Coumarin-Induced Hepatotoxicity: A Narrative Review
Abstract
:1. Historical Background
2. Introduction
3. Results
3.1. Absorption and Distribution
3.2. Metabolism and Excretion
3.3. In Vitro and In Vivo Studies
3.4. Clinical Trials
4. Materials and Methods
- “coumarin” OR “1,2-benzopyrone” OR “5,6-benzo-[+]-pyrone” AND “hepatotoxicity”
- “coumarin” OR “1,2-benzopyrone” OR “5,6-benzo-[+]-pyrone” AND “ADME”
- “coumarin” OR “1,2-benzopyrone” OR “5,6-benzo-[+]-pyrone” AND “metabolism” AND “human” (last 10 years)
- “coumarin” OR “1,2-benzopyrone” OR “5,6-benzo-[+]-pyrone” AND “human cell line”
- “coumarin” OR “1,2-benzopyrone” OR “5,6-benzo-[+]-pyrone” AND “clinical trial”
- “coumarin” OR “1,2-benzopyrone” OR “5,6-benzo-[+]-pyrone” AND “case report”
- “coumarin” OR “1,2-benzopyrone” OR “5,6-benzo-[+]-pyrone” AND “observational trial”
- “coumarin” OR “1,2-benzopyrone” OR “5,6-benzo-[+]-pyrone” AND “observational study”
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
ALT | alanine aminotransferase |
ULN | upper limits of normal |
CYPs | cytochrome P450 family |
7-HC | 7-hydroxycoumarin |
7-HCG | 7-hydroxycoumarin-glucuronide |
CE | 3,4-epoxycoumarin |
o-HPA | o-hydroxyphenylacetaldehyde |
o-HPAA | o-hydroxyphenylacetic acid |
GSH | glutathione |
SGPT | serum glutamic pyruvic transaminase |
AST | aspartate transaminase |
gamma-GT/GGT | gamma-glutamyl transpeptidase |
TDI | Tolerable Daily Intake |
EFSA | European Food Safety Authority |
NOAEL | No Observed Adverse Effect Level |
BfR | German Federal Institute for Risk Assessment |
ALDH | aldehyde dehydrogenase |
NAMs | new approach methodologies system |
NGRA | Next Generation Risk Assessment |
References
- Mueller, R.L.; Scheidt, S. History of Drugs for Thrombotic Disease. Discovery, Development, and Directions for the Future. Circulation 1994, 89, 432–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, K.P. The Discovery of Dicumarol and Its Sequels. Circulation 1959, 19, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollman, A. Dicoumarol and Warfarin. Heart 1991, 66, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre-Pranzoni, C.; Orden, A.A.; Bisogno, F.R.; Ardanaz, C.E.; Tonn, C.E.; Kurina-Sanz, M. Coumarin Metabolic Routes in Aspergillus Spp. Fungal Biol. 2011, 115, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.G. Metabolism of Vitamin K and Prothrombin Synthesis: Anticoagulants and the Vitamin K--Epoxide Cycle. Fed. Proc. 1978, 37, 2599–2604. [Google Scholar]
- Bowden, M.E.; Crow, A.B.; Sullivan, T. Pharmaceutical Achievers: The Human Face of Pharmaceutical Research; Chemical Heritage Foundation: Philadelphia, PA, USA, 2003. [Google Scholar]
- Last, J.A. The Missing Link: The Story of Karl Paul Link. Toxicol. Sci. 2002, 66, 4–6. [Google Scholar] [CrossRef]
- Keller, C.; Matzdorff, A.; Kemkes-Matthes, B. Pharmacology of Warfarin and Clinical Implications. Semin. Thromb. Hemost. 1999, 25, 13–16. [Google Scholar] [CrossRef]
- Lim, G.B. Warfarin: From Rat Poison to Clinical Use. Nat. Rev. Cardiol. 2017, Milestone 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Elango, K.; Javaid, A.; Khetarpal, B.K.; Ramalingam, S.; Kolandaivel, K.P.; Gunasekaran, K.; Ahsan, C. The Effects of Warfarin and Direct Oral Anticoagulants on Systemic Vascular Calcification: A Review. Cells 2021, 10, 773. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products; John Wiley & Sons, Ltd.: Chichester, UK, 2001; ISBN 978-0-471-49640-3. [Google Scholar]
- Pereira, T.M.; Franco, D.P.; Vitorio, F.; Kummerle, A.E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Curr. Top. Med. Chem. 2018, 18, 124–148. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. BioMed. Res. Int. 2013, 2013, 963248. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins—An Important Class of Phytochemicals. In Phytochemicals-Isolation, Characterisation and Role in Human Health; Rao, A.V., Rao, L.G., Eds.; InTechOpen: London, UK, 2015; ISBN 978-953-51-2170-1. [Google Scholar]
- Murray, R.D.H. Naturally Occurring Plant Coumarins. In Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Springer Vienna: Vienna, Austria, 1997; pp. 1–119. ISBN 978-3-7091-7342-8. [Google Scholar]
