Essential Oils against Sarcoptes scabiei
Abstract
:1. Introduction
2. Essential Oils
2.1. Melaleuca alternifolia
2.2. Azadirachta indica
2.3. Sygyzum aromaticum
2.4. Cymbopogon Species
2.5. Cinnamomum Species
2.6. Ocimum sanctum
2.7. Litsea cubeba
2.8. Backhousia citriodora
2.9. Citrus limon
2.10. Eucalyptus Species
2.11. Pelargonium asperum
2.12. Lavandula angustifolia
2.13. Citrus aurantium amara
2.14. Lippia multiflora
2.15. Cedrus deodara
2.16. Pongamia pinnata
2.17. Jatropha curcas
2.18. Elsholtzia densa
3. Plant Extracts
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Arlian, L.G.; Morgan, M.S. A review of Sarcoptes scabiei: Past, present and future. Parasites Vectors 2017, 10, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moroni, B.; Rossi, L.; Bernigaud, C.; Guillot, J. Zoonotic Episodes of Scabies: A Global Overview. Pathogens 2022, 11, 213. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Lecchi, C.; Fraquelli, C.; Sartorelli, P.; Ceciliani, F. Acute phase protein response in Alpine ibex with sarcoptic mange. Vet. Parasitol. 2010, 168, 293–298. [Google Scholar] [CrossRef]
- Cardells, J.; Lizana, V.; Martí-Marco, A.; Lavín, S.; Velarde, R.; Rossi, L.; Moroni, B. First description of sarcoptic mange in an Iberian hare (Lepus granatensis). Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100021. [Google Scholar] [CrossRef] [PubMed]
- Alasaad, S.; Rossi, L.; Heukelbach, J.; Pérez, J.M.; Hamarsheh, O.; Otiende, M.; Zhu, X.Q. The neglected navigating web of the incomprehensibly emerging and re-emerging Sarcoptes mite. Infect. Genet. Evol. 2013, 17, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernigaud, C.; Fischer, K.; Chosidow, O. The Management of Scabies in the 21st Century: Past, Advances and Potentials. Acta Derm. Venereol. 2020, 100, 112. [Google Scholar]
- Arlian, L.G.; Vyszenski-Moher, D.L.; Pole, M.J. Survival of adults and developmental stages of Sarcoptes scabiei var. canis when off the host. Exp. Appl. Acarol. 1989, 6, 181–187. [Google Scholar]
- Fang, F.; Bernigaud, C.; Candy, K.; Melloul, E.; Izri, A.; Durand, R.; Botterel, F.; Chosidow, O.; Huang, W.; Guillot, J. Efficacy assessment of biocides or repellents for the control of Sarcoptes scabiei in the environment. Parasites Vectors 2015, 12, 416. [Google Scholar] [CrossRef] [Green Version]
- Rudd, J.L.; Clifford, D.L.; Cypher, B.L.; Hull, J.M.; Jane Riner, A.; Foley, J.E. Molecular epidemiology of a fatal sarcoptic mange epidemic in endangered San Joaquin kit foxes (Vulpes macrotis mutica). Parasites Vectors 2020, 7, 456. [Google Scholar] [CrossRef]
- Rossi, L.; Tizzani, P.; Rambozzi, L.; Moroni, B.; Meneguz, P.G. Sanitary Emergencies at the Wild/Domestic Caprines Interface in Europe. Animals 2019, 5, 922. [Google Scholar] [CrossRef] [Green Version]
- Escobar, L.E.; Carver, S.; Cross, P.C.; Rossi, L.; Almberg, E.S.; Yabsley, M.J.; Niedringhaus, K.D.; Van Wick, P.; Dominguez-Villegas, E.; Gakuya, F.; et al. Sarcoptic mange: An emerging panzootic in wildlife. Trans. Emerg. Dis. 2022, 69, 927–942. [Google Scholar] [CrossRef] [PubMed]
- González-Candela, M.; León-Vizcaíno, L.; Cubero-Pablo, M.J. Population effects of sarcoptic mange in Barbary sheep (Ammotragus lervia) from Sierra Espuña Regional Park, Spain. J. Wildl. Dis. 2004, 40, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Uraguchi, K.; Ueno, M.; Iijima, H.; Saitoh, T. Demographic analyses of a fox population suffering from sarcoptic mange. J. Wildl. Manag. 2014, 78, 1356–1371. [Google Scholar] [CrossRef]
