrid with boosted visible light photocatalytic activity towards tetracycline degradation. Sep. Purif. Technol. 2019, 210, 417–430. [Google Scholar] [CrossRef]
- Adeleke, J.; Theivasanthi, T.; Thiruppathi, M.; Swaminathan, M.; Akomolafe, T.; Alabi, A.B. Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl. Surf. Sci. 2018, 455, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Hamad, H.N.; Idrus, S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers 2022, 14, 783. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974. [Google Scholar] [CrossRef]
- Xu, J.; Cao, X. Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chem. Eng. J. 2015, 260, 642–648. [Google Scholar] [CrossRef]
- Sun, Y.; Xiao, J.; Huang, X.; Mei, P.; Wang, H.; Research, P. Boosting photocatalytic efficiency of MoS2/CdS by modulating morphology. Environ. Sci. Pollut. Res. 2022, 29, 73282–73291. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yang, L.; Zhang, J.; Wang, Z.; Zhu, W.; Wang, Y.; Zou, Z. Dual MOF-Derived MoS2/CdS Photocatalysts with Rich Sulfur Vacancies for Efficient Hydrogen Evolution Reaction. Chem. A Eur. J. 2022, 28, e202202019. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Fu, H.; Yang, X.; Xiong, S.; Han, D.; An, X. MoS2/CdS rod-like nanocomposites as high-performance visible light photocatalyst for water splitting photocatalytic hydrogen production. Int. J. Hydrogen Energy 2022, 47, 8247–8260. [Google Scholar] [CrossRef]
- Liu, X.; Wang, B.; Heng, Q.; Chen, W.; Li, X.; Mao, L.; Shangguan, W. Promoted charge separation on 3D interconnected Ti3C2/MoS2/CdS composite for enhanced photocatalytic H2 production. Int. J. Hydrogen Energy 2022, 47, 8284–8293. [Google Scholar] [CrossRef]
- Zheng, X.; Han, H.; Liu, J.; Yang, Y.; Pan, L.; Zhang, S.; Meng, S.; Chen, S. Sulfur Vacancy-Mediated Electron–Hole Separation at MoS2/CdS Heterojunctions for Boosting Photocatalytic N2 Reduction. ACS Appl. Energy Mater. 2022, 5, 4475–4485. [Google Scholar] [CrossRef]
- Yue, Y.; Shen, S.; Cheng, W.; Han, G.; Wu, Q.; Jiang, J.J.C.; Physicochemical, S.A.; Aspects, E. Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128035. [Google Scholar] [CrossRef]
- Allahyar, S.; Taheri, M.; Allahyar, S. Facile synthesis of few-Layered MoS2 Nanoroses Covering TiO2 Nanowires as improved bacterial inactivation and photodegradation devices. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, L.; Zhang, Y.; Wang, P.; Wang, G.; Bai, F.; Zhao, Z.; Gong, F.; Liu, J. Metal Sulfides Yolk–Shell Nanoreactors with Dual Component for Enhanced Acidic Electrochemical Hydrogen Production. Small Struct. 2022, 4, 2200247. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, K.; Sun, S.; Wang, Y.; Kang, C. Fabrication of a novel pyramidal 3D MoS2/2D PbTiO3 nanocomposites and the efficient photocatalytic removal of organic pollutants: Effects of the PbTiO3 internal electric field and S-scheme heterojunction formation. Appl. Surf. Sci. 2023, 615, 156431. [Google Scholar] [CrossRef]
- Han, C.; Cheng, C.; Liu, F.; Li, X.; Wang, G.; Li, J. Preparation of CdS–Ag2S nanocomposites by ultrasound-assisted UV photolysis treatment and its visible light photocatalysis activity. Nanotechnol. Rev. 2023, 12, 20220503. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, D.; Hiragond, C.B.; Lee, J.; Jung, J.-W.; Cho, C.-H.; In, I.; In, S.-I. Phase-controlled 1T/2H-MoS2 interaction with reduced TiO2 for highly stable photocatalytic CO2 reduction into CO. J. CO2 Util. 2023, 67, 102324. [Google Scholar] [CrossRef]
- Han, B.; Hu, Y. Engineering. MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. Eng. 2016, 4, 285–304. [Google Scholar] [CrossRef] [Green Version]