- Yarnell, E.; Abascal, K. Plant Coumarins: Myths and Realities. Altern. Complement. Ther. 2009, 15, 24–30. [Google Scholar] [CrossRef]
- Keating, G.; O’kennedy, R. The Chemistry and Occurrence of Coumarins. In Coumarins: Biology, Applications and Mode of Action; Wiley: Hoboken, NJ, USA, 1997; pp. 23–66. [Google Scholar]
- Lira, S.P.; de Seleghim, M.H.R.; Williams, D.E.; Marion, F.; Hamill, P.; Jean, F.; Andersen, R.J.; Hajdu, E.; Berlinck, R.G.S. A SARS-Coronovirus 3CL Protease Inhibitor Isolated from the Marine Sponge Axinella Cf. Corrugata: Structure Elucidation and Synthesis. J. Braz. Chem. Soc. 2007, 18, 440–443. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.-M.; Damu, G.L.V.; Zhou, C.H. Current Developments of Coumarin Compounds in Medicinal Chemistry. Curr. Pharm. Des. 2013, 19, 3884–3930. [Google Scholar] [CrossRef]
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef]
- Leal, L.; Ferreira, A.; Bezerra, G.; Matos, F.; Viana, G. Antinociceptive, Anti-Inflammatory and Bronchodilator Activities of Brazilian Medicinal Plants Containing Coumarin: A Comparative Study. J. Ethnopharmacol. 2000, 70, 151–159. [Google Scholar] [CrossRef]
- Kostova, I.; Mojzis, J. Biologically Active Coumarins as Inhibitors of HIV-1. Futur. HIV Ther. 2007, 1, 315–329. [Google Scholar] [CrossRef]
- Liu, R.H. Health Benefits of Fruit and Vegetables Are from Additive and Synergistic Combinations of Phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520S. [Google Scholar] [CrossRef] [Green Version]
- Santra, H.K.; Banerjee, D. Natural Products as Fungicide and Their Role in Crop Protection. In Natural Bioactive Products in Sustainable Agriculture; Singh, J., Yadav, A.N., Eds.; Springer Singapore: Singapore, 2020; pp. 131–219. ISBN 9789811530234. [Google Scholar]
- Pleşca-Manea, L.; Pârvu, A.E.; Pârvu, M.; Taămaş, M.; Buia, R.; Puia, M. Effects of Melilotus Officinalis on Acute Inflammation. Phytother. Res. 2002, 16, 316–319. [Google Scholar] [CrossRef]
- Pourmorad, F.; Hosseinimehr, S.; Shahabimajd, N. Antioxidant Activity, Phenol and Flavonoid Contents of Some Selected Iranian Medicinal Plants. Afr. J. Biotechnol. 2006, 5, 1142–1145. [Google Scholar]
- Alamgeer; Nasir, Z.; Qaisar, M.N.; Uttra, A.M.; Ahsan, H.; Khan, K.U.; Khan, I.U.; Saleem, M.; Khadijai, H.A. Evaluation of Hepatoprotective Activity of Melilotus Officinalis L. Against Paracetamol and Carbon Tetrachloride Induced Hepatic Injury in Mice. Acta Pol. Pharm. 2017, 74, 903–909. [Google Scholar] [PubMed]
- Kaur, S.; Sharma, A.; Bedi, P.M.S. Evaluation of Anxiolytic Effect of Melilotus Officinalis Extracts in Mice. Asian J. Pharm. Clin. Res. 2017, 10, 396. [Google Scholar] [CrossRef]
- Trouillas, P.; Calliste, C.-A.; Allais, D.-P.; Simon, A.; Marfak, A.; Delage, C.; Duroux, J.-L. Antioxidant, Anti-Inflammatory and Antiproliferative Properties of Sixteen Water Plant Extracts Used in the Limousin Countryside as Herbal Teas. Food Chem. 2003, 80, 399–407. [Google Scholar] [CrossRef]
- Schalekamp, T.; de Boer, A. Pharmacogenetics of Oral Anticoagulant Therapy. Curr. Pharm. Des. 2010, 16, 187–203. [Google Scholar] [CrossRef]
- Barcellona, D.; Vannini, M.L.; Fenu, L.; Balestrieri, C.; Marongiu, F. Warfarin or Acenocoumarol: Which Is Better in the Management of Oral Anticoagulants? J. Thromb. Haemost. 1998, 80, 899–902. [Google Scholar] [CrossRef]
- Piller, N.B. Further Evidence for the Induction of Proteolysis by Coumarin in Rats with Various High-Protein Oedemas. Arzneimittelforschung 1977, 27, 860–864. [Google Scholar]
- Clodius, L.; Piller, N.B. Conservative Therapy for Postmastectomy Lymphedema. Chir. Plastica. 1978, 4, 193–202. [Google Scholar] [CrossRef]
- Hu, M.; Piller, N.B. Strategies for Avoiding Benzopyrone Hepatotoxicity in Lymphedema Management—The Role of Pharmacogenetics, Metabolic Enzyme Gene Identification, and Patient Selection. Lymphat. Res. Biol. 2017, 15, 317–323. [Google Scholar] [CrossRef]
- Farinola, N.; Piller, N. Pharmacogenomics: Its Role in Re-Establishing Coumarin as Treatment for Lymphedema. Lymphat. Res. Biol. 2005, 3, 81–86. [Google Scholar] [CrossRef]
- Casley-Smith, J.R.; Casley-Smith, J.R. Coumarin in the Treatment of Lymphoedema and Other High-Protein Oedemas. In Coumarins: Biology, Applications and Mode of Action; John Wiley & Sons, Inc.: New York, NY, USA, 1997; p. 348. [Google Scholar]