- Rowe, M.L.; Whiteley, P.L.; Carver, S. The treatment of sarcoptic mange in wildlife: A systematic review. Parasites Vectors 2019, 13, 99. [Google Scholar] [CrossRef]
- Hartley, M.; English, A. Sarcoptes scabei var. wombati infection in the common wombat (Vombatus ursinus). Eur. J. Wildl. Res. 2005, 51, 117–121. [Google Scholar] [CrossRef]
- Davies, P.R. Sarcoptic mange and production performance of swine: A review of the literature and studies of associations between mite infestation, growth rate and measures of mange severity in growing pigs. Vet. Parasitol. 1995, 60, 249–264. [Google Scholar] [CrossRef]
- Wei, W.; Ren, Y.; Shen, N.; Song, H.; Xu, J.; Hua, R.; Zhang, H.; Angel, C.; Gu, X.; Kuang, L.; et al. Comparative analysis of host resistance to Sarcoptes scabiei var. cuniculi in two different rabbit breeds. Parasites Vectors 2019, 12, 530. [Google Scholar] [CrossRef] [Green Version]
- Engelman, D.; Marks, M.; Steer, A.C.; Beshah, A.; Biswas, G.; Chosidow, O.; Coffeng, L.E.; Lardizabal Dofitas, B.; Enbiale, W.; Fallah, M.; et al. A framework for scabies control. PLoS Negl. Trop. Dis. 2021, 15, e0009661. [Google Scholar] [CrossRef]
- Bernigaud, C.; Samarawickrama, G.R.; Jones, M.K.; Gasser, R.B.; Fischer, K. The Challenge of Developing a Single-Dose Treatment for Scabies. Trends Parasitol. 2019, 35, 931–943. [Google Scholar] [CrossRef]
- Shiven, A.; Alam, A.; Kapoor, D.N. Natural and synthetic agents for the treatment of Sarcoptes scabiei: A review. Ann. Parasitol. 2020, 66, 467–480. [Google Scholar]
- Walton, S.F.; Myerscough, M.R.; Currie, B.J. Studies in vitro on the relative efficacy of current acaricides for Sarcoptes scabiei var. varhominis. Trans. R. Soc. Trop. Med. Hyg. 2000, 94, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Paasch, U.; Haustein, U.F. Management of endemic outbreaks of scabies with allethrin, permethrin, and ivermectin. Int. J. Dermatol. 2000, 39, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Mounsey, K.E.; Holt, D.C.; McCarthy, J.; Currie, B.J.; Walton, S.F. Scabies: Molecular perspectives and therapeutic implications in the face of emerging drug resistance. Future Microbiol. 2008, 3, 57–66. [Google Scholar] [CrossRef]
- Chandler, D.J.; Fuller, L.C. A Review of Scabies: An Infestation More than Skin Deep. Dermatology 2019, 235, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Heukelbach, J.; Feldmeier, H. Scabies. Lancet 2006, 367, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Canale, A.; Mehlhorn, H. Tick repellents and acaricides of botanical origin: A green roadmap to control tick-borne diseases? Parasitol. Res. 2016, 115, 2545–2560. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Lupidi, G.; Mbuntcha, H.; Woguem, V.; Womeni, H.M.; Barboni, L.; Tapondjou, L.A.; Benelli, G. Clausena anisata and Dysphania ambrosioides essential oils: From ethno-medicine to modern uses as effective insecticides. Environ. Sci. Pollut. Res. Int. 2018, 25, 10493–10503. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils–A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Hoffmann, K.H. Essential oils. Z. Naturforsch. C J. Biosci. 2020, 75, 177. [Google Scholar] [CrossRef]
- Peterfalvi, A.; Miko, E.; Nagy, T.; Reger, B.; Simon, D.; Miseta, A.; Czéh, B.; Szereday, L. Much More Than a Pleasant Scent: A Review on Essential Oils Supporting the Immune System. Molecules 2019, 24, 4530. [Google Scholar] [CrossRef] [Green Version]
