Pharmacokinetic Characterization of the DDAH1 Inhibitors ZST316 and ZST152 in Mice Using a HPLC-MS/MS Method
Abstract
:1. Introduction
2. Results
2.1. HPLC-MS/MS
2.2. Development of the Analytical Method
2.2.1. Plasma
2.2.2. Urine
2.3. Pharmacokinetics
3. Discussion
4. Materials and Methods
4.1. Compounds
4.2. Mice and Pharmacokinetic Study
4.3. Development of the Analytical Method
4.3.1. Preparation of Standard and Quality Control Plasma Samples
4.3.2. Extraction Procedure for Plasma Samples
4.3.3. Preparation of Standard and Quality Control Urine Samples
4.3.4. Extraction Procedure for Urine Samples
4.3.5. HPLC-MS/MS Conditions
4.4. Pharmacokinetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Altmann, K.S.; Havemeyer, A.; Beitz, E.; Clement, B. Dimethylarginine-dimethylaminohydrolase-2 (DDAH-2) does not metabolize methylarginines. ChemBioChem 2012, 13, 2599–2604. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Atzler, D.; Xu, X.; Zhang, P.; Guo, H.; Lu, Z.; Fassett, J.; Schwedhelm, E.; Boger, R.H.; Bache, R.J.; et al. Dimethylarginine dimethylaminohydrolase-1 is the critical enzyme for degrading the cardiovascular risk factor asymmetrical dimethylarginine. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1540–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarzebska, N.; Mangoni, A.A.; Martens-Lobenhoffer, J.; Bode-Boger, S.M.; Rodionov, R.N. The Second Life of Methylarginines as Cardiovascular Targets. Int. J. Mol. Sci. 2019, 20, 4592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, C.T.; Leiper, J.M.; Vallance, P. The DDAH/ADMA/NOS pathway. Atheroscler. Suppl. 2003, 4, 33–40. [Google Scholar] [CrossRef]
- Kithas, A.C.; Broxterman, R.M.; Trinity, J.D.; Gifford, J.R.; Kwon, O.S.; Hydren, J.R.; Nelson, A.D.; Jessop, J.E.; Bledsoe, A.D.; Morgan, D.E.; et al. Nitric oxide synthase inhibition with N(G)-monomethyl-l-arginine: Determining the window of effect in the human vasculature. Nitric Oxide 2020, 104-105, 51–60. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Tommasi, S.; Sotgia, S.; Zinellu, A.; Paliogiannis, P.; Piga, M.; Cauli, A.; Pintus, G.; Carru, C.; Erre, G.L. Asymmetric Dimethylarginine: A Key Player in the Pathophysiology of Endothelial Dysfunction, Vascular Inflammation and Atherosclerosis in Rheumatoid Arthritis? Curr. Pharm. Des. 2021, 27, 2131–2140. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Rodionov, R.N.; McEvoy, M.; Zinellu, A.; Carru, C.; Sotgia, S. New horizons in arginine metabolism, ageing and chronic disease states. Age Ageing 2019, 48, 776–782. [Google Scholar] [CrossRef]
- Wadham, C.; Mangoni, A.A. Dimethylarginine dimethylaminohydrolase regulation: A novel therapeutic target in cardiovascular disease. Expert Opin. Drug Metab. Toxicol. 2009, 5, 303–319. [Google Scholar] [CrossRef]
- Nandi, M.; Kelly, P.; Torondel, B.; Wang, Z.; Starr, A.; Ma, Y.; Cunningham, P.; Stidwill, R.; Leiper, J. Genetic and pharmacological inhibition of dimethylarginine dimethylaminohydrolase 1 is protective in endotoxic shock. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2589–2597. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.K.; Dasari, C.; Duscharla, D.; Supriya, B.; Ram, N.S.; Surekha, M.V.; Kumar, J.M.; Ummanni, R. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is frequently upregulated in prostate cancer, and its overexpression conveys tumor growth and angiogenesis by metabolizing asymmetric dimethylarginine (ADMA). Angiogenesis 2018, 21, 79–94. [Google Scholar] [CrossRef]
- Hulin, J.A.; Tommasi, S.; Elliot, D.; Hu, D.G.; Lewis, B.C.; Mangoni, A.A. MiR-193b regulates breast cancer cell migration and vasculogenic mimicry by targeting dimethylarginine dimethylaminohydrolase 1. Sci. Rep. 2017, 7, 13996. [Google Scholar] [CrossRef]
- Murphy, R.B.; Tommasi, S.; Lewis, B.C.; Mangoni, A.A. Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development. Molecules 2016, 21, 615. [Google Scholar] [CrossRef] [Green Version]
- Hulin, J.A.; Gubareva, E.A.; Jarzebska, N.; Rodionov, R.N.; Mangoni, A.A.; Tommasi, S. Inhibition of Dimethylarginine Dimethylaminohydrolase (DDAH) Enzymes as an Emerging Therapeutic Strategy to Target Angiogenesis and Vasculogenic Mimicry in Cancer. Front. Oncol. 2019, 9, 1455. [Google Scholar] [CrossRef]