- Marshall, M.E.; Mohler, J.L.; Edmonds, K.; Williams, B.; Butler, K.; Ryles, M.; Weiss, L.; Urban, D.; Bueschen, A.; Markiewicz, M.; et al. An Updated Review of the Clinical Development of Coumarin (1,2-Benzopyrone) and 7-Hydroxycoumarin. J. Cancer Res. Clin. Oncol. 1994, 120, S39–S42. [Google Scholar] [CrossRef]
- Musa, M.; Cooperwood, J.; Khan, M.O. A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer. Curr. Med. Chem. 2008, 15, 2664–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasior, M.; Kim, D.; Singha, S.; Krzeszewski, M.; Ahn, K.H.; Gryko, D.T. π-Expanded Coumarins: Synthesis, Optical Properties and Applications. J. Mater. Chem. C 2015, 3, 1421–1446. [Google Scholar] [CrossRef]
- Mark, R.; Lyu, X.; Lee, J.J.L.; Parra-Saldívar, R.; Chen, W.N. Sustainable Production of Natural Phenolics for Functional Food Applications. J. Funct. Foods 2019, 57, 233–254. [Google Scholar] [CrossRef]
- Barot, K.P.; Jain, S.V.; Kremer, L.; Singh, S.; Ghate, M.D. Recent Advances and Therapeutic Journey of Coumarins: Current Status and Perspectives. Med. Chem. Res. 2015, 24, 2771–2798. [Google Scholar] [CrossRef]
- Hazleton, L.W.; Tusing, T.W.; Zeitlin, B.R.; Thiessen, R.; Murer, H.K. Toxicity of Coumarin. J. Pharmacol. Exp. Ther. 1956, 118, 348. [Google Scholar] [PubMed]
- Lake, B.G. Coumarin Metabolism, Toxicity and Carcinogenicity: Relevance for Human Risk Assessment. Food Chem. Toxicol. 1999, 37, 423–453. [Google Scholar] [CrossRef]
- Swenberg, J. Covalent Binding Index Study on Coumarin, Report of Laboratory of Molecular Carcinogenesis and Mutagenesis; University of North Carolina: Chapel Hill, NC, USA, 2003; Volume 49, Submitted by European Flavour and Fragrance Association (EFFA), Square Marie-Louise. [Google Scholar]
- Beamand, J.A.; Barton, P.T.; Price, R.J.; Lake, B.G. Lack of Effect of Coumarin on Unscheduled DNA Synthesis in Precision-Cut Human Liver Slices. Food Chem. Toxicol. 1998, 36, 647–653. [Google Scholar] [CrossRef]
- Hagan, E.C.; Hansen, W.H.; Fitzhugh, O.G.; Jenner, P.M.; Jones, W.I.; Taylor, J.M.; Long, E.L.; Nelson, A.A.; Brouwer, J.B. Food Flavourings and Compounds of Related Structure. II. Subacute and Chronic Toxicity. Food Cosmet. Toxicol. 1967, 5, 141–157. [Google Scholar] [CrossRef]
- Abraham, K.; Wöhrlin, F.; Lindtner, O.; Heinemeyer, G.; Lampen, A. Toxicology and Risk Assessment of Coumarin: Focus on Human Data. Mol. Nutr. Food Res. 2010, 54, 228–239. [Google Scholar] [CrossRef]
- Arora, N.; Goldhaber, S.Z. Anticoagulants and Transaminase Elevation. Circulation 2006, 113, e698–e702. [Google Scholar] [CrossRef] [Green Version]
- Schimanski, C.C.; Burg, J.; Möhler, M.; Höhler, T.; Kanzler, S.; Otto, G.; Galle, P.R.; Lohse, A.W. Phenprocoumon-Induced Liver Disease Ranges from Mild Acute Hepatitis to (Sub-) Acute Liver Failure. J. Hepatol. 2004, 41, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Egan, D.; O’kennedy, R.; Moran, E.; Cox, D.; Prosser, E.; Thornes, R.D. The Pharmacology, Metabolism, Analysis, and Applications of Coumarin and Coumarin-Related Compounds. Drug Metab. Rev. 1990, 22, 503–529. [Google Scholar] [CrossRef]
- Hsieh, C.J.; Sun, M.; Osborne, G.; Ricker, K.; Tsai, F.C.; Li, K.; Tomar, R.; Phuong, J.; Schmitz, R.; Sandy, M.S. Cancer Hazard Identification Integrating Human Variability: The Case of Coumarin. Int. J. Toxicol. 2019, 38, 501–552. [Google Scholar] [CrossRef] [PubMed]
- Nasser, M.I.; Zhu, S.; Hu, H.; Huang, H.; Guo, M.; Zhu, P. Effects of Imperatorin in the Cardiovascular System and Cancer. Biomed Pharm. 2019, 120, 109401. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-J.; Jiang, J.-G. Pharmacological and Nutritional Effects of Natural Coumarins and Their Structure-Activity Relationships. Mol. Nutr. Food Res. 2018, 62, 1701073. [Google Scholar] [CrossRef] [PubMed]
- Gagliotti Vigil de Mello, S.V.; Frode, T.S. In Vitro and In Vivo Experimental Model-Based Approaches for Investigating Anti-Inflammatory Properties of Coumarins. Curr. Med. Chem. 2018, 25, 1446–1476. [Google Scholar] [CrossRef]
- Najmanova, I.; Dosedel, M.; Hrdina, R.; Anzenbacher, P.; Filipsky, T.; Riha, M.; Mladenka, P. Cardiovascular Effects of Coumarins besides Their Antioxidant Activity. Curr. Top. Med. Chem. 2015, 15, 830–849. [Google Scholar] [CrossRef]
