Nerve Targeting via Myelin Protein Zero and the Impact of Dimerization on Binding Affinity
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Chemical and Photophysical Properties
2.3. P0 Binding Affinity and Cellular Fluorescence Intensity
3. Discussion
4. Materials and Methods
4.1. Synthetic Procedures
4.2. Chemical Stability
4.3. Photophysical Properties
4.4. Photostability
4.5. Fluorescence Confocal Microscopy
4.6. Flow Cytometry
4.7. Statistical Evaluation
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Menorca, R.M.G.; Fussell, T.S.; Elfar, J.C. Nerve Physiology Mechanisms of Injury and Recovery. Hand Clin. 2013, 29, 317–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moszkowicz, D.; Alsaid, B.; Bessede, T.; Penna, C.; Nordlinger, B.; Benoit, G.; Peschaud, F. Where does pelvic nerve injury occur during rectal surgery for cancer? Color. Dis. 2011, 13, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Daniels, I.R.; Woodward, S.; Taylor, F.G.; Raja, A.; Toomey, P. Female urogenital dysfunction following total mesorectal excision for rectal cancer. World J. Surg. Oncol. 2006, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Clausen, N.; Wolloscheck, T.; Konerding, M.A. How to optimize autonomic nerve preservation in total mesorectal excision: Clinical topography and morphology of pelvic nerves and fasciae. World J. Surg. 2008, 32, 1768–1775. [Google Scholar] [CrossRef]
- Lee, Y.H.; Huang, J.K.; Lu, C.M. The impact on sexual function after nerve sparing and non-nerve sparing radical retropubic prostatectomy. J. Chin. Med. Assoc. 2003, 66, 13–18. [Google Scholar]
- Noldus, J.; Michl, U.; Graefen, M.; Haese, A.; Hammerer, P.; Huland, H. Patient-reported sexual function after nerve-sparing radical retropubic prostatectomy. Eur. Urol. 2002, 42, 118–124. [Google Scholar] [CrossRef]
- Walsh, E.M.; Cole, D.; Tipirneni, K.E.; Bland, K.I.; Udayakumar, N.; Kasten, B.B.; Bevans, S.L.; McGrew, B.M.; Kain, J.J.; Nguyen, Q.T.; et al. Fluorescence Imaging of Nerves During Surgery. Ann. Surg. 2019, 270, 69–76. [Google Scholar] [CrossRef]
- Lu, J. Neuronal tracing for connectomic studies. Neuroinformatics 2011, 9, 159–166. [Google Scholar] [CrossRef]
- Cotero, V.E.; Siclovan, T.; Zhang, R.; Carter, R.L.; Bajaj, A.; LaPlante, N.E.; Kim, E.; Gray, D.; Staudinger, V.P.; Yazdanfar, S.; et al. Intraoperative fluorescence imaging of peripheral and central nerves through a myelin-selective contrast agent. Mol. Imaging Biol. 2012, 14, 708–717. [Google Scholar] [CrossRef] [Green Version]
- Park, M.H.; Hyun, H.; Ashitate, Y.; Wada, H.; Park, G.; Lee, J.H.; Njiojob, C.; Henary, M.; Frangioni, J.V.; Choi, H.S. Prototype Nerve-Specific Near-Infrared Fluorophores. Theranostics 2014, 4, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Buckle, T.; Hensbergen, A.W.; van Willigen, D.M.; Bosse, F.; Bauwens, K.; Pelger, R.C.M.; van Leeuwen, F.W.B. Intraoperative visualization of nerves using a myelin protein-zero specific fluorescent tracer. EJNMMI Res. 2021, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Li, K.; Han, Y.; Wei, W.; Zheng, S.; Zhang, G. In vivo targeted peripheral nerve imaging with a nerve-specific nanoscale magnetic resonance probe. Med. Hypotheses 2014, 83, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Azargoshasb, S.; Boekestijn, I.; Roestenberg, M.; KleinJan, G.H.; van der Hage, J.A.; van der Poel, H.G.; Rietbergen, D.D.D.; van Oosterom, M.N.; van Leeuwen, F.W.B. Quantifying the Impact of Signal-to-background Ratios on Surgical Discrimination of Fluorescent Lesions. Mol. Imaging Biol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Huskens, J. Multivalent interactions at interfaces. Curr. Opin. Chem. Biol. 2006, 10, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, L.L.; Gestwicki, J.E.; Strong, L.E. Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Ed. Engl. 2006, 45, 2348–2368. [Google Scholar] [CrossRef]
