Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. TPC, TFC and Antioxidant Activity of Distilled Solid By-Products
2.2. Polyphenolic Composition of Raw and Distilled Solid Residues
2.2.1. Identification
2.2.2. Quantification
2.3. Pearson Correlation Analysis
2.4. Multivariate Data Analysis
3. Materials and Methods
3.1. Plant Materials
3.2. Distillation of Aromatic Plants
3.2.1. Steam-Distillation (SD)
3.2.2. Hydro-Distillation (HD)
3.2.3. Microwave-Assisted Hydro-Distillation (MAHD)
3.3. Pretreatment of Resultant Distilled Solid By-Products
3.4. Extraction of Phenolics from Distilled Solid Residues
3.5. Determination of Total Phenolic (TPC) and Flavonoid Content (TFC)
3.6. Determination of Antioxidant Activity of Phenolic Extracts
3.6.1. ABTS Radical Scavenging Assay
3.6.2. DPPH Radical Scavenging Assay
3.6.3. Ferric Reducing Antioxidant Power (FRAP) Assay
3.7. HPLC-DAD-MS Analysis of Phenolics from Raw and Distillated Solid Residues
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kumar, P.; Mahato, D.K.; Gupta, A.; Pandhi, S.; Mishra, S.; Barua, S.; Tyagi, V.; Kumar, A.; Kumar, M.; Kamle, M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf-life enhancement and food preservation. Int. J. Food Sci. Technol. 2022, 57, 2171–2184. [Google Scholar] [CrossRef]
- Reis, D.R.; Ambrosi, A.; Luccio, M.D. Encapsulated essential oils: A perspective in food preservation. Futur. Foods 2022, 5, 100126. [Google Scholar] [CrossRef]
- Santos, M.I.S.; Marques, C.; Mota, J.; Pedroso, L.; Lima, A. Applications of essential oils as antibacterial agents in minimally processed fruits and vegetables—A review. Microorganisms 2022, 10, 760. [Google Scholar] [CrossRef] [PubMed]
- Christaki, S.; Moschakis, T.; Kyriakoudi, A.; Biliaderis, C.G.; Mourtzinos, I. Recent advances in plant essential oils and extracts: Delivery systems and potential uses as preservatives and antioxidants in cheese. Trends Food Sci. Technol. 2021, 116, 264–278. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & Healthcare of the Council of Europe. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; Volume I, ISBN 978-92-871-8912-7. [Google Scholar]
- Ali, A.; Chua, B.L.; Chow, Y.H. An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: Past, present and future. Trends Anal. Chem. 2019, 118, 338–351. [Google Scholar] [CrossRef]
- Villa, C.; Robustelli Della Cuna, F.S.; Russo, E.; Ibrahim, M.F.; Grignani, E.; Preda, S. Microwave-assisted and conventional extractions of volatile compounds from Rosa × Damascena Mill. fresh petals for cosmetic applications. Molecules 2022, 27, 3963. [Google Scholar] [CrossRef]
- Drinić, Z.; Pljevljakušić, D.; Janković, T.; Zdunić, G.; Bigović, D.; Šavikin, K. Hydro-distillation and microwave-assisted distillation of Sideritis raeseri: Comparison of the composition of the essential oil, hydrolat and residual water extract. Sustain. Chem. Pharm. 2021, 24, 100538. [Google Scholar] [CrossRef]
