Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment
Abstract
:1. Introduction
2. Gaseous Discharges and Plasma Species
- Free electrons and positively charged molecules or atoms;
- Neutral molecular radicals, including atoms, in the ground electronic state;
- Metastable atoms and molecules in excited electronic states;
- Radiation in the range from infrared (IR) through visible (vis) and ultraviolet (UV) to vacuum ultraviolet (VUV);
- Negatively charged ions (important in the cases plasma is sustained in electronegative gases).
3. Penetration of Gaseous Plasma in Textiles
4. Surface Modifications Caused by Plasma Species
4.1. Electrons
4.2. Positively Charged Ions
4.3. Negatively Charged Ions
4.4. Metastables
4.5. Molecular Radicals, including Atoms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Longo, R.C.; Ranjan, A.; Ventzek, P.L.G. Density Functional Theory Study of Oxygen Adsorption on Polymer Surfaces for Atomic-Layer Etching: Implications for Semiconductor Device Fabrication. ACS Appl. Nano Mater. 2020, 3, 5189–5202. [Google Scholar] [CrossRef]
- Fukunaga, Y.; Longo, R.C.; Ventzek, P.L.G.; Lane, B.; Ranjan, A.; Hwang, G.S.; Hartmann, G.; Tsutsumi, T.; Ishikawa, K.; Kondo, H.; et al. Interaction of oxygen with polystyrene and polyethylene polymer films: A mechanistic study. J. Appl. Phys. 2020, 127, 023303. [Google Scholar] [CrossRef]
- Polito, J.; Denning, M.; Stewart, R.; Frost, D.; Kushner, M.J. Atmospheric pressure plasma functionalization of polystyrene. J. Vac. Sci. Technol. A 2022, 40, 043001. [Google Scholar] [CrossRef]
- Lojen, D.; Zaplotnik, R.; Primc, G.; Mozetič, M.; Vesel, A. Optimization of surface wettability of polytetrafluoroethylene (PTFE) by precise dosing of oxygen atoms. Appl. Surf. Sci. 2022, 598, 153817. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Mozetič, M.; Primc, G. Surface modification of PS polymer by oxygen-atom treatment from remote plasma: Initial kinetics of functional groups formation. Appl. Surf. Sci. 2021, 561, 150058. [Google Scholar] [CrossRef]
- Buyle, G. Nanoscale finishing of textiles via plasma treatment. Mater. Techn. 2013, 24, 46–51. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Verschuren, J.; De Clerck, K.; Kiekens, P.; Leys, C. Non-thermal plasma treatment of textiles. Surf. Coat. Technol. 2008, 202, 3427–3449. [Google Scholar] [CrossRef]
- Tessier, D. Surface modification of biotextiles for medical applications. In Biotextiles as Medical Implants; King, M.W., Gupta, B.S., Guidoin, R., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2013; pp. 137–156. [Google Scholar] [CrossRef]
- Saleem, M.; Naz, M.Y.; Shoukat, B.; Shukrullah, S.; Hussain, Z. Functionality and applications of non-thermal plasma activated textiles: A review. Mater. Today Proc. 2021, 47, S74–S82. [Google Scholar] [CrossRef]
- Verschuren, J.; Kiekens, P.; Leys, C. Textile-specific Properties that Influence Plasma Treatment, Effect Creation and Effect Characterization. Text. Res. J. 2016, 77, 727–733. [Google Scholar] [CrossRef]
- Zille, A.; Oliveira, F.R.; Souto, A.P. Plasma Treatment in Textile Industry. Plasma. Process. Polym. 2015, 12, 98–131. [Google Scholar] [CrossRef] [Green Version]
