In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments
Abstract
:1. Introduction
2. Results
2.1. Content of Total Polyphenols in Tunicate Bulb Extracts Obtained from Different A. cepa Varieties
2.2. Determination of the Main Quercetin and Its Derivatives in Tunicate Bulb, Tunic, and Bulb Extracts Obtained from A. cepa Golden Variety
2.3. Optimization of the Extraction Method of the Tunic Extract Obtained from A. cepa Golden Variety by Means of Design of Experiments (DoE)
2.4. Tunic A. cepa Extract Metabolic Profiling through RP-HPLC-PDA-ESI-MSn Analysis
2.5. In Vitro Bioaccessibility of Quercetin and Its Derivatives Identified in the Tunic A. cepa Golden Variety Extract
2.6. In Vitro Anti-Inflammatory Effects of A. cepa Extract
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sampling
4.3. Identification of Local A. cepa Varieties Rich in Polyphenols
4.3.1. A. cepa Extraction Procedure
4.3.2. Folin–Ciocalteu Assay
4.4. Extraction, Identification, and Quantification of Quercetin and Its Derivatives in Different Parts of A. cepa (Tunicate Bulb, Tunic, and Bulb)
4.4.1. RP-HPLC-PDA-ESI-MSn Analysis
4.4.2. RP-HPLC-PDA Quantitative Analysis
4.5. Optimization and Characterization of Tunic A. cepa Extract Golden Variety Composition
4.5.1. Optimization of Tunic A. cepa Extraction by Design of Experiments (DoE)
4.5.2. Metabolic Profile of Optimized Tunic A. cepa Golden Variety Extract
4.6. In Vitro Bioaccessibility by Simulated Gastro-Duodenal Digestion
4.7. Cell Culture
4.7.1. Nitrite, PGE2, IL-1β, and TNF-α Assay
4.7.2. Cell Viability
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- FAO. World Food and Agriculture - Statistical Yearbook 2021. 2021. Available online: https://www.ams.usda.gov/mnreports/fvwretail.pdf (accessed on 3 November 2022).
- Marefati, N.; Ghorani, V.; Shakeri, F.; Boskabady, M.; Kianian, F.; Rezaee, R.; Boskabady, M.H. A Review of Anti-Inflammatory, Antioxidant, and Immunomodulatory Effects of Allium cepa and Its Main Constituents. Pharm. Biol. 2021, 59, 285–300. [Google Scholar] [CrossRef]
- Zhao, X.X.; Lin, F.J.; Li, H.; Li, H.B.; Wu, D.T.; Geng, F.; Ma, W.; Wang, Y.; Miao, B.H.; Gan, R.Y. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion (Allium cepa L.). Front. Nutr. 2021, 8, 669805. [Google Scholar] [CrossRef]
- Teshika, J.D.; Zakariyyah, A.M.; Zaynab, T.; Zengin, G.; Rengasamy, K.R.; Pandian, S.K.; Fawzi, M.M. Traditional and Modern Uses of Onion Bulb (Allium cepa L.): A Systematic Review. Crit. Rev. Food Sci. Nutr. 2019, 59, S39–S70. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.S.; Kim, S.H.; Jeong, S.H.; Jeong, U.Y.; Jung, J.E.; Lee, S.K.; Lee, S.H. Antioxidant and Anti-Inflammatory Effects of Ethanol Extract from Whole Onion (Allium cepa L.) with Leaves. Agriculture 2022, 12, 963. [Google Scholar] [CrossRef]
- Wang, C.K. Health Benefits of Onion Bioactives on Hypercholesterolemia, Cardiovascular Diseases, and Bone Mineral Density. Food Front. 2020, 1, 107–108. [Google Scholar] [CrossRef]
- Galavi, A.; Hosseinzadeh, H.; Razavi, B.M. The Effects of Allium cepa L.(Onion) and Its Active Constituents on Metabolic Syndrome: A Review. Iran J. Basic Med. Sci. 2021, 24, 3–16. [Google Scholar]
- Lebdah, M.; Tantawy, L.; Elgamal, A.M.; Abdelaziz, A.M.; Yehia, N.; Alyamani, A.A.; ALmoshadak, A.S.; Mohamed, M.E. The Natural Antiviral and Immune Stimulant Effects of Allium cepa Essential Oil Onion Extract against Virulent Newcastle Disease Virus. Saudi J. Biol. Sci. 2022, 29, 1239–1245. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; Tomar, M.; et al. Onion (Allium cepa L.) Peels: A Review on Bioactive Compounds and Biomedical Activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef]