- Tien, T.-M.; Chen, E.L. S-Scheme System of MoS2/Co3O4 Nanocomposites for Enhanced Photocatalytic Hydrogen Evolution and Methyl Violet Dye Removal under Visible Light Irradiation. Coating 2023, 13, 80. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Fang, Y.; Sun, S.; Yu, Z. Compounds. Construction of MoS2/CdS/TiO2 ternary composites with enhanced photocatalytic activity and stability. J. Alloys Compd. 2016, 684, 335–341. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Chen, X.; Feng, H.; Shen, D.; Huang, B.; Jia, Y.; Zhou, Y.; Liang, Y. Effect of sulfur source on photocatalytic degradation performance of CdS/MoS2 prepared with one-step hydrothermal synthesis. J. Environ. Sci. 2018, 65, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, M.; Fang, Y.; Sun, S.; He, J. Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS. J. Mater. Sci. 2016, 51, 779–787. [Google Scholar] [CrossRef]
- Ghasemipour, P.; Fattahi, M.; Rasekh, B.; Yazdian, F. Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalytic degradation of aniline. Sci. Rep. 2020, 10, 4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritika, M.K.; Umar, A.; Mehta, S.K.; Singh, S.; Kansal, S.K.; Fouad, H.; Alothman, O.Y. Rapid solar-light driven superior photocatalytic degradation of methylene blue using MoS2-ZnO heterostructure nanorods photocatalyst. Materials 2018, 11, 2254. [Google Scholar] [CrossRef] [Green Version]
- El Malti, W.; Hijazi, A.; Abou Khalil, Z.; Yaghi, Z.; Medlej, M.K.; Reda, M. Comparative study of the elimination of copper, cadmium, and methylene blue from water by adsorption on the citrus Sinensis peel and its activated carbon. RSC Adv. 2022, 12, 10186–10197. [Google Scholar] [CrossRef]
- Mirsalari, S.A.; Nezamzadeh-Ejhieh, A.; Massah, A.R.; Research, P. A designed experiment for CdS-AgBr photocatalyst toward methylene blue. Env. Sci. Pollut. Res. Int. 2022, 29, 33013–33032. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; He, C.; Yin, J.; Chen, S.; Zhao, W.; Zhao, C. Clearance of methylene blue by CdS enhanced composite hydrogel materials. Environ. Technol. 2022, 43, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.; Zhang, Y.; Zheng, J.; Ge, S.; Lin, J.; Pan, D.; Naik, N.; Guo, Z. In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 2022, 69, 111–122. [Google Scholar] [CrossRef]
Sr. No. | Composite | Percentage | Photodegradation Efficiency |
---|---|---|---|
1 | MoS2 | - | 19% |
2 | CdS | - | 65% |
3 | CdS/MoS2/Bi2S3 | 1:1:1 | 90% |
4 | CdS/MoS2/Bi2S3 | 1:5:5 | 88% |
5 | CdS/MoS2/Bi2S3 | 2:5:5 | 91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, A.; Tahir, M.S.; Kamal, G.M.; Zhang, X.; Tahir, M.B.; Jiang, B.; Safdar, M. Fabrication of Ternary MoS2/CdS/Bi2S3-Based Nano Composites for Photocatalytic Dye Degradation. Molecules 2023, 28, 3167. https://doi.org/10.3390/molecules28073167
Nazir A, Tahir MS, Kamal GM, Zhang X, Tahir MB, Jiang B, Safdar M. Fabrication of Ternary MoS2/CdS/Bi2S3-Based Nano Composites for Photocatalytic Dye Degradation. Molecules. 2023; 28(7):3167. https://doi.org/10.3390/molecules28073167
Chicago/Turabian StyleNazir, Asif, Muhammad Suleman Tahir, Ghulam Mustafa Kamal, Xu Zhang, Muhammad Bilal Tahir, Bin Jiang, and Muhammad Safdar. 2023. "Fabrication of Ternary MoS2/CdS/Bi2S3-Based Nano Composites for Photocatalytic Dye Degradation" Molecules 28, no. 7: 3167. https://doi.org/10.3390/molecules28073167
APA StyleNazir, A., Tahir, M. S., Kamal, G. M., Zhang, X., Tahir, M. B., Jiang, B., & Safdar, M. (2023). Fabrication of Ternary MoS2/CdS/Bi2S3-Based Nano Composites for Photocatalytic Dye Degradation. Molecules, 28(7), 3167. https://doi.org/10.3390/molecules28073167