- Basudhar, D.; Somasundaram, V.; De Oliveira, G.A.; Kesarwala, A.; Heinecke, J.L.; Cheng, R.Y.; Glynn, S.A.; Ambs, S.; Wink, D.A.; Ridnour, L.A. Nitric Oxide Synthase-2-Derived Nitric Oxide Drives Multiple Pathways of Breast Cancer Progression. Antioxid. Redox Signal. 2017, 26, 1044–1058. [Google Scholar] [CrossRef]
- Tommasi, S.; Zanato, C.; Lewis, B.C.; Nair, P.C.; Dall’Angelo, S.; Zanda, M.; Mangoni, A.A. Arginine analogues incorporating carboxylate bioisosteric functions are micromolar inhibitors of human recombinant DDAH-1. Org. Biomol. Chem. 2015, 13, 11315–11330. [Google Scholar] [CrossRef]
- Andonegui-Elguera, M.A.; Alfaro-Mora, Y.; Caceres-Gutierrez, R.; Caro-Sanchez, C.H.S.; Herrera, L.A.; Diaz-Chavez, J. An Overview of Vasculogenic Mimicry in Breast Cancer. Front. Oncol. 2020, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Hulin, J.A.; Tommasi, S.; Elliot, D.; Mangoni, A.A. Small molecule inhibition of DDAH1 significantly attenuates triple negative breast cancer cell vasculogenic mimicry in vitro. Biomed. Pharmacother. 2019, 111, 602–612. [Google Scholar] [CrossRef]
- Sandhu, A.K.; Huang, Y.; Xiao, D.; Park, E.; Edirisinghe, I.; Burton-Freeman, B. Pharmacokinetic Characterization and Bioavailability of Strawberry Anthocyanins Relative to Meal Intake. J. Agric. Food Chem. 2016, 64, 4891–4899. [Google Scholar] [CrossRef]
- Kiss, B.; Nemethy, Z.; Fazekas, K.; Kurko, D.; Gyertyan, I.; Saghy, K.; Laszlovszky, I.; Farkas, B.; Kirschner, N.; Bolf-Terjeki, E.; et al. Preclinical pharmacodynamic and pharmacokinetic characterization of the major metabolites of cariprazine. Drug Des. Dev. Ther. 2019, 13, 3229–3248. [Google Scholar] [CrossRef] [Green Version]
- Reif, S.; Snelder, N.; Blode, H. Characterisation of the pharmacokinetics of ethinylestradiol and drospirenone in extended-cycle regimens: Population pharmacokinetic analysis from a randomised Phase III study. J. Fam. Plan. Reprod. Health Care 2013, 39, e1–e13. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, K.; Broekhuizen, K.; De Boon, W.M.I.; Karsdal, M.A.; Bihlet, A.R.; Christiansen, C.; Dillingh, M.R.; De Kam, M.; Kumar, R.; Burggraaf, J.; et al. Safety, tolerability and pharmacokinetic characterisation of DACRA KBP-042 in healthy male subjects. Br. J. Clin. Pharmacol. 2021, 87, 4786–4796. [Google Scholar] [CrossRef] [PubMed]
- Nardi-Hiebl, S.; Ndieyira, J.W.; Al Enzi, Y.; Al Akkad, W.; Koch, T.; Geldner, G.; Reyher, C.; Eberhart, L.H.J. Pharmacokinetic Characterisation and Comparison of Bioavailability of Intranasal Fentanyl, Transmucosal, and Intravenous Administration through a Three-Way Crossover Study in 24 Healthy Volunteers. Pain Res. Manag. 2021, 2021, 2887773. [Google Scholar] [CrossRef] [PubMed]
- Mallalieu, N.L.; Winter, E.; Fettner, S.; Patel, K.; Zwanziger, E.; Attley, G.; Rodriguez, I.; Kano, A.; Salama, S.M.; Bentley, D.; et al. Safety and Pharmacokinetic Characterization of Nacubactam, a Novel beta-Lactamase Inhibitor, Alone and in Combination with Meropenem, in Healthy Volunteers. Antimicrob. Agents Chemother. 2020, 64, e02229-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballatore, C.; Huryn, D.M.; Smith, A.B., 3rd. Carboxylic acid (bio)isosteres in drug design. ChemMedChem 2013, 8, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. Synthesis and angiotensin II receptor antagonistic activities of benzimidazole derivatives bearing acidic heterocycles as novel tetrazole bioisosteres. J. Med. Chem. 1996, 39, 5228–5235. [Google Scholar] [CrossRef]
- Adriaenssens, Y.; Jimenez Fernandez, D.; Vande Walle, L.; Elvas, F.; Joossens, J.; Lambeir, A.; Augustyns, K.; Lamkanfi, M.; Van der Veken, P. Carboxylate isosteres for caspase inhibitors: The acylsulfonamide case revisited. Org. Biomol. Chem. 2017, 15, 7456–7473. [Google Scholar] [CrossRef]
- Asaki, T.; Kuwano, K.; Morrison, K.; Gatfield, J.; Hamamoto, T.; Clozel, M. Selexipag: An Oral and Selective IP Prostacyclin Receptor Agonist for the Treatment of Pulmonary Arterial Hypertension. J. Med. Chem. 2015, 58, 7128–7137. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of substances to laboratory animals: Routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 600–613. [Google Scholar]
- Al Shoyaib, A.; Archie, S.R.; Karamyan, V.T. Intraperitoneal Route of Drug Administration: Should it Be Used in Experimental Animal Studies? Pharm. Res. 2019, 37, 12. [Google Scholar] [CrossRef]
- Farnsworth, R.H.; Lackmann, M.; Achen, M.G.; Stacker, S.A. Vascular remodeling in cancer. Oncogene 2014, 33, 3496–