- Gonzalez-Cuesta, M.; Ortiz Mellet, C.; Garcia Fernandez, J.M. Carbohydrate supramolecular chemistry: Beyond the multivalent effect. Chem. Commun. (Camb.) 2020, 56, 5207–5222. [Google Scholar] [CrossRef] [Green Version]
- Kuil, J.; Buckle, T.; Yuan, H.; van den Berg, N.S.; Oishi, S.; Fujii, N.; Josephson, L.; van Leeuwen, F.W. Synthesis and evaluation of a bimodal CXCR4 antagonistic peptide. Bioconjug. Chem. 2011, 22, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Chittasupho, C. Multivalent ligand: Design principle for targeted therapeutic delivery approach. Ther. Deliv. 2012, 3, 1171–1187. [Google Scholar] [CrossRef]
- Kwon, Y.D.; Chung, H.J.; Lee, S.J.; Lee, S.H.; Jeong, B.H.; Kim, H.K. Synthesis of novel multivalent fluorescent inhibitors with high affinity to prostate cancer and their biological evaluation. Bioorg. Med. Chem. Lett. 2018, 28, 572–576. [Google Scholar] [CrossRef]
- Bohmer, V.I.; Szymanski, W.; Feringa, B.L.; Elsinga, P.H. Multivalent Probes in Molecular Imaging: Reality or Future? Trends Mol. Med. 2021, 27, 379–393. [Google Scholar] [CrossRef]
- Liu, W.; Hao, G.; Long, M.A.; Anthony, T.; Hsieh, J.T.; Sun, X. Imparting multivalency to a bifunctional chelator: A scaffold design for targeted PET imaging probes. Angew. Chem. Int. Ed. Engl. 2009, 48, 7346–7349. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Huynh, T.T.; Rogers, B.E.; Mirica, L.M. Design of a multivalent bifunctional chelator for diagnostic (64)Cu PET imaging in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2020, 117, 30928–30933. [Google Scholar] [CrossRef] [PubMed]
- Kuil, J.; Velders, A.H.; van Leeuwen, F.W. Multimodal tumor-targeting peptides functionalized with both a radio- and a fluorescent label. Bioconjug. Chem. 2010, 21, 1709–1719. [Google Scholar] [CrossRef] [PubMed]
- Yeldell, S.B.; Seitz, O. Nucleic acid constructs for the interrogation of multivalent protein interactions. Chem. Soc. Rev. 2020, 49, 6848–6865. [Google Scholar] [CrossRef]
- Li, D.H.; Schreiber, C.L.; Smith, B.D. Sterically Shielded Heptamethine Cyanine Dyes for Bioconjugation and High Performance Near-Infrared Fluorescence Imaging. Angew. Chem. Int. Ed. Engl. 2020, 59, 12154–12161. [Google Scholar] [CrossRef]
- Ptaszek, M. Rational design of fluorophores for in vivo applications. Prog. Mol. Biol. Transl. Sci. 2013, 113, 59–108. [Google Scholar] [CrossRef]
- Spa, S.J.; Hensbergen, A.W.; van der Wal, S.; Kuil, J.; van Leeuwen, F.W.B. The influence of systematic structure alterations on the photophysical properties and conjugation characteristics of asymmetric cyanine 5 dyes. Dyes Pigments 2018, 152, 19–28. [Google Scholar] [CrossRef] [Green Version]
- van der Wal, S.; Kuil, J.; Valentijn, A.R.P.M.; van Leeuwen, F.W.B. Synthesis and systematic evaluation of symmetric sulfonated centrally C-C bonded cyanine near-infrared dyes for protein labelling. Dyes Pigments 2016, 132, 7–19. [Google Scholar] [CrossRef]
- Kuil, J.; Buckle, T.; Oldenburg, J.; Yuan, H.; Borowsky, A.D.; Josephson, L.; van Leeuwen, F.W. Hybrid peptide dendrimers for imaging of chemokine receptor 4 (CXCR4) expression. Mol. Pharm. 2011, 8, 2444–2453. [Google Scholar] [CrossRef]