- Api, A.M.; Belmonte, F.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; et al. RIFM Fragrance Ingredient Safety Assessment, Coumarin, CAS Registry Number 91-64-5. Food Chem. Toxicol. 2019, 130, 110522. [Google Scholar] [CrossRef]
- Heghes, S.C.; Vostinaru, O.; Mogosan, C.; Miere, D.; Iuga, C.A.; Filip, L. Safety Profile of Nutraceuticals Rich in Coumarins: An Update. Front. Pharm. 2022, 13, 803338. [Google Scholar] [CrossRef]
- Ranđelović, S.; Bipat, R. A Review of Coumarins and Coumarin-Related Compounds for Their Potential Antidiabetic Effect. Clin. Med. Insights Endocrinol. Diabetes 2021, 14, 11795514211042024. [Google Scholar] [CrossRef]
- Foroozesh, M.; Sridhar, J.; Goyal, N.; Liu, J. Coumarins and P450s, Studies Reported to-Date. Molecules 2019, 24, 1620. [Google Scholar] [CrossRef] [Green Version]
- Ritschel, W.A.; Brady, M.E.; Tan, H.S. First-Pass Effect of Coumarin in Man. Int. J. Clin. Pharmacol. Biopharm. 1979, 17, 99–103. [Google Scholar] [PubMed]
- Ford, R.A.; Hawkins, D.R.; Mayo, B.C.; Api, A.M. The in Vivo Dermal Absorption and Metabolism of [4-14C] Coumarin by Rats and by Human Volunteers under Simulated Conditions of Use in Fragrances. Food Chem. Toxicol. 2001, 39, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Ritschel, W.A.; Brady, M.E.; Tan, H.S.I.; Hoffmann, K.A.; Yiu, I.M.; Grummich, K.W. Pharmacokinetics of Coumarin and Its 7-Hydroxy-Metabolites upon Intravenous and Peroral Administration of Coumarin in Man. Eur. J. Clin. Pharmacol. 1977, 12, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Ritschel, W.A.; Hardt, T.J. Pharmacokinetics of Coumarin, 7-Hydroxycoumarin and 7-Hydroxycoumarin Glucuronide in the Blood and Brain of Gerbils Following Intraperitoneal Administration of Coumarin. Arzneimittelforschung 1983, 33, 1254–1258. [Google Scholar] [PubMed]
- Negishi, M.; Lindberg, R.; Burkhart, B.; Ichikawa, T.; Honkakoski, P.; Lang, M. Mouse Steroid 15.Alpha.-Hydroxylase Gene Family: Identification of Type II P-45015.Alpha. as Coumarin 7-Hydroxylase. Biochemistry 1989, 28, 4169–4172. [Google Scholar] [CrossRef]
- Pearce, R.; Greenway, D.; Parkinson, A. Species Differences and Interindividual Variation in Liver Microsomal Cytochrome P450 2A Enzymes: Effects on Coumarin, Dicumarol, and Testosterone Oxidation. Arch. Biochem. Biophys. 1992, 298, 211–225. [Google Scholar] [CrossRef]
- Raunio, H.; Syngelmä, T.; Pasanen, M.; Juvonen, R.; Honkakoski, P.; Kairaluoma, M.A.; Sotaniemi, E.; Lang, M.A.; Pelkonen, O. Immunochemical and Catalytical Studies on Hepatic Coumarin 7-Hydroxylase in Man, Rat, and Mouse. Biochem. Pharmacol. 1988, 37, 3889–3895. [Google Scholar] [CrossRef]
- Vassallo, J.D.; Hicks, S.M.; Born, S.L.; Daston, G.P. Roles for Epoxidation and Detoxification of Coumarin in Determining Species Differences in Clara Cell Toxicity. Toxicol. Sci. 2004, 82, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.F.V.; Ito, Y.; Lake, B.G. Metabolism of Coumarin by Human P450s: A Molecular Modelling Study. Toxicol. Vitr. 2006, 20, 256–264. [Google Scholar] [CrossRef]
- Leonart, L.; Gasparetto, J.; Pontes, F.; Cerqueira, L.; de Francisco, T.; Pontarolo, R. New Metabolites of Coumarin Detected in Human Urine Using Ultra Performance Liquid Chromatography/Quadrupole-Time-of-Flight Tandem Mass Spectrometry. Molecules 2017, 22, 2031. [Google Scholar] [CrossRef] [Green Version]
- Fentem, J.H.; Fry, J.R. Species Differences in the Metabolism and Hepatotoxicity of Coumarin. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1993, 104, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lake, B.G.; Grasso, P. Comparison of the Hepatotoxicity of Coumarin in the Rat, Mouse, and Syrian Hamster: A Dose and Time Response Study. Fundam. Appl. Toxicol. 1996, 34, 105–117. [Google Scholar] [CrossRef]