- Sandner, G.; Heckmann, M.; Weghuber, J. Immunomodulatory Activities of Selected Essential Oils. Biomolecules 2020, 10, 1139. [Google Scholar] [CrossRef] [PubMed]
- Nechita, I.S.; Poirel, M.T.; Cozma, V.; Zenner, L. The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae. Vet. Parasitol. 2015, 214, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Selles, S.M.A.; Kouidri, M.; González, M.G.; González, J.; Sánchez, M.; González-Coloma, A.; Sanchis, J.; Elhachimi, L.; Olmeda, A.S.; Tercero, J.M.; et al. Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review. Pathogens 2021, 10, 379. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Rakotosaona, R.; Nzekoue, F.K.; Canale, A.; Nicoletti, M.; Maggi, F. Insecticidal and mosquito repellent efficacy of the essential oils from stem bark and wood of Hazomalania voyronii. J. Ethnopharmacol. 2020, 248, 112333. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, D.; Ren, J.J.; Dong, R.; Wu, H. Screening of the Repellent Activity of 12 Essential Oils Against Adult German Cockroach (Dictyoptera: Blattellidae): Preparation of a Sustained Release Repellent Agent of Binary Oil-γ-CD and its Repellency in a Small Container. J. Econ. Entomol. 2020, 113, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Candy, K.; Melloul, E.; Bernigaud, C.; Chai, L.; Darmon, C.; Durand, R.; Botterel, F.; Chosidow, O.; Izri, A.; et al. In vitro activity of ten essential oils against Sarcoptes scabiei. Parasites Vectors 2016, 9, 594. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, S.; Yin, Z.; Bernigaud, C.; Guillot, J.; Fang, F. Activity of terpenes derived from essential oils against Sarcoptes scabiei eggs. Parasites Vectors 2021, 14, 600. [Google Scholar] [CrossRef]
- Andriantsoanirina, V.; Guillot, J.; Ratsimbason, M.; Mekhloufi, G.; Randriamialinoro, F.; Ranarivelo, L.; Ariey, F.; Durand, R. In vitro efficacy of essential oils against Sarcoptes Scabiei. Sci. Rep. 2022, 12, 7176. [Google Scholar] [CrossRef]
- Walton, S.F.; Holt, D.C.; Currie, B.J.; Kemp, D.J. Scabies: New future for a neglected disease. Adv. Parasitol. 2004, 57, 309–376. [Google Scholar] [CrossRef]
- Zulkarnain, I.; Agusni, R.I.; Hidayati, A.N. Comparison of tea tree oil 5% cream, tea tree oil 5%+ permethrin 5% cream, and permethrine 5% cream in child scabies. Int. J. Clin. Exp. Med. Sci. 2019, 4, 87–93. [Google Scholar]
- Aboelhadid, S.M.; Mahrous, L.N.; Hashem, S.A.; Abdel-Kafy, E.M.; Miller, R.J. In vitro and in vivo effect of Citrus limon essential oil against sarcoptic mange in rabbits. Parasitol. Res. 2016, 115, 3013–3020. [Google Scholar] [CrossRef]
- Oladimeji, F.A.; Orafidiya, O.O.; Ogunniyi, T.A.; Adewunmi, T.A. Pediculocidal and scabicidal properties of Lippia multiflora essential oil. J. Ethnopharmacol. 2000, 72, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Saxena, V.K.; Sanil, N.K.; Singh, N. Evaluation of oil of Cedrus deodara and benzyl benzoate in sarcoptic mange in sheep. Small Rumin. Res. 1997, 26, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Dimri, U.; Sharma, M.C. Effects of sarcoptic mange and its control with oil of Cedrus deodara, Pongamia glabra, Jatropha curcas and benzyl benzoate, both with and without ascorbic acid on growing sheep: Assessment of weight gain, liver function, nutrient digestibility, wool production and meat quality. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2004, 51, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, B.; Dasgupta, C.K. Efficacies of benzyl-benzoate, γ-benzene-hexachloride and sulphur-karanj oil mixture against sarcoptic mange in goats. J. Res. Birsa Agric. Univ. 2001, 13, 99–100. [Google Scholar]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 9, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Carson, C.F.; Peterson, G.M.; Walton, S.F.; Hammer, K.A.; Naunton, M.; Davey, R.C.; Spelman, T.; Dettwiller, P.; Kyle, G.; et al. Therapeutic Potential of Tea Tree Oil for Scabies. Am. J. Trop. Med. Hyg. 2016, 94, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J. Antimicrob. Chemother. 2004, 53, 1081–1085. [Google Scholar] [CrossRef]
- Pisseri, F.; Bertoli, A.; Nardoni, S.; Pinto, L.; Pistelli, L.; Guidi, G.; Mancianti, F. Antifungal activity of tea tree oil from Melaleuca alternifolia against Trichophyton equinum: An in vivo assay. Phytomedicine 2009, 16, 1056–1058. [Google Scholar] [CrossRef]
- Hartman, D.; Coetzee, J. Two US practitioners’ experience of using essential oils for wound care. Wound Care 2002, 11, 317–320. [Google Scholar] [CrossRef]
- Bezabh, S.A.; Tesfaye, W.; Christenson, J.K.; Carson, C.F.; Thomas, J. Antiparasitic Activity of Tea Tree Oil (TTO) and Its Components against Medically Important Ectoparasites: A Systematic Review. Pharmaceutics 2022, 14, 1587. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.; Cleary, B.J.; Gilmer, J.F.; Walsh, J.J. Inhibition of acetylcholinesterase by tea tree oil. J. Pharm. Pharmacol. 2004, 56, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by tea tree oil and constituent terpenoids. Flavour Fragr. J. 2006, 21, 198–201. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, Z.; Yin, Z.; Jia, R.; Song, X.; Li, L.; Zou, Y.; Liang, X.; Li, L.; He, C.; et al. In vitro acaricidal activity of 1,8-cineole against Sarcoptes scabiei var. cuniculi and regulating effects on enzyme activity. Parasitol. Res. 2015, 114, 2959–2967. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Deng, Y.X.; Yin, Z.Q.; Wei, Q.; Li, M.; Jia, R.Y.; Xu, J.; Li, L.; Song, X.; Liang, X.X.; et al. Studies on the acaricidal mechanism of the active components from neem (Azadirachta indica) oil against Sarcoptes scabiei var. cuniculi. Vet. Parasitol. 2014, 204, 323–329. [Google Scholar] [CrossRef]
- Benelli, G.; Canale, A.; Toniolo, C.; Higuchi, A.; Murugan, K.; Pavela, R.; Nicoletti, M. Neem (Azadirachta indica): Towards the ideal insecticide? Nat. Prod. Res. 2017, 31, 369–386. [Google Scholar] [CrossRef]
- Gupta, S.C.; Prasad, S.; Tyagi, A.K.; Kunnumakkara, A.B.; Aggarwal, B.B. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine 2017, 34, 14–20. [Google Scholar] [CrossRef]
- Brahmachari, G. Neem—An omnipotent plant: A retrospection. Chembiochem Eur. J. Chem. Biol. 2004, 5, 408–421. [Google Scholar] [CrossRef]
- Isman, M.B.; Koul, O.; Luczynski, A.; Kaminskis, J. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin contentJ. Agric. Food Chem. 1990, 38, 1406–1411. [Google Scholar] [CrossRef]
- Lima de Souza, J.R.; Remedio, R.N.; Arnosti, A.; de Abreu, R.M.M.; Camargo-Mathias, M.I. The effects of neem oil (Azadirachta indica A. JUSS) enriched with different concentrations of azadirachtin on the integument of semi-engorged Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) females. Microsc. Res. Tech. 2017, 80, 838–844. [Google Scholar] [CrossRef]