- Tashani, F.; Karami, A.; Tahmasebi, A.; Maggi, F. Variability in chemical composition and antibacterial activity of Salvia majdae essential oil under various extraction techniques. J. Essent. Oil Res. 2022, 34, 279–289. [Google Scholar] [CrossRef]
- Abd El-Gaber, A.S.; El Gendy, A.N.G.; Elkhateeb, A.; Saleh, I.A.; El-Seedi, H.R. Microwave extraction of essential oil from Anastatica hierochuntica (l): Comparison with conventional hydro-distillation and steam distillation. J. Essent. Oil-Bearing Plants 2018, 21, 1003–1010. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Z.; Gu, H.; Yang, F.; Zhang, L.; Yang, L. Improved method to obtain essential oil, asarinin and sesamin from Asarum heterotropoides var. Mandshuricum Using Microwave-Assisted Steam Distillation Followed by Solvent Extraction and Antifungal Activity of Essential Oil against Fusarium Spp. Ind. Crop. Prod. 2021, 162, 113295. [Google Scholar] [CrossRef]
- Peng, X.; Liu, N.; Wang, M.; Liang, B.; Feng, C.; Zhang, R.; Wang, X.; Hu, X.; Gu, H.; Xing, D. Recent Advances of Kinetic Model in the Separation of Essential Oils by Microwave-Assisted Hydrodistillation. Ind. Crop. Prod. 2022, 187, 115418. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.R.T.S.; Périno, S.; Fernandez, X.; Cunha, C.; Rodrigues, M.; Ribeiro, M.P.; Jordao, L.; Silva, L.A.; Rodilla, J.; Coutinho, P.; et al. Solvent-free microwave extraction of Thymus Mastichina essential oil: Influence on their chemical composition and on the antioxidant and antimicrobial activities. Pharmaceuticals 2021, 14, 709. [Google Scholar] [CrossRef] [PubMed]
- De Elguea-Culebras, G.O.; Bravo, E.M.; Sánchez-Vioque, R. Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of mediterranean aromatic plants. an approach to the valuation of by-products of the essential oil market—A review. Ind. Crop. Prod. 2022, 175, 114261. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P.; Bouloumpasi, E.; Biliaderis, C.G. Phenolic extracts from solid wastes of the aromatic plant essential oil industry: Potential uses in food applications. Food Chem. Adv. 2022, 1, 100065. [Google Scholar] [CrossRef]
- Memarzadeh, S.M.; Pirbalouti, A.G.; AdibNejad, M. Chemical composition and yield of essential oils from Bakhtiari savory (Satureja bachtiarica bunge.) under different extraction methods. Ind. Crop. Prod. 2015, 76, 809–816. [Google Scholar] [CrossRef]
- Périno-Issartier, S.; Ginies, C.; Cravotto, G.; Chemat, F. A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation. J. Chrom. A 2013, 1305, 41–47. [Google Scholar] [CrossRef]
- Farhat, A.; Benmoussa, H.; Bachoual, R.; Nasfi, Z.; Elfalleh, W.; Romdhane, M.; Bouajila, J. Efficiency of the optimized microwave assisted extractions on the yield, chemical composition and biological activities of Tunisian Rosmarinus officinalis L. essential oil. Food Bioprod. Proces. 2017, 105, 224–233. [Google Scholar] [CrossRef]
- Irakli, M.; Skendi, A.; Bouloumpasi, E.; Chatzopoulou, P.; Biliaderis, C.G. LC-MS identification and quantification of phenolic compounds in solid residues from the essential oil industry. Antioxidants 2021, 10, 2016. [Google Scholar] [CrossRef]