- Cholerton, S.; Idle, M.E.; Vas, A.; Gonzalez, F.J.; Idle, J.R. Comparison of a Novel Thin-Layer Chromatographic-Fluorescence Detection Method with a Spectrofluorometric Method for the Determination of 7-Hydroxycoumarin in Human Urine. J. Chromatogr. 1992, 575, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Rautio, A.; Kraul, H.; Kojo, A.; Salmela, E.; Pelkonen, O. Interindividual Variability of Coumarin 7-Hydroxylation in Healthy Volunteers. Pharmacogenetics 1992, 2, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Shilling, W.H.; Crampton, R.F.; Longland, R.C. Metabolism of Coumarin in Man. Nature 1969, 221, 664–665. [Google Scholar] [CrossRef] [PubMed]
- Kaighen, M.; Williams, R.T. The Metabolism of [3- 14 C] Coumarin. J. Med. Chem. 1961, 3, 25–43. [Google Scholar] [CrossRef]
- Steensma, A.; Beamand, J.A.; Walters, D.G.; Price, R.J.; Lake, B.G. Metabolism of Coumarin and 7-Ethoxycoumarin by Rat, Mouse, Guinea Pig, Cynomolgus Monkey and Human Precision-Cut Liver Slices. Xenobiotica 1994, 24, 893–907. [Google Scholar] [CrossRef]
- Cohen, A.J. Critical Review of the Toxicology of Coumarin with Special Reference to Interspecies Differences in Metabolism and Hepatotoxic Response and Their Significance to Man. Food Cosmet. Toxicol. 1979, 17, 277–289. [Google Scholar] [CrossRef]
- Beinssen, A.P.A. Possible Coumarin Hepatotoxicity. Med. J. Aust. 1994, 161, 725. [Google Scholar] [CrossRef]
- Casley-Smith, J.R.; Casley-Smith, J.R. Frequency of Coumarin Hepatotoxicity. Med. J. Aust. 1995, 162, 391. [Google Scholar] [CrossRef]
- Morrison, L.; Welsby, P.D. Side-Effects of Coumarin. Postgrad. Med. J. 1995, 71, 701. [Google Scholar] [CrossRef] [Green Version]
- Bassett, M.L.; Dahlstrom, J.E. Liver Failure While Taking Coumarin. Med. J. Aust. 1995, 163, 106. [Google Scholar] [CrossRef]
- Koch, S.; Beurton, I.; Bresson-Hadni, S.; Monnot, B.; Hrusovsky, S.; Becker, M.C.; Vanlemmens, C.; Carbillet, J.P.; Miguet, J.P. Acute cytolytic hepatitis caused by coumarin. 2 cases. Gastroenterol. Clin. Biol. 1997, 21, 223–225. [Google Scholar]
- Fernandez-Salguero, P.; Hoffman, S.M.; Cholerton, S.; Mohrenweiser, H.; Raunio, H.; Rautio, A.; Pelkonen, O.; Huang, J.D.; Evans, W.E.; Idle, J.R. A Genetic Polymorphism in Coumarin 7-Hydroxylation: Sequence of the Human CYP2A Genes and Identification of Variant CYP2A6 Alleles. Am. J. Hum. Genet. 1995, 57, 651–660. [Google Scholar]
- Hadidi, H.; Irshaid, Y.; Broberg Vågbø, C.; Brunsvik, A.; Cholerton, S.; Zahlsen, K.; Idle, J.R. Variability of Coumarin 7- and 3-Hydroxylation in a Jordanian Population Is Suggestive of a Functional Polymorphism in Cytochrome P450 CYP2A6. Eur. J. Clin. Pharmacol. 1998, 54, 437–441. [Google Scholar] [CrossRef]
- Oscarson, M.; Gullstén, H.; Rautio, A.; Bernal, M.L.; Sinues, B.; Dahl, M.-L.; Stengård, J.H.; Pelkonen, O.; Raunio, H.; Ingelman-Sundberg, M. Genotyping of Human Cytochrome P450 2A6 (CYP2A6), a Nicotine C -Oxidase. FEBS Lett. 1998, 438, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Hadidi, H.; Zahlsen, K.; Idle, J.R.; Cholerton, S. A Single Amino Acid Substitution (Leu160His) in Cytochrome P450 CYP2A6 Causes Switching from 7-Hydroxylation to 3-Hydroxylation of Coumarin. Food Chem. Toxicol. 1997, 35, 903–907. [Google Scholar] [CrossRef]
- Farinola, N.; Piller, N.B. CYP2A6 Polymorphisms: Is There a Role for Pharmacogenomics in Preventing Coumarin-Induced Hepatotoxicity in Lymphedema Patients? Pharmacogenomics 2007, 8, 151–158. [Google Scholar] [CrossRef]
- Kato, K.; Nakayoshi, T.; Nokura, R.; Hosono, H.; Hiratsuka, M.; Ishikawa, Y.; Kurimoto, E.; Oda, A. Deciphering Structural Alterations Associated with Activity Reductions of Genetic Polymorphisms in Cytochrome P450 2A6 Using Molecular Dynamics Simulations. Int. J. Mol. Sci. 2021, 22, 10119. [Google Scholar] [CrossRef]
- Van Iersel, M.L.P.S.; Henderson, C.J.; Walters, D.G.; Price, R.J.; Wolf, C.R.; Lake, B.G. Metabolism of [3- 14 C] Coumarin by Human Liver Microsomes. Xenobiotica 1994, 24, 795–803. [Google Scholar] [CrossRef]
- Burian, M.; Freudenstein, J.; Tegtmeier, M.; Naser-Hijazi, B.; Henneicke-von Zepelin, H.H.; Legrum, W. Single Copy of Variant CYP2A6 Alleles Does Not Confer Susceptibility to Liver Dysfunction in Patients Treated with Coumarin. Int. J. Clin. Pharmacol. Ther. 2003, 41, 141–147. [Google Scholar] [CrossRef]
- Rietjens, I.M.C.M.; Boersma, M.G.; Zaleska, M.; Punt, A. Differences in Simulated Liver Concentrations of Toxic Coumarin Metabolites in Rats and Different Human Populations Evaluated through Physiologically Based Biokinetic (PBBK) Modeling. Toxicol. Vitr. 2008, 22, 1890–1901. [Google Scholar] [CrossRef]