- Du, Y.H.; Jia, R.Y.; Yin, Z.Q.; Pu, Z.H.; Chen, J.; Yang, F.; Zhang, Y.Q.; Lu, Y. Acaricidal activity of extracts of neem (Azadirachta indica) oil against the larvae of the rabbit mite Sarcoptes scabiei var. cuniculi in vitro. Vet. Parasitol. 2008, 157, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Shi, D.; Yin, Z.; Guo, J.; Jia, R.; Xu, J.; Song, X.; Lv, C.; Fan, Q.; Liang, X.; et al. Acaricidal activity of petroleum ether extract of neem (Azadirachta indica) oil and its four fractions separated by column chromatography against Sarcoptes scabiei var. cuniculi larvae in vitro. Exp. Parasitol. 2012, 130, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.H.; Li, J.L.; Jia, R.Y.; Yin, Z.Q.; Li, X.T.; Lv, C.; Ye, G.; Zhang, L.; Zhang, Y.Q. Acaricidal activity of four fractions and octadecanoic acid-tetrahydrofuran-3,4-diyl ester isolated from chloroform extracts of neem (Azadirachta indica) oil against Sarcoptes scabiei var. cuniculi larvae in vitro. Vet. Parasitol. 2009, 163, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Chen, Z.; Jia, R.; Cao, M.; Zou, Y.; Li, L.; Liang, X.; Yin, L.; He, C.; Yue, G.; et al. Transcriptomics and proteomic studies reveal acaricidal mechanism of octadecanoic acid-3, 4—tetrahydrofuran diester against Sarcoptes scabiei var cuniculi. Sci. Rep. 2017, 7, 45479. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Y.; Liu, T.; Xing, R.; Peng, S.; Song, X.; Zou, Y.; Zhao, X.; Jia, R.; Wan, H.; et al. Structural modification of octadecanoic acid-3,4-tetrahydrofuran diester and the acaricidal activity and mechanism of its derivatives against Sarcoptes scabiei var. cuniculi. Front. Pharmacol. 2022, 13, 953284. [Google Scholar] [CrossRef]
- Tabassam, S.M.; Iqbal, Z.; Jabbar, A.; Sindhu, Z.U.; Chattha, A.I. Efficacy of crude neem seed kernel extracts against natural infestation of Sarcoptes scabiei var. ovis. J. Ethnopharmacol. 2008, 115, 284–287. [Google Scholar] [CrossRef]
- Pasipanodya, C.N.; Tekedzam, T.T.; Chatizam, F.P.; Gororom, E. Efficacy of neem (Azadirachta indica) aqueous fruit extracts against Sarcoptes scabiei var. suis in grower pigs. Trop. Anim. Health Prod. 2021, 53, 135. [Google Scholar] [CrossRef]
- Seddiek, S.A.; Khater, H.F.; El-Shorbagy, M.M.; Ali, A.M. The acaricidal efficacy of aqueous neem extract and ivermectin against Sarcoptes scabiei var. cuniculi in experimentally infested rabbits. Parasitol. Res. 2013, 112, 2319–2330. [Google Scholar] [CrossRef]
- Xu, J.; Fan, Q.J.; Yin, Z.Q.; Li, X.T.; Du, Y.H.; Jia, R.Y.; Wang, K.Y.; Lv, C.; Ye, G.; Geng, Y.; et al. The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet. Parasitol. 2010, 169, 399–403. [Google Scholar] [CrossRef]
- Tamagawa-Mineoka, R.; Masuda, K.; Katoh, N. Allergic contact dermatitis due to neem oil: A case report and mini-review. J. Dermatol. 2020, 47, e48–e49. [Google Scholar] [CrossRef]