- Gavarić, N.; Kladar, N.; Mišan, A.; Nikolić, A.; Samojlik, I.; Mimica-Dukić, N.; Božin, B. Postdistillation waste material of thyme (Thymus vulgaris L.) as a potential source of biologically active compounds. Ind. Crop. Prod. 2015, 74, 457–464. [Google Scholar] [CrossRef]
- Méndez-Tovar, I.; Herrero, B.; Pérez-Magariño, S.; Pereira, J.A.; Asensio-S.-Manzanera, M.C. By-product of Lavandula latifolia essential oil distillation as source of antioxidants. J. Food Drug Anal. 2015, 23, 225–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsimogiannis, D.; Choulitoudi, E.; Bimpilas, A.; Mitropoulou, G.; Kourkoutas, Y.; Oreopoulou, V. Exploitation of the biological potential of Satureja thymbra essential oil and distillation by-products. J. Appl. Res. Medic. Arom. Plants 2017, 4, 12–20. [Google Scholar] [CrossRef]
- Alice, G.; Corina, B.; Lucia, P.; Sultana, N.; Bazdoaca, C.; Nicoleta, D. Polyphenol content dynamics in hydrodistillation water residues of lamiaceae species. J. Essent. Oil-Bearing Plants 2019, 22, 858–864. [Google Scholar] [CrossRef]
- Celano, R.; Piccinelli, A.L.; Pagano, I.; Roscigno, G.; Campone, L.; De Falco, E.; Russo, M.; Rastrelli, L. Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Res. Int. 2017, 99, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef]
- Sik, B.; Hanczné, E.L.; Kapcsándi, V.; Ajtony, Z. Conventional and nonconventional extraction techniques for optimal extraction processes of rosmarinic acid from six Lamiaceae plants as determined by HPLC-DAD measurement. J. Pharm. Biomed. Anal. 2020, 184, 11317342. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; Ponce-Alquicira, E. Environmentally friendly techniques and their comparison in the extraction of natural antioxidants from green tea, rosemary, clove, and oregano. Molecules 2021, 26, 1869. [Google Scholar] [CrossRef]
- Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef] [Green Version]
- Yahia, I.B.H.; Yosr Zaouali, Y.; Ciavatta, M.L.; Ligresti, A.; Jaouadi, R.; Boussaid, M.; Cutignano, A. Polyphenolic profiling, quantitative assessment and biological activities of Tunisian native Mentha rotundifolia (L.) Huds. Molecules 2019, 24, 2351. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, B.F.; Walch, S.G.; Tinzoh, L.N.; Stühlinger, W.; Lachenmeier, D.W. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J. Chrom. B 2011, 879, 2459–2464. [Google Scholar] [CrossRef]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules 2020, 25, 4599. [Google Scholar] [CrossRef] [PubMed]
- Navarrete, A.; Herrero, M.; Martín, A.; Cocero, M.J.; Ibáñez, E. Valorization of solid wastes from essential oil industry. J. Food Engin. 2011, 104, 196–201. [Google Scholar] [CrossRef]
- Drinic´, Z.; Pljevljakusi, D.; Zivkovi, J.; Bigovic, D.; Savikin, K. Microwave-assisted extraction of O. vulgare L. spp. hirtum essential oil: Comparison with conventional hydro-distillation. Food Bioprod. Proces. 2020, 120, 158–165. [Google Scholar]