- Hosono, H.; Kumondai, M.; Maekawa, M.; Yamaguchi, H.; Mano, N.; Oda, A.; Hirasawa, N.; Hiratsuka, M. Functional Characterization of 34 CYP2A6 Allelic Variants by Assessment of Nicotine C -Oxidation and Coumarin 7-Hydroxylation Activities. Drug Metab. Dispos. 2017, 45, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Lake, B.G.; Gray, T.J.B.; Evans, J.G.; Lewis, D.F.V.; Beamand, J.A.; Hue, K.L. Studies on the Mechanism of Coumarin-Induced Toxicity in Rat Hepatocytes: Comparison with Dihydrocoumarin and Other Coumarin Metabolites. Toxicol. Appl. Pharmacol. 1989, 97, 311–323. [Google Scholar] [CrossRef]
- Lake, B.G.; Evans, J.G.; Lewis, D.F.V.; Price, R.J. Comparison of the Hepatic Effects of Coumarin, 3,4-Dimethylcoumarin, Dihydrocoumarin and 6-Methylcoumarin in the Rat. Food Chem. Toxicol. 1994, 32, 743–751. [Google Scholar] [CrossRef]
- Born, S.L.; Caudill, D.; Smith, B.J.; Lehman-McKeeman, L.D. In Vitro Kinetics of Coumarin 3,4-Epoxidation: Application to Species Differences in Toxicity and Carcinogenicity. Toxicol. Sci. 2000, 58, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Born, S.L.; Hu, J.K.; Lehman-McKeeman, L.D. O-Hydroxyphenylacetaldehyde Is a Hepatotoxic Metabolite of Coumarin. Drug Metab. Dispos. 2000, 28, 218–223. [Google Scholar]
- Fentem, J.H.; Fry, J.R.; Whiting, D.A. O-Hydroxyphenylacetaldehyde: A Major Novel Metabolite of Coumarin Formed by Rat, Gerbil and Human Liver Microsomes. Biochem. Biophys. Res. Commun. 1991, 179, 197–203. [Google Scholar] [CrossRef]
- Lake, B.G.; Gaudin, H.; Price, R.J.; Walters, D.G. Metabolism of [3-14C] Coumarin to Polar and Covalently Bound Products by Hepatic Microsomes from the Rat, Syrian Hamster, Gerbil and Humans. Food Chem. Toxicol. 1992, 30, 105–115. [Google Scholar] [CrossRef]
- Vassallo, J.D.; Hicks, S.M.; Daston, G.P.; Lehman-McKeeman, L.D. Metabolic Detoxification Determines Species Differences in Coumarin-Induced Hepatotoxicity. Toxicol. Sci. 2004, 80, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Jamal, S.; Casley-Smith, J.R.; Casley-Smith, J.R. The Effects of 5,6 Benzo-[a]-Pyrone (Coumarin) and DEC on Filaritic Lymphoedema and Elephantiasis in India. Preliminary Results. Ann. Trop. Med. Parasitol. 1989, 83, 287–290. [Google Scholar] [CrossRef]
- Zänker, K.; Blümel, G.; Lange, J.; Siewert, J. Coumarin in Melanoma Patients: An Experimental and Clinical Study. Drugs Exp. Clin. Res. 1984, 10, 767–774. [Google Scholar]
- Thornes, D.; Daly, L.; Lynch, G.; Browne, H.; Tanner, A.; Keane, F.; O’Loughlin, S.; Corrigan, T.; Daly, P.; Edwards, G. Prevention of Early Recurrence of High Risk Malignant Melanoma by Coumarin. Irish Melanoma Group. Eur. J. Surg. Oncol. 1989, 15, 431–435. [Google Scholar]
- Cox, D.; O’Kennedy, R.; Thornes, R.D. The Rarity of Liver Toxicity in Patients Treated with Coumarin (1, 2-Benzopyrone). Hum. Toxicol. 1989, 8, 501–506. [Google Scholar] [CrossRef]
- Dexeus, F.H.; Logothetis, C.J.; Sella, A.; Fitz, K.; Amato, R.; Reuben, J.M.; Dozier, N. Phase II Study of Coumarin and Cimetidine in Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 1990, 8, 325–329. [Google Scholar] [CrossRef]
- Marshall, M.; Mendelsohn, L.; Butler, K.; Cantrell, J.; Harvey, J.; Macdonald, J. Treatment of Non-Small Cell Lung Cancer with Coumarin and Cimetidine 1, 2. Cancer Treat. Rep. 1987, 71, 91–92. [Google Scholar]
- Marshall, M.E.; Butler, K.; Cantrell, J.; Wiseman, C.; Mendelsohn, L. Treatment of Advanced Malignant Melanoma with Coumarin and Cimetidine: A Pilot Study. Cancer Chemother. Pharm. 1989, 24, 65–66. [Google Scholar] [CrossRef]
- Földi-Börcsök, E.; Casley-Smith, J.R.; Földi, M. The Treatment of Experimental Lymphedema. J. Vasc. Res. 1972, 9, 92–98. [Google Scholar] [CrossRef]
- von Sachverst Bergmann, K. Andigengutachten Zur Beurteilung von Cumarin in Arzneimitteln in Bezug Auf Lebertoxische Wirkung Beim Menschen (Expert Report for the Evaluation of Coumarin in Medicinal Products with Regard to Hepatotoxicity in Humans); Original Report Written in German Available from the BfArM; Rheinische Friedrich-Wilhelms-Universität: Bonn, Germany, 1999; Available online: https://www.bfarm.de/EN/Home/_node.html.