- Boeke, S.J.; Boersma, M.G.; Alink, G.M.; van Loon, J.J.; van Huis, A.; Dicke, M.; Rietjens, I.M. Safety evaluation of neem (Azadirachta indica) derived pesticides. J. Ethnopharmacol. 2004, 94, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Quadros, D.G.; Johnson, T.L.; Whitney, T.R.; Oliver, J.D.; Oliva Chávez, A.S. Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia? Insects 2020, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- Pasay, C.; Mounsey, K.; Stevenson, G.; Davis, R.; Arlian, L.; Morgan, M.; Vyszenski-Moher, D.; Andrews, K.; McCarthy, J. Acaricidal activity of eugenol-based compounds against scabies mites. PLoS ONE 2010, 5, e12079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batiha, G.E.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Dibazar, S.P.; Fateh, S.; Daneshmandi, S. Immunomodulatory effects of clove (Syzygium aromaticum) constituents on macrophages: In vitro evaluations of aqueous and ethanolic components. J. Immunotoxicol. 2015, 12, 124–131. [Google Scholar] [CrossRef]
- Ma, W.; Fan, Y.; Liu, Z.; Hao, Y.; Mou, Y.; Liu, Y.; Zhang, W.; Song, X. The acaricidal activity and mechanism of eugenol on Psoroptes cuniculi. Vet. Parasitol. 2019, 266, 56–62. [Google Scholar] [CrossRef]
- Shang, X.F.; Dai, L.X.; Yang, C.J.; Guo, X.; Liu, Y.Q.; Miao, X.L.; Zhang, J.Y. A value-added application of eugenol as acaricidal agent: The mechanism of action and the safety evaluation. J. Adv. Res. 2020, 34, 149–158. [Google Scholar] [CrossRef]
- Fang, F.; Li, M.; Jiang, Z.; Lu, X.; Guillot, J.; Si, H. Comparing acaricidal and ovicidal activity of five terpenes from essential oils against Psoroptes cuniculi. Parasitol. Res. 2020, 119, 4219–4223. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety; Elsevier: Amsterdam, The Netherlands, 2014; Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780443062414000011 (accessed on 12 December 2022).
- Li, M.; Liu, B.; Bernigaud, C.; Fischer, K.; Guillot, J.; Fang, F. Lemongrass (Cymbopogon citratus) oil: A promising miticidal and ovicidal agent against Sarcoptes scabiei. PLoS Negl Trop Dis. 2020, 14, e0008225. [Google Scholar] [CrossRef]
- Fichi, G.; Flamini, G.; Zaralli, L.J.; Perrucci, S. Efficacy of an essential oil of Cinnamomum zeylanicum against Psoroptes Cuniculi. Phytomedicine 2007, 14, 227–231. [Google Scholar] [CrossRef]
- Hýbl, M.; Bohatá, A.; Rádsetoulalová, I.; Kopecký, M.; Hoštičková, I.; Vaníčková, A.; Mráz, P. Evaluating the Efficacy of 30 Different Essential Oils against Varroa destructor and Honey Bee Workers (Apis mellifera). Insects 2021, 12, 1045. [Google Scholar] [CrossRef] [PubMed]
- Southwell, I. Backhousia citriodora F. Muell. (Lemon Myrtle), an Unrivalled Source of Citral. Foods 2021, 10, 1596. [Google Scholar] [CrossRef] [PubMed]
- Lunguinho, A.D.S.; Cardoso, M.D.G.; Ferreira, V.R.F.; Konig, I.F.M.; Gonçalves, R.R.P.; Brandão, R.M.; Caetano, A.R.S.; Nelson, D.L.; Remedio, R.N. Acaricidal and repellent activity of the essential oils of Backhousia citriodora, Callistemon viminalis and Cinnamodendron dinisii against Rhipicephalus spp. Vet. Parasitol. 2021, 300, 109594. [Google Scholar] [CrossRef] [PubMed]
- Sook, R.I.; Cha-Ho, J. Acaricidal effects of herb essential oils against Dermatophagoides farinae and D.pteronyssinus (Acari: Pyroglyphidae) and qualitative analysis of a herb Mentha pulegium (pennyroyal). Korean J. Parasitol. 2006, 44, 133–138. [Google Scholar]
- Alemu, S.; Bayu, Y.; Wasihun, P.; Abdurahman, A. Prevalence, Phytochemical Investigation, and In Vitro Acaricidal Efficacy Evaluation of Dodonaea angustifolia, Eucalyptus globulus, Millettia ferruginea, and Euphorbia abyssinica against Sarcoptic Mange of Camel, Babile District, Ethiopia. J. Parasitol. Res. 2022, 8639370. [Google Scholar] [CrossRef] [PubMed]