- Wollinger, A.; Perrin, E.; Chahboun, J.; Jeannot, V.; Touraud, D.; Kun, W. Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. C. R. Chimie 2016, 19, 754–756. [Google Scholar] [CrossRef]
- Jacotet-Navarro, M.; Rombaut, N.; Fabiano-Tixier, A.S.; Danguien, M.; Bily, A.; Chemat, F. Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary. Ultrason. Sonochem. 2015, 27, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Liu, Y.; Liang, Z.; Wang, W. Investigation on ultrasound-assisted extraction of salvianolic acid B from Salvia miltiorrhiza root. Ultrason. Sonochem 2010, 17, 61–65. [Google Scholar] [CrossRef]
- Putnik, P.; Kovačević, D.B.; Marija Penić, M.; Fegeš, M.; Dragović-Uzelac, V. Microwave-assisted extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification. Food Anal. Methods 2016, 9, 2385–2394. [Google Scholar] [CrossRef]
- Alonso-Carrillo, N.; Aguilar-Santamaría, M.A.; Vernon-Carter, E.J.; Jiménez-Alvarado, R.; Cruz-Sosa, F.; Román-Guerrero, A. Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity. Ind. Crop. Prod. 2017, 103, 213–221. [Google Scholar] [CrossRef]
- Amien -Meda, A.; Nell, M.O.; Lohwasser, U.; Borner, A.; Franz, C.; Novak, J. Investigation of antioxidant and rosmarinic acid variation in the sage collection of the Genebank in Gatersleben. J. Agric. Food Chem. 2010, 58, 3813–3819. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventοs, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1998, 299, 152–178. [Google Scholar]
- Bao, J.S.; Cai, Y.; Sun, M.; Wang, G.Y.; Corke, H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem. 2005, 53, 2327–2332. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Benzie, F.; Strain, J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–23. [Google Scholar] [PubMed]
Solid Residue | Distillation Method | Antioxidant Activity (mg TE/g) | ||
---|---|---|---|---|
ABTS | DPPH | FRAP | ||
rosemary | raw | 216.15 ± 7.77 C | 91.17 ± 1.49 B | 88.50 ± 0.83 B |
SD | 188.90 ± 1.29 B | 96.13 ± 3.54 C | 102.61 ± 1.53 D | |
HD | 139.50 ± 4.52 A | 47.87 ± 0.95 A | 32.21 ± 0.70 A | |
MAHD | 214.16 ± 3.62 C | 89.79 ± 1.55 B | 97.76 ± 1.32 C | |
Greek sage | raw | 200.75 ± 3.66 C | 88.05 ± 3.89 C | 86.20 ± 0.00 BC |
SD | 158.44 ± 4.21 B | 72.19 ± 1.16 B | 88.07 ± 1.17 C | |
HD | 139.88 ± 2.05 A | 49.61 ± 0.52 A | 30.07 ± 1.84 A | |
MAHD | 210.10 ± 0.72 D | 86.94 ± 1.04 C | 83.39 ± 2.91 B | |
spearmint | raw | 182.03 ± 5.44 D | 151.38 ± 2.30 C | 194.11 ± 7.88 D |
SD | 128.29 ± 2.83 B | 125.18 ± 3.85 B | 130.20 ± 5.00 B | |
HD | 65.64 ± 8.08 A | 50.90 ± 4.61 A | 33.90 ± 7.07 A | |
MAHD | 169.71 ± 6.44 C | 161.65 ± 5.96 D | 174.67 ± 5.06 C |
Peak | RT (min) | UV λmax (nm) | [M-H]-(m/z) | Other Fragments | Tentative Identification | Solid Residues | ||||
---|---|---|---|---|---|---|---|---|---|---|
Ref. | Raw | SD | MAHD | HD | ||||||
1 | 2.9 | 320 | 191 | 133 | quinic acid | st | R, S, M | R, S, M | R, S, M | R, S, M |
2 | 3.8 | 280 | 191 | 147 | citric acid | st | R, S, M | R, S, M | R, S, M | R, S, M |