- Hollman, P.C.H.; Arts, I.C.W. Flavonols, Flavones and Flavanols–Nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 2000, 80, 1081–1093. [Google Scholar] [CrossRef]
- Hollman, P.C.; Gaag, M.V.; Mengelers, M.J.; van Trijp, J.M.; de Vries, J.H.; Katan, M.B. Absorption and Disposition Kinetics of the Dietary Antioxidant Quercetin in Man. Free Radic. Biol. Med. 1996, 21, 703–707. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Hai, Y.; Zhang, Y.; Liang, Y.; Ma, X.; Qi, X.; Xiao, J.; Xue, W.; Luo, Y.; Yue, T. Advance on the Absorption, Metabolism, and Efficacy Exertion of Quercetin and Its Important Derivatives: Absorption, Metabolism and Function of Quercetin. Food Front. 2020, 1, 420–434. [Google Scholar] [CrossRef]
- Boots, A.W.; Haenen, G.R.; Bast, A. Health Effects of Quercetin: From Antioxidant to Nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef]
- FIBRACEP; H2020; CORDIS; European Commission “Valorization of European Onion Waste by-Products into Dietary Fibre-Based Formula with Hypocholesterolemic, Hypoglycemic, and Antioxidant Effects”. Report Summary. Available online: https://cordis.europa.eu/project/id/782061/it (accessed on 4 November 2022).
- Francescato, L.N.; Debenedetti, S.L.; Schwanz, T.G.; Bassani, V.L.; Henriques, A.T. Identification of Phenolic Compounds in Equisetum Giganteum by LC–ESI-MS/MS and a New Approach to Total Flavonoid Quantification. Talanta 2013, 105, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorsi, P.; Caristi, C.; Gargiulli, C.; Leuzzi, U. Flavonol Glucoside Profile of Southern Italian Red Onion (Allium cepa L.). J. Agric. Food Chem. 2005, 53, 2733–2740. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Saleri, F.; Guo, M. Analysis of Flavonoids in Rhamnus Davurica and Its Antiproliferative Activities. Molecules 2016, 21, 1275. [Google Scholar] [CrossRef] [Green Version]
- Jaganath, I.B.; Mullen, W.; Lean, M.E.; Edwards, C.A.; Crozier, A. In Vitro Catabolism of Rutin by Human Fecal Bacteria and the Antioxidant Capacity of Its Catabolites. Free Radic. Biol. Med. 2009, 47, 1180–1189. [Google Scholar] [CrossRef]
- Ibrahim, R.M.; El-Halawany, A.M.; Saleh, D.O.; el Naggar, E.M.B.; El-Shabrawy, A.E.R.O.; El-Hawary, S.S. HPLC-DAD-MS/MS Profiling of Phenolics from Securigera Securidaca Flowers and Its Anti-Hyperglycemic and Anti-Hyperlipidemic Activities. Rev. Bras. Farmacogn. 2015, 25, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Chernonosov, A.A.; Karpova, E.A.; Lyakh, E.M. Identification of Phenolic Compounds in Myricaria bracteata Leaves by High-Performance Liquid Chromatography with a Diode Array Detector and Liquid Chromatography with Tandem Mass Spectrometry. Rev. Bras. Farmacogn. 2017, 27, 576–579. [Google Scholar] [CrossRef]
- Ng, A.; Smith, A.C.; Waldron, K.W. Effect of Tissue Type and Variety on Cell Wall Chemistry of Onion (Allium cepa L.). Food Chem. 1998, 63, 17–24. [Google Scholar] [CrossRef]
- Siemińska-Kuczer, A.; Szymańska-Chargot, M.; Zdunek, A. Recent Advances in Interactions between Polyphenols and Plant Cell Wall Polysaccharides as Studied Using an Adsorption Technique. Food Chem. 2022, 373, 131487. [Google Scholar] [CrossRef]
- Voragen, A.G.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a Versatile Polysaccharide Present in Plant Cell Walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Ali, M.; Thomson, M.; Afzal, M. Garlic and Onions: Their Effect on Eicosanoid Metabolism and Its Clinical Relevance. Prostaglandins Leukot. Essent. Fatty Acids 2000, 62, 55–73. [Google Scholar] [CrossRef]
- Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament. Off. J. Eur. Union 2015, 1–22.