- Jelil, R.A. A review of low-temperature plasma treatment of textile materials. J. Mater. Sci. 2015, 50, 5913–5943. [Google Scholar] [CrossRef]
- Guimond, S.; Hanselmann, B.; Amberg, M.; Hegemann, D. Plasma functionalization of textiles: Specifics and possibilities. Pure Appl. Chem. 2010, 82, 1239–1245. [Google Scholar] [CrossRef] [Green Version]
- Peran, J.; Ercegović Ražić, S. Application of atmospheric pressure plasma technology for textile surface modification. Text. Res. J. 2019, 90, 1174–1197. [Google Scholar] [CrossRef]
- Tudoran, C.; Roşu, M.C.; Coroş, M. A concise overview on plasma treatment for application on textile and leather materials. Plasma. Processes. Polym. 2020, 17, 2000046. [Google Scholar] [CrossRef]
- Mowafi, S.; Abou Taleb, M.; El-Sayed, H.E.-D. A Review of Plasma-assisted Treatments of Textiles for Eco-friendlier Water-less Processing. Egypt. J. Chem. 2022, 5, 737–749. [Google Scholar] [CrossRef]
- Yilma, B.B.; Luebben, J.F.; Nalankilli, G. Cold Plasma Treatment in Wet Chemical Textile Processing. Fibres Text. East. Eur. 2020, 28, 118–126. [Google Scholar] [CrossRef]
- Gorjanc, M.; Mozetic, M. Modification of Fibrous Polymers by Gaseous Plasma; LAP LAMBERT Academic Publishing: Saartbrücken, Germany, 2014. [Google Scholar]
- Petrovska, S.; Sergiienko, R.; Ilkiv, B.; Nakamura, T.; Ohtsuka, M. Influence of sputtering power on optical, electrical properties and structure of aluminum-doped indium saving indium-tin oxide thin films sputtered on preheated substrates. Mol. Cryst. Liquid Cryst. 2022, 1–9. [Google Scholar] [CrossRef]
- Primc, G. Generation of Neutral Chemically Reactive Species in Low-Pressure Plasma. Front. Phys. 2022, 10, 895264. [Google Scholar] [CrossRef]
- Wickramanayaka, S.; Meikle, S.; Kobayashi, T.; Hosokawa, N.; Hatanaka, Y. Measurements of catalytic efficiency of surfaces for the removal of atomic oxygen using NO2* continuum. J. Vac. Sci. Technol. A-Vac. Surf. Films 1991, 9, 2999–3002. [Google Scholar] [CrossRef]
- Lee, H.-C.; Oh, S.; Chung, C.-W. Experimental observation of the skin effect on plasma uniformity in inductively coupled plasmas with a radio frequency bias. Plasma Sources Sci. Technol. 2012, 21, 035003. [Google Scholar] [CrossRef]
- Apostol, M. Penetration depth of an electric field in a semi-infinite classical plasma. Optik 2020, 220, 165009. [Google Scholar] [CrossRef]
- Chabert, P.; Tsankov, T.V.; Czarnetzki, U. Foundations of capacitive and inductive radio-frequency discharges. Plasma Sources Sci. Technol. 2021, 30, 024001. [Google Scholar] [CrossRef]
- Zaka-ul-Islam, M.; O’Connell, D.; Graham, W.G.; Gans, T. Electron dynamics and frequency coupling in a radio-frequency capacitively biased planar coil inductively coupled plasma system. Plasma Sources Sci. Technol. 2015, 24, 044007. [Google Scholar] [CrossRef]
- Lojen, D.; Zaplotnik, R.; MozetiČ, M.; Vesel, A.; Primc, G. Power characteristics of multiple inductively coupled RF discharges inside a metallic chamber. Plasma Sci. Technol. 2021, 24, 015403. [Google Scholar] [CrossRef]
- Tsankov, T.V.; Chabert, P.; Czarnetzki, U. Foundations of magnetized radio-frequency discharges. Plasma Sources Sci. Technol. 2022, 31, 084007. [Google Scholar] [CrossRef]
- Otsuka, F.; Hada, T.; Shinohara, S.; Tanikawa, T. Penetration of a radio frequency electromagnetic field into a magnetized plasma: One-dimensional PIC simulation studies. EPS 2015, 67, 85. [Google Scholar] [CrossRef] [Green Version]