3 | 4.2 | 280 | 197 | 395, 179 | danshensu | [25,29] | R, Μ | R, M | R, M | R, M |
4 | 7.0 | 284, 312 | 305 | 387, 264, 198 | gallocatechin isomer | [28,32] | R, S, M | R, S, M | R, S, M | R, S, M |
5 | 9.3 | 260, 345 | 593 | 430, 259, 166 | luteolin-7-O-rutinoside | st | S, M | S, M | S, M | S, M |
6 | 9.6 | 280, 325 | 597 | 435, 329 | yunnaneic acid F | [25] | R | R | R | R |
7 | 10.0 | 260, 345 | 461 | 923, 479, 285 | luteolin-7-O-glucuronide | st | R, S, M | R, S, M | R, S, M | R, S, M |
8 | 10.6 | 283, 340 | 717 | 579, 359 | salvianolic acid L | [26,29] | R, M | R, M | R, M | R, M |
9 | 11.2 | 287, 341 | 537 | 519, 339 | salvianolic acid I | [31] | S | S | S | S |
10 | 11.5 | 283 | 609 | 301 | hesperidin | st | R, M | R, M | R, M | R, M |
11 | 11.6 | 286, 325 | 555 | 493, 445, 359 | salvianolic acid K | [31] | S | S | S | S |
12 | 12.2 | 329, 285 sh | 359 | 719, 405, 161 | rosmarinic acid | st | R, S, M | R, S, M | R, S, M | R, S, M |
13 | 12.8 | 287, 325 | 717 | 537, 519, 493, 359 | salvianolic acid B | st | M | M | M | M |
14 | 13.4 | 266, 340 | 503 | 285 | caffeoyl-hexosyl-hexose | [25] | R | R | R | R |
15 | 13.5 | 325 | 491 | 537, 493, 359, 161 | salvianolic acid C | [26] | M | M | M | M |
16 | 14.2 | 266, 327 (240) | 493 (137) | 537, 359, 183 | salvianolic acid A (IS) | [29,30] | S, M | S, M | S, M | S, M |
17 | 14.5 | 283, 340 | 537 | 715, 441 | salvianolic acid J | [29] | M | M | M | M |
18 | 14.8 | 287, 325 | 593 | 413, 285 | unknown | - | M | M | M | M |
19 | 15.8 | 286, 325 | 717 | 537, 519, 493, 339 | salvianolic acid E | [28,29] | M | M | M | M |
20 | 17.4 | 282, 333 | 329 | - | unknown | - | M | M | M | M |
21 | 20.9 | 280, 345 | 359 | 329 | rosmarinic acid derivative | [29] | M | M | M | M |
22 | 22.5 | 286 | 345 | 301, 283 | rosmanol or isomer | [25,31] | R, S | R, S | R, S | R, S |
23 | 23.8 | 286 | 345 | 301, 283 | rosmanol or isomer | [25,31] | R, S | R, S | R, S | R, S |
24 | 25.4 | 286 | 345 | 301 | rosmanol or isomer | [25,31] | R, S | R, S | R, S | R, S |
25 | 33.2 | - | 359 | 329, 283 | unknown | - | R, S | S | S | S |
26 | 33.7 | 280 | 329 | 285 | carnosol | st | R, S, M | R, S | R, S | R, S |
27 | 36.3 | 279 | 345 | 301 | rosmanol or isomer | [25,32] | R | R | R | R |
28 | 37.0 | 280 | 331 | 287 | carnosic acid | st | R, S | R, S | R, S | R, S |
29 | 38.2 | 278 | 345 | 301 | rosmanol or isomer | [25,29] | R, S, M | R, S | R, S | R, S |
Plant Material | Treatment | Phenolic Compounds | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Minor | Major | Total | ||||||||
Quinic Acid | Caffeic Acid | Vicenin-2 | Hesperidin | Luteolin-7-O-glucuronide | Luteolin-7-O-rutinoside | Total | RMA + SLA + CARO + CARA | |||
rosemary | raw | 4.90 ± 0.14 B | 0.15 ± 0.00 B | 0.11 ± 0.00 B | 0.58 ± 0.02 D | 0.23 ± 0.00 B | <LOQ 2 | 5.98 ± 0.15 B | 122.00 ± 8.78 C | 127.99 ± 8.88 C |
SD | 6.42 ± 0.07 C | 0.24 ± 0.01 D | 0.11 ± 0.00 B | 0.18 ± 0.01 A | 0.27 ± 0.01 C | <LOQ | 7.22 ± 0.08 C | 163.40 ± 1.69 D | 170.61 ± 1.65 D | |