- Berezin, M.Y.; Guo, K.; Akers, W.; Livingston, J.; Solomon, M.; Lee, H.; Liang, K.; Agee, A.; Achilefu, S. Rational approach to select small peptide molecular probes labeled with fluorescent cyanine dyes for in vivo optical imaging. Biochemistry 2011, 50, 2691–2700. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, S.L. Near infrared fluorescence for image-guided surgery. Quant. Imaging Med. Surg. 2012, 2, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Gibbs-Strauss, S.L.; Nasr, K.A.; Fish, K.M.; Khullar, O.; Ashitate, Y.; Siclovan, T.M.; Johnson, B.F.; Barnhardt, N.E.; Hehir, C.A.T.; Frangioni, J.V. Nerve-Highlighting Fluorescent Contrast Agents for Image-Guided Surgery. Mol. Imaging 2011, 10, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.G.; Barth, C.W.; Kitts, C.H.; Mebrat, M.D.; Montano, A.R.; House, B.J.; McCoy, M.E.; Antaris, A.L.; Galvis, S.N.; McDowall, I.; et al. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci. Transl. Med. 2020, 12, eaay0712. [Google Scholar] [CrossRef]
- Hensbergen, A.W.; Buckle, T.; van Willigen, D.M.; Schottelius, M.; Welling, M.M.; van der Wijk, F.A.; Maurer, T.; van der Poel, H.G.; van der Pluijm, G.; van Weerden, W.M.; et al. Hybrid Tracers Based on Cyanine Backbones Targeting Prostate-Specific Membrane Antigen: Tuning Pharmacokinetic Properties and Exploring Dye-Protein Interaction. J. Nucl. Med. 2020, 61, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Buckle, T.; van der Wal, S.; van Willigen, D.M.; Aalderink, G.; KleinJan, G.H.; van Leeuwen, F.W.B. Fluorescence background quenching as a means to increase Signal to Background ratio—A proof of concept during Nerve Imaging. Theranostics 2020, 10, 9890–9898. [Google Scholar] [CrossRef]
- Van der Wal, S.; de Korne, C.M.; Sand, L.G.L.; van Willigen, D.M.; Hogendoorn, P.C.W.; Szuhai, K.; van Leeuwen, F.W.B.; Buckle, T. Bioorthogonally Applicable Fluorescence Deactivation Strategy for Receptor Kinetics Study and Theranostic Pretargeting Approaches. ChemBioChem 2018, 19, 1758–1765. [Google Scholar] [CrossRef]
Property | Sulfonate-(SO3)Cy5(SO3)-COOH * | Cy5-P0101–125 | COOH-(SO3)Cy5(SO3)-COOH | Cy5-(P0101–125)2 |
---|---|---|---|---|
λex/λEm in H2O/PBS (stokes shift, nm) | 648/664 (16) | 650/671 (21) | 648/667 (19) | 654/671 (17) |
Brightness (M−1 cm−1 in PBS) | 53.000 | 55.660 † | 46.000 | 49.242 † |
Serum protein binding, % | 49 ± 8 | 89 ± 2 | 70 ± 4 | 63 ± 3 |
logP(o/w) | −1.42 ± 0.00 | −1.39 ± 0.09 | −1.62 ± 0.01 | −0.57 ± 0.01 |
Net charge | −2 | 0 | −3 | +3 |
Glutathione stability (at 6 h), % | 95 | 92 | 95 | 96 |
Photobleaching, % | 93 | 94 | 95 | 71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berehova, N.; Buckle, T.; van Meerbeek, M.P.; Bunschoten, A.; Velders, A.H.; van Leeuwen, F.W.B. Nerve Targeting via Myelin Protein Zero and the Impact of Dimerization on Binding Affinity. Molecules 2022, 27, 9015. https://doi.org/10.3390/molecules27249015
Berehova N, Buckle T, van Meerbeek MP, Bunschoten A, Velders AH, van Leeuwen FWB. Nerve Targeting via Myelin Protein Zero and the Impact of Dimerization on Binding Affinity. Molecules. 2022; 27(24):9015. https://doi.org/10.3390/molecules27249015
Chicago/Turabian StyleBerehova, Nataliia, Tessa Buckle, Maarten P. van Meerbeek, Anton Bunschoten, Aldrik H. Velders, and Fijs W. B. van Leeuwen. 2022. "Nerve Targeting via Myelin Protein Zero and the Impact of Dimerization on Binding Affinity" Molecules 27, no. 24: 9015. https://doi.org/10.3390/molecules27249015
APA StyleBerehova, N., Buckle, T., van Meerbeek, M. P., Bunschoten, A., Velders, A. H., & van Leeuwen, F. W. B. (2022). Nerve Targeting via Myelin Protein Zero and the Impact of Dimerization on Binding Affinity. Molecules, 27(24), 9015. https://doi.org/10.3390/molecules27249015