- Draškovič-Bračun, A.; Mozetič, M.; Zaplotnik, R. E- and H-mode transition in a low pressure inductively coupled ammonia plasma. Plasma. Processes. Polym. 2018, 15, 1700105. [Google Scholar] [CrossRef]
- Zaplotnik, R.; Vesel, A.; Mozetic, M. Transition from E to H mode in inductively coupled oxygen plasma: Hysteresis and the behaviour of oxygen atom density. EPL 2011, 95, 55001. [Google Scholar] [CrossRef] [Green Version]
- Tarasenko, V.F.; Naidis, G.V.; Beloplotov, D.V.; Lomaev, M.I.; Sorokin, D.A.; Babaeva, N.Y. Streamer Breakdown of Atmospheric-Pressure Air in a Non-Uniform Electric Field at High Overvoltages. Russ. Phys. J. 2018, 61, 1135–1142. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, C.; Zhu, W.; Lu, X.; Shao, T. Ionization waves in nanosecond pulsed atmospheric pressure plasma jets in argon. High Volt. 2021, 6, 665–673. [Google Scholar] [CrossRef]
- Wang, R.; Xu, H.; Zhao, Y.; Zhu, W.; Zhang, C.; Shao, T. Spatial–Temporal Evolution of a Radial Plasma Jet Array and Its Interaction with Material. Plasma Chem. Plasma Process. 2018, 39, 187–203. [Google Scholar] [CrossRef]
- Hofmans, M.; Viegas, P.; Rooij, O.v.; Klarenaar, B.; Guaitella, O.; Bourdon, A.; Sobota, A. Characterization of a kHz atmospheric pressure plasma jet: Comparison of discharge propagation parameters in experiments and simulations without target. Plasma Sources Sci. Technol. 2020, 29, 034003. [Google Scholar] [CrossRef]
- Li, J.; Lei, B.; Wang, J.; Xu, B.; Ran, S.; Wang, Y.; Zhang, T.; Tang, J.; Zhao, W.; Duan, Y. Atmospheric diffuse plasma jet formation from positive-pseudo-streamer and negative pulseless glow discharges. Commun. Phys. 2021, 4, 64. [Google Scholar] [CrossRef]
- Jiang, C.; Miles, J.; Hornef, J.; Carter, C.; Adams, S. Electron densities and temperatures of an atmospheric-pressure nanosecond pulsed helium plasma jet in air. Plasma Sources Sci. Technol. 2019, 28, 085009. [Google Scholar] [CrossRef]
- Schweigert, I.; Zakrevsky, D.; Gugin, P.; Yelak, E.; Golubitskaya, E.; Troitskaya, O.; Koval, O. Interaction of Cold Atmospheric Argon and Helium Plasma Jets with Bio-Target with Grounded Substrate Beneath. Appl. Sci. 2019, 9, 4528. [Google Scholar] [CrossRef] [Green Version]
- Štěpánová, V.; Šrámková, P.; Sihelník, S.; Stupavská, M.; Jurmanová, J.; Kováčik, D. The effect of ambient air plasma generated by coplanar and volume dielectric barrier discharge on the surface characteristics of polyamide foils. Vacuum 2021, 183, 109887. [Google Scholar] [CrossRef]
- Homola, T.; Kelar, J.; Černák, M.; Kováčik, D. Large-area open air plasma sources for roll-to-roll manufacture. VIP 2022, 34, 21–25. [Google Scholar] [CrossRef]
- Sramkova, P.; Kelar Tucekova, Z.; Fleischer, M.; Kelar, J.; Kovacik, D. Changes in Surface Characteristics of BOPP Foil after Treatment by Ambient Air Plasma Generated by Coplanar and Volume Dielectric Barrier Discharge. Polymers 2021, 13, 4173. [Google Scholar] [CrossRef]