HD | 1.15 ± 0.01 A | 0.12 ± 0.00 A | 0.08 ± 0.00 A | 0.24 ± 0.02 B | 0.11 ± 0.01 A | <LOQ | 1.62 ± 0.03 A | 67.69 ± 4.72 A | 69.31 ± 4.70 A | |
MAHD | 4.78 ± 0.59 B | 0.17 ± 0.01 C | 0.11 ± 0.00 B | 0.34 ± 0.02 C | 0.23 ± 0.01 B | <LOQ | 5.63 ± 0.59 B | 99.31 ± 3.20 B | 104.94 ± 3.07 B | |
Greek sage | raw | 1.32 ± 0.26 B | 0.19 ± 0.03 B | 0.29 ± 0.02 B | ND 3 | 0.38 ± 0.03 B | 0.30 ± 0.04 BC | 2.48 ± 0.31 B | 82.64 ± 4.81 B | 85.12 ± 4.65 B |
SD | 1.41 ± 0.01 B | 0.23 ± 0.00 C | 0.28 ± 0.01 B | ND | 0.46 ± 0.02 C | 0.25 ± 0.01 B | 2.63 ± 0.03 B | 114.16 ± 5.16 A | 116.78 ± 5.16 A | |
HD | 0.20 ± 0.01 A | 0.13 ± 0.00 A | 0.14 ± 0.00 A | ND | 0.19 ± 0.00 A | <LOQ | 0.66 ± 0.01 A | 73.04 ± 0.83 B | 73.70 ± 0.83 C | |
MAHD | 1.24 ± 0.03 B | 0.24 ± 0.00 C | 0.33 ± 0.02 C | ND | 0.50 ± 0.07 C | 0.32 ± 0.05 C | 2.62 ± 0.17 B | 108.92 ± 4.52 A | 111.54 ± 4.46 A | |
spearmint | raw | 4.91 ± 0.22 C | 0.26 ± 0.00 C | 0.18 ± 0.00 C | 1.83 ± 0.06 D | 2.25 ± 0.01 D | 3.66 ± 0.04 D | 12.58 ± 0.94 D | 139.01 ± 6.60 C | 152.34 ± 6.76 C |
SD | 4.02 ± 0.30 B | 0.39 ± 0.01 D | 0.15 ± 0.01 B | 0.89 ± 0.06 B | 2.04 ± 0.09 C | 1.84 ± 0.12 B | 11.92 ± 0.33 C | 88.71 ± 5.63 B | 100.63 ± 5.93 B | |
HD | 0.95 ± 0.00 A | 0.17 ± 0.00 A | 0.11 ± 0.01 A | 0.42 ± 0.04 A | 0.76 ± 0.02 A | 0.83 ± 0.02 A | 2.70 ± 0.39 A | 66.88 ± 0.66 A | 69.25 ± 0.80 A | |
MAHD | 4.17 ± 0.06 B | 0.22 ± 0.01 B | 0.19 ± 0.00 C | 1.17 ± 0.06 C | 1.89 ± 0.01 B | 2.64 ± 0.07 C | 7.10 ± 0.29 B | 152.57 ± 7.59 CD | 161.63 ± 4.05 CD |
Parameters | TPC | TFC | ABTS | DPPH | FRAP | RMA | CARO | CARA | SLA |
---|---|---|---|---|---|---|---|---|---|
TPC | 1 | 0.867 *** | 0.418 * | 0.985 *** | 0.982 *** | 0.414 * | 0.420 * | ns | 0.867 *** |
TFC | 1 | 0.366 * | 0.986 *** | 0.967 *** | 0.405 * | 0.416 * | ns | 0.879 *** | |
ABTS | 1 | 0.330 * | 0.369 * | 0.797 *** | ns | ns | 0.913 *** | ||
DPPH | 1 | 0.976 *** | 0.345 * | 0.476 * | ns | 0.861 *** | |||
FRAP | 1 | 0.389 * | 0.413 * | ns | 0.885 *** | ||||
RMA | 1 | ns | ns | 0.954 *** | |||||
CARO | 1 | 0.827 *** | ns | ||||||
CARA | 1 | ns | |||||||
SLA | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christaki, S.; Bouloumpasi, E.; Lalidou, E.; Chatzopoulou, P.; Irakli, M. Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods. Molecules 2022, 27, 9058. https://doi.org/10.3390/molecules27249058
Christaki S, Bouloumpasi E, Lalidou E, Chatzopoulou P, Irakli M. Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods. Molecules. 2022; 27(24):9058. https://doi.org/10.3390/molecules27249058
Chicago/Turabian StyleChristaki, Stamatia, Elisavet Bouloumpasi, Eleni Lalidou, Paschalina Chatzopoulou, and Maria Irakli. 2022. "Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods" Molecules 27, no. 24: 9058. https://doi.org/10.3390/molecules27249058
APA StyleChristaki, S., Bouloumpasi, E., Lalidou, E., Chatzopoulou, P., & Irakli, M. (2022). Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods. Molecules, 27(24), 9058. https://doi.org/10.3390/molecules27249058