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) Related to Coumarin. EFSA J. 2004, 2, 104. [Google Scholar] [CrossRef]
- Andréjak, M.; Gersberg, M.; Sgro, C.; Decocq, G.; Hamel, J.D.; Morin, M.; Gras, V. French Pharmacovigilance Survey Evaluating the Hepatic Toxicity of Coumarin. Pharmacoepidemiol. Drug Saf. 1998, 7 (Suppl. S1), S45–S50. [Google Scholar] [CrossRef]
- Marshall, M.E.; Mendelsohn, L.; Butler, K.; Riley, L.; Cantrell, J.; Wiseman, C.; Taylor, R.; Macdonald, J.S. Treatment of Metastatic Renal Cell Carcinoma with Coumarin (1,2-Benzopyrone) and Cimetidine: A Pilot Study. J. Clin. Oncol. 1987, 5, 862–866. [Google Scholar] [CrossRef]
- Mohler, J.L.; Gomella, L.G.; Crawford, E.D.; Glode, L.M.; Zippe, C.D.; Fair, W.R.; Marshall, M.E. Phase II Evaluation of Coumarin (1,2-Benzopyrone) in Metastatic Prostatic Carcinoma. Prostate 1992, 20, 123–131. [Google Scholar] [CrossRef]
- Casley-Smith, J.R.; Morgan, R.G.; Piller, N.B. Treatment of Lymphedema of the Arms and Legs with 5,6-Benzo-[Alpha]-Pyrone. N. Engl. J. Med. 1993, 329, 1158–1163. [Google Scholar] [CrossRef]
- Casley-Smith, J.R.; Wang, C.T.; Casley-Smith, J.R.; Zi-hai, C. Treatment of Filarial Lymphoedema and Elephantiasis with 5,6-Benzo-Alpha-Pyrone (Coumarin). BMJ 1993, 307, 1037–1041. [Google Scholar] [CrossRef] [Green Version]
- Burgos, A.; Alcaide, A.; Alcoba, C.; Azcona, J.; Garrido, J.; Lorente, C.; Moreno, E.; Murrillo, E.; Olsina-Pavia, J.; Olsina-Kissler, J.; et al. Comparative Study of the Clinical Efficacy of Two Different Coumarin Dosages in the Management of Arm Lymphedema after Treatment for Breast Cancer. Lymphology 1999, 32, 3–10. [Google Scholar]
- Nolte, H.; Pedersen, L.; Mouridsen, H.T. Combined Treatment of Advanced Malignant Melanoma with Coumarin and Cimetidine. Anticancer Res. 1987, 7, 449–450. [Google Scholar]
- Kokron, O.; Maca, S.; Gasser, G.; Schmidt, P. Synthesis of Novel Coumarin 3-(N-Aryl)-Sulfonamides & Evaluated for Their Anti-Cancer Activity and Reported in Vitro Inhibitory Activity on Human Platelet Aggregation. Oncology 1991, 48, 91–102. [Google Scholar]
- Grötz, K.A.; Wüstenberg, P.; Kohnen, R.; Al-Nawas, B.; Henneicke-von Zepelin, H.-H.; Bockisch, A.; Kutzner, J.; Naser-Hijazi, B.; Belz, G.G.; Wagner, W. Prophylaxis of Radiogenic Sialadenitis and Mucositis by Coumarin/Troxerutine in Patients with Head and Neck Cancer—A Prospective, Randomized, Placebo-Controlled, Double-Blind Study. Br. J. Oral Maxillofac. Surg. 2001, 39, 34–39. [Google Scholar] [CrossRef]
- Vanscheidt, W.; Rabe, E.; Naser-Hijazi, B.; Ramelet, A.; Partsch, H.; Diehm, C.; Schultz-Ehrenburg, U.; Spengel, F.; Wirsching, M.; Götz, V.; et al. Wirksamkeit und Sicherheit einer Cumarin-/Troxerutin-Kombination (SB-LOT) bei Patienten mit chronischer venöser Insuffizienz: Eine doppelblinde, placebo-kontrollierte, randomisierte klinische Studie. Vasa 2002, 31, 185–190. [Google Scholar] [CrossRef]
- Schmeck-Lindenau, H.J.; Naser-Hijazi, B.; Becker, W.; Zepelin, H.H.H.; Schnitker, J. Safety Aspects of a Coumarin-Troxerutin Combination Regarding Liver Function in a Double-Blind Placebo-Controlled Study. Int. J. Clin. Pharmacol. Ther. 2003, 41, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Lessiani, G.; Iodice, P.; Nicolucci, E.; Gentili, M. Lymphatic Edema of the Lower Limbs after Orthopedic Surgery: Results of a Randomized, Open-Label Clinical Trial with a New Extended-Release Preparation. J. Biol. Regul. Homeost. Agents 2015, 29, 805—812. [Google Scholar]
- Loprinzi, C.L.; Kugler, J.W.; Sloan, J.A.; Rooke, T.W.; Quella, S.K.; Novotny, P.; Mowat, R.B.; Michalak, J.C.; Stella, P.J.; Levitt, R.; et al. Lack of Effect of Coumarin in Women with Lymphedema after Treatment for Breast Cancer. N. Engl. J. Med. 1999, 340, 346–350. [Google Scholar] [CrossRef]
- Chang, T.; Gan, J.; Fu, K.; Huang, W. The Use of 5, 6 Benzo-[α]-Pyrone (Coumarin) and Heating by Microwaves in the Treatment of Chronic Lymphedema of the Legs. Lymphology 1996, 29, 106–111. [Google Scholar] [PubMed]
- De Silva, D.A.M.; Jeewanthi, R.K.C.; Rajapaksha, R.H.N.; Weddagala, W.M.T.B.; Hirotsu, N.; Shimizu, B.; Munasinghe, M.A.J.P. Clean vs Dirty Labels: Transparency and Authenticity of the Labels of Ceylon Cinnamon. PLoS ONE 2021, 16, e0260474. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Coumarin in Flavourings and Other Food Ingredients with Flavouring Properties-Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). EFSA J. 2008, 6, 793. [Google Scholar] [CrossRef]
- Federal Institute for Risk Assessment. Consumers, Who Eat A Lot of Cinnamon, Currently Have an Overly High Exposure to Coumarin. BfR Health Assess 2006, 43, 1–13. [Google Scholar]
- Federal Institute for Risk Assessment. High Daily Intakes of Cinnamon: Health Risk Cannot Be Ruled Out. BfR Health Assess 2006, 44, 1–15. [Google Scholar]
- The Guardian. Available online: https://www.theguardian.com/world/2013/dec/20/cinnamon-intake-food-argument-denmark (accessed on 20 October 2022).