- Booth, J.-P.; Mozetič, M.; Nikiforov, A.; Oehr, C. Foundations of plasma surface functionalization of polymers for industrial and biological applications. Plasma Sources Sci. Technol. 2022, 31, 103001. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, L.; Du, H.; Zhao, J.; Xie, Y. Three novel donor-acceptor type electrochromic polymers containing 2,3-bis(5-methylfuran-2-yl)thieno[3,4-b]pyrazine acceptor and different thiophene donors: Low-band-gap, neutral green-colored, fast-switching materials. J. Electroanal. Chem. 2018, 830–831, 7–19. [Google Scholar] [CrossRef]
- Fouchier, M.; Pargon, E.; Azarnouche, L.; Menguelti, K.; Joubert, O.; Cardolaccia, T.; Bae, Y.C. Vacuum ultra violet absorption spectroscopy of 193 nm photoresists. Appl. Phys. A 2011, 105, 399–405. [Google Scholar] [CrossRef]
- Mozetic, M. Plasma-Stimulated Super-Hydrophilic Surface Finish of Polymers. Polymers 2020, 12, 2498. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, J.T. Recombination and detachment in oxygen discharges: The role of metastable oxygen molecules. J. Phys. D-Appl. Phys. 2004, 37, 2073–2081. [Google Scholar] [CrossRef]
- Gudmundsson, J.T.; Hannesdóttir, H. On the role of metastable states in low pressure oxygen discharges. AIP Conf. Proc. 2017, 1811, 120001. [Google Scholar]
- Sousa, J.S.; Niemi, K.; Cox, L.J.; Algwari, Q.T.; Gans, T.; O’Connell, D. Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications. J. Appl. Phys. 2011, 109, 123302. [Google Scholar] [CrossRef] [Green Version]
- Vesel, A.; Primc, G.; Zaplotnik, R.; Mozetič, M. Applications of highly non-equilibrium low-pressure oxygen plasma for treatment of polymers and polymer composites on an industrial scale. Plasma Phys. Control. Fusion 2020, 62, 024008. [Google Scholar] [CrossRef]
- Ricard, A.; Gaillard, M.; Monna, V.; Vesel, A.; Mozetic, M. Excited species in H2, N2, O2 microwave flowing discharges and post-discharges. Surf. Coat. Technol. 2001, 142–144, 333–336. [Google Scholar] [CrossRef]
- Zaplotnik, R.; Vesel, A.; Mozetic, M. A Powerful Remote Source of O Atoms for the Removal of Hydrogenated Carbon Deposits. J. Fusion Energ. 2012, 32, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Dickens, P.G.; Sutcliffe, M.B. Recombination of oxygen atoms on oxide surfaces. Part 1.—Activation energies of recombination. Trans. Faraday Soc. 1964, 60, 1272–1285. [Google Scholar] [CrossRef]
- Kristof, J.; Macko, P.; Veis, P. Surface loss probability of atomic oxygen. Vacuum 2012, 86, 614–619. [Google Scholar] [CrossRef]
- Reuter, S.; von Woedtke, T.; Weltmann, K.D. The kINPen-a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. D-Appl. Phys. 2018, 51, 233001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Primc, G.; Zaplotnik, R.; Vesel, A.; Mozetič, M. Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment. Molecules 2022, 27, 9064. https://doi.org/10.3390/molecules27249064
Primc G, Zaplotnik R, Vesel A, Mozetič M. Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment. Molecules. 2022; 27(24):9064. https://doi.org/10.3390/molecules27249064
Chicago/Turabian StylePrimc, Gregor, Rok Zaplotnik, Alenka Vesel, and Miran Mozetič. 2022. "Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment" Molecules 27, no. 24: 9064. https://doi.org/10.3390/molecules27249064
APA StylePrimc, G., Zaplotnik, R., Vesel, A., & Mozetič, M. (2022). Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment. Molecules, 27(24), 9064. https://doi.org/10.3390/molecules27249064