- Hollman, P.C.; de Vries, J.H.; van Leeuwen, S.D.; Mengelers, M.J.; Katan, M.B. Absorption of Dietary Quercetin Glycosides and Quercetin in Healthy Ileostomy Volunteers. Am. J. Clin. Nutr. 1995, 62, 1276–1282. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Ullah, H.; Sommella, E.; Santarcangelo, C.; D’Avino, D.; Rossi, A.; Dacrema, M.; di Minno, A.; di Matteo, G.; Mannina, L.; Campiglia, P.; et al. Hydroethanolic Extract of Prunus Domestica L.: Metabolite Profiling and in Vitro Modulation of Molecular Mechanisms Associated to Cardiometabolic Diseases. Nutrients 2022, 14, 340. [Google Scholar] [CrossRef]
- ICH Harmonised Guideline Validation of Analytical Procedures Q2(R2). Available online: https://database.ich.org/sites/default/files/ICH_Q2-R2_Document_Step2_Guideline_2022_0324.pdf (accessed on 20 November 2022).
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.O.R.S.T.E.N.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food–an International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
Variety | Total Polyphenol Content (mg GAE/100 g) |
---|---|
Golden | 44.03 ± 1.19 a |
Yellow Elenka | 35.77 ± 0.45 b |
White Cenol | 13.80 ± 0.81 c |
White Orizaba | 17.36 ± 0.74 d |
Peak | RT (min) | Compound | ʎ Max (nm) | m/z [M-H]− | Fragments [M-H]− |
---|---|---|---|---|---|
1 | 11.96 | quercetin 3 4’-diglucoside | 208, 265, 346 | 625 | 463, 301 |
2 | 13.18 | quercetin 3-glucoside | 206, 246, 357 | 463 | 301, 151, 135 |
3 | 13.59 | quercetin 4′-glucoside | 210, 253, 366 | 463 | 301, 151, 135 |
4 | 13.97 | quercetin 4′-methyl-3′-glucoside | 204, 253, 360 | 477 | 315, 151 |
5 | 14.82 | quercetin aglycone | 209, 255, 371 | 301 | 151 |
Compound | Tunicate Bulb Extract | Tunic Extract | Bulb Extract | ||||||
---|---|---|---|---|---|---|---|---|---|
Batch 1 | Batch 2 | Batch 3 | Batch 1 | Batch 2 | Batch 3 | Batch 1 | Batch 2 | Batch 3 | |
Quercetin 3 4’-O-diglucoside | 0.22 ± 0.07 | 0.31 ± 0.02 | 0.22 ± 0.03 | 1.28 ± 0.11 | 2.09 ± 0.32 | 1.33 ± 0.46 | 0.17 ± 0.05 | 0.13 ± 0.07 | 0.18 ± 0.05 |
quercetin 3-O-glucoside | - | - | - | 0.23 ± 0.03 | 0.23 ± 0.03 | 0.23 ± 0.03 | 0.09 ± 0.01 | 0.09 ± 0.01 | 0.09 ± 0.01 |
quercetin 4-O-glucoside | - | - | - | 1.33 ± 0.63 | 1.00 ± 0.28 | 0.98 ± 0.27 | - | - | - |
isorhamnetin 4′- glucoside | 0.09 ± 0.02 | 0.09 ± 0.01 | 0.09 ± 0.03 | 0.21 ± 0.05 | 0.17 ± 0.02 | 0.17 ± 0.09 | - | - | - |
quercetin aglycone | 0.09 ± 0.03 | 0.09 ± 0.01 | 0.14 ± 0.03 | 0.49 ± 0.03 | 0.41 ± 0.02 | 0.35 ± 0.03 | - | - | - |
Total content of quercetin derivatives expressed as quercetin equivalent (mg/g) | 0.49 ± 0.05 a | 3.50 ± 0.41 b | 0.25 ± 0.03 a |
Peak | RT (min) | Compound | ʎ Max (nm) | m/z [M-H]− | Fragments [M-H]− |
---|---|---|---|---|---|