- Perrucci, S.; Macchioni, G.; Cioni, P.L.; Flamini, G.; Morelli, I. Structure/activity relationship of some natural monoterpenes as acaricides against Psoroptes cuniculi. J. Nat. Prod. 1995, 58, 1261–1264. [Google Scholar] [CrossRef]
- Zhou, Y.; Liao, F.; Weng, J.; Mo, Q.; Xu, R.; Zhang, Y.; Ren, Z.; Zhong, Z.; Zuo, Z.; Peng, G.; et al. Composition and acaricidal activity of essential oil from Elsholtzia densa Benth against Sarcoptes scabiei mites in vitro. Vet. Med. 2019, 64, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Sohaib, M.; Ullah, R.; Hussain, I.; Niaz, S.; Malak, N.; de la Fuente, J.; Khan, A.; Aguilar-Marcelino, L.; Alanazi, A.D.; et al. Structure-based in silico design and in vitro acaricidal activity assessment of Acacia nilotica and Psidium guajava extracts against Sarcoptes scabiei var. cuniculi. Parasitol. Res. 2022, 121, 2901–2915. [Google Scholar] [CrossRef]
- Akram, M.; Riaz, M.; Noreen, S.; Shariati, M.A.; Shaheen, G.; Akhter, N.; Parveen, F.; Akhtar, N.; Zafar, S.; Owais, G.A.; et al. Therapeutic potential of medicinal plants for the management of scabies. Dermatol. Ther. 2020, 33, e13186. [Google Scholar] [CrossRef] [Green Version]
- Candy, K.; Akhoundi, M.; Andriantsoanirina, V.; Durand, R.; Bruel, C.; Izri, A. Essential Oils as a Potential Treatment Option for Pediculosis. Planta Med. 2020, 86, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Dosoky, N.S.; Setzer, W.N. Maternal Reproductive Toxicity of Some Essential Oils and Their Constituents. Int. J. Mol. Sci. 2021, 22, 2380. [Google Scholar] [CrossRef] [PubMed]
EO | Mite | References |
---|---|---|
Tea tree oil 5% | S. scabiei var suis | [36] |
Clove 1% | S. scabiei var suis | [36] |
Palmarosa 1% | S. scabiei var suis | [36] |
Geranium 5% | S. scabiei var suis | [36] |
Lemongrass 4.8% | S. scabiei var cuniculi mites and eggs | [37] |
Ahibero 1% | S. scabiei var suis | [38] |
Cinnamon 0.25% | S. scabiei var suis | [38] |
Ravintsara 5% | S. scabiei var suis | [38] |
Camphorwood 5% | S. scabiei var suis | [38] |
Tulsi 0.25% | S. scabiei var suis | [38] |
Litsea 1% | S. scabiei var suis | [38] |
Lemon Myrtle 1% | S. scabiei var suis | [38] |
EO | Patient | Posology | References |
---|---|---|---|
Tea tree oil 5% + benzyl benzoate | human patient | 11 administrations | [39] |
Tea tree 5% in cream | children | once a week for 2–3 weeks | [40] |
Lemon oil 20% | rabbit | once a week for 4 weeks | [41] |
Lippia multiflora 20% | human patients | five days | [42] |
Cedrus deodora | lambs | ten days | [43] |
Cedrus deodora + ascorbic acid | sheep | once daily for 5 days | [44] |
PE | |||
Pongamia pinnata 10% + sulfur | goat | six times every three days | [45] |
Jatropha curcas + ascorbic acid | sheep | once daily for 2 days | [44] |
Pongamia glabra + ascorbic acid | sheep | once daily for 3 days | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardoni, S.; Mancianti, F. Essential Oils against Sarcoptes scabiei. Molecules 2022, 27, 9067. https://doi.org/10.3390/molecules27249067
Nardoni S, Mancianti F. Essential Oils against Sarcoptes scabiei. Molecules. 2022; 27(24):9067. https://doi.org/10.3390/molecules27249067
Chicago/Turabian StyleNardoni, Simona, and Francesca Mancianti. 2022. "Essential Oils against Sarcoptes scabiei" Molecules 27, no. 24: 9067. https://doi.org/10.3390/molecules27249067
APA StyleNardoni, S., & Mancianti, F. (2022). Essential Oils against Sarcoptes scabiei. Molecules, 27(24), 9067. https://doi.org/10.3390/molecules27249067