- Hiller, A.-M.; Willers, S. Cinnamon rolls triggered anaphylactic reaction. The genesis could be wheat-dependent exercise-induced anaphylaxis. Lakartidningen 2017, 114, EM6D. [Google Scholar] [PubMed]
- EC. Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the Approximation of the Laws of the Member States Relating to Food Supplements. Off. J. Eur. Comm. 2002, L183, 51–57. [Google Scholar]
- DeFelice, S.L. The Nutraceutical Revolution: Its Impact on Food Industry R&D. Trends Food Sci. Technol. 1995, 6, 59–61. [Google Scholar] [CrossRef]
- Sohaimy, S.A.E. Functional Foods and Nutraceuticals-Modern Approach to Food Science. World Appl. Sci. J. 2012, 20, 691–708. [Google Scholar]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the Debate for a Regulatory Framework: Nutraceutical Regulatory Framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murayama, N.; Yamazaki, H. Metabolic Activation and Deactivation of Dietary-Derived Coumarin Mediated by Cytochrome P450 Enzymes in Rat and Human Liver Preparations. J. Toxicol. Sci. 2021, 46, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Uehara, S.; Shimizu, M.; Murayama, N.; Suemizu, H.; Yamazaki, H. Roles of Human Cytochrome P450 1A2 in Coumarin 3,4-Epoxidation Mediated by Untreated Hepatocytes and by Those Metabolically Inactivated with Furafylline in Previously Transplanted Chimeric Mice. J. Toxicol. Sci. 2021, 46, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Wang, G.; Davé, V. Determination of Genotypes of Human Aldehyde Dehydrogenase ALDH2 Locus. Am. J. Hum. Genet. 1983, 35, 1107–1116. [Google Scholar]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Lu, Y.; Cederbaum, A.I. Cytochrome P450s and Alcoholic Liver Disease. Curr. Pharm. Des. 2018, 24, 1502–1517. [Google Scholar] [CrossRef]
- Baltazar, M.T.; Cable, S.; Carmichael, P.L.; Cubberley, R.; Cull, T.; Delagrange, M.; Dent, M.P.; Hatherell, S.; Houghton, J.; Kukic, P.; et al. A Next-Generation Risk Assessment Case Study for Coumarin in Cosmetic Products. Toxicol. Sci. 2020, 176, 236–252. [Google Scholar] [CrossRef]
Number of Patients | Disease | Coumarin Dose | Cotreatment with Other Drugs | Hepatotoxic Effects (Number of Patients) | References |
---|---|---|---|---|---|
7 | Melanoma | 100 mg/day | No | No | Zanker et al. (1984) [101] |
17 | Cancer | 100 mg/day | Cimetidine 1 g/day | No | Nolte et al. (1987) [116] |
13 | Melanoma | 50 mg/day | No | No | Thornes et al. (1989) [102] |
42 | Lymphoedema secondary to filiriasis | 400 mg/day | Carbamazine 6 mg/Kg per day | No | Jamal et al. (1989) [100] |
39 | Lymphoedema secondary to filariasis | No | Carbamazine 6 mg/Kg per day | No | |
47 | Lymphoedema secondary to filariasis | 400 mg/day | No | No | |
50 | Cancer | 100 mg/day | Cimetidine 1.2 g/day | No | Dexeus et al. (1990) [104] |
38 | Renal cell carcinoma | 100 mg/day | Cimetidine 400 mg/day | No | Kokron et al. (1991) [117] |
48 | Prostate cancer | 3 g/day | No | Asymptomatic transaminase elevation (3) | Mohler et al. (1992) [112] |
31 | Lymphoedema secondary to breast cancer | 400 mg/day | No | No | Casley-Smith et al. (1993a) [113] |
45 | Chronic lymphatic filariosis | 400 mg/day | No | No | Casley-Smith et al. (1993) [114] |
91 | Cancer | 100 mg/day | Cimetidine 300 mg/day | No | Marshall et al. (1994) [37] |
1106 | Lymphoedema | 400 mg/day | No | Mild hepatotoxicity regressed after ceased treatment (1) | Casley-Smith et al. (1995) [79] |
1 (Case report) | Lymphoedema | 400 mg/day | No | Severe hepatotoxicity (1) | Morrison and Welsby (1995) [80] |
30 | Chronic lymphoedema | 400 mg/day | No | No | Chang et al. (1996) [123] |
2 | Lymphoedema | 90 mg/day | No | Hepatitis with favourable outcome (2) | Koch et al. (1997) [82] |
2173 | Cancer/chronic infections | 100–300 mg/day | No | Serum transaminase elevation at 1 to 15 g of total dose (8) | Cox et al. (1989) [103] |
38 | Lymphoedema secondary to breast cancer | 90 mg/day | No | SGPT elevation (1) | Burgos et al. (1999) [115] |
39 | Lymphoedema secondary to breast cancer | 135 mg/day | No | SGPT elevation (1) | Burgos et al. (1999) [115] |
48 | Cancer | 90 mg/day | Troxerutin 540 mg/day | No | Grötz et al. (2001) [118] |
114 | Chronic venous insufficiency | 90 mg/day | No | Mild changes in liver function parameters (4.9%) compared to controls (2.1%) | Vanscheidt et al. (2002) [119]; Schmeck-Lindenau et al. (2003) [120] |
60 | Lymphatic oedema of lower limbs | 10 mg/day | No | No statistical differences compared to controls | Lessiani et al. (2015) [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitaro, M.; Croce, N.; Gallo, V.; Arienzo, A.; Salvatore, G.; Antonini, G. Coumarin-Induced Hepatotoxicity: A Narrative Review. Molecules 2022, 27, 9063. https://doi.org/10.3390/molecules27249063
Pitaro M, Croce N, Gallo V, Arienzo A, Salvatore G, Antonini G. Coumarin-Induced Hepatotoxicity: A Narrative Review. Molecules. 2022; 27(24):9063. https://doi.org/10.3390/molecules27249063
Chicago/Turabian StylePitaro, Michele, Nicoletta Croce, Valentina Gallo, Alyexandra Arienzo, Giulia Salvatore, and Giovanni Antonini. 2022. "Coumarin-Induced Hepatotoxicity: A Narrative Review" Molecules 27, no. 24: 9063. https://doi.org/10.3390/molecules27249063
APA StylePitaro, M., Croce, N., Gallo, V., Arienzo, A., Salvatore, G., & Antonini, G. (2022). Coumarin-Induced Hepatotoxicity: A Narrative Review. Molecules, 27(24), 9063. https://doi.org/10.3390/molecules27249063