1 | 10.82 | Dihydroisorhamnetin or 3’-O-Methyltaxifolin | 225, 294 | 317 | 299, 191 |
2 | 11.48 | Dihydroisorhamnetin or 3’-O-Methyltaxifolin | 206, 246, 357 | 317 | 299, 191 |
3 | 12.50 | quercetin dihexoside derivative | 267, 294, 327 | 625 | 463, 301 |
4 | 13.05 | quercetin dihexoside derivative | 204, 253, 360 | 625 | 463, 301 |
5 | 13.47 | quercetin dihexoside derivative | 287, 377, 472 | 625 | 463, 301 |
6 | 13.95 | quercetin dihexoside derivative | 290, 378 | 625 | 463, 301 |
7 | 14.73 | quercetin hexoside derivative | 231, 252, 307 | 463 | 301 |
8 | 15.33 | quercetin hexoside dimer | 293, 356, 377 | 927 | 463, 301 |
9 | 16.50 | quercetin hexoside dimer | 255, 303, 368 | 927 | 463, 301 |
10 | 17.33 | Quercetin | 204, 301, 367 | 301 | 271, 255, 179, 151 |
11 | 17.67 | Rhamnocitrin 3-rhamninoside | 205, 301, 364 | 754 | 299, 271 |
12 | 17.98 | Rhamnocitrin | 252, 300, 364 | 299 | 271 |
13 | 18.27 | Kaempferide | 204, 301, 362 | 299 | 284, 255, 227 |
14 | 19.32 | Chrysoeriol | 204, 301, 360 | 299 | 226, 211 |
Compound | Peak Area before Digestion | Peak Area after Digestion | Increase % Peak Area |
---|---|---|---|
quercetin dihexoside derivative | 30,850 ± 1451 | 47,936 ± 932 | 155.4% |
quercetin hexoside derivative | 337,332 ± 2290 | 937,801± 3829 | 278.0% |
quercetin hexoside dimer | 42,237 ± 987 | 59,954 ± 1267 | 141.9% |
quercetin hexoside dimer | 539,102 ± 3128 | 218,649 ± 3721 | −40.6% |
Quercetin | 106,915 ± 3121 | 384,291 ± 4563 | 359.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, H.; Minno, A.D.; Santarcangelo, C.; Tantipongpiradet, A.; Dacrema, M.; Matteo, R.d.; El-Seedi, H.R.; Khalifa, S.A.M.; Baldi, A.; Rossi, A.; et al. In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments. Molecules 2022, 27, 9065. https://doi.org/10.3390/molecules27249065
Ullah H, Minno AD, Santarcangelo C, Tantipongpiradet A, Dacrema M, Matteo Rd, El-Seedi HR, Khalifa SAM, Baldi A, Rossi A, et al. In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments. Molecules. 2022; 27(24):9065. https://doi.org/10.3390/molecules27249065
Chicago/Turabian StyleUllah, Hammad, Alessandro Di Minno, Cristina Santarcangelo, Ariyawan Tantipongpiradet, Marco Dacrema, Rita di Matteo, Hesham R. El-Seedi, Shaden A. M. Khalifa, Alessandra Baldi, Antonietta Rossi, and et al. 2022. "In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments" Molecules 27, no. 24: 9065. https://doi.org/10.3390/molecules27249065
APA StyleUllah, H., Minno, A. D., Santarcangelo, C., Tantipongpiradet, A., Dacrema, M., Matteo, R. d., El-Seedi, H. R., Khalifa, S. A. M., Baldi, A., Rossi, A., & Daglia, M. (2022). In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments. Molecules, 27(24), 9065. https://doi.org/10.3390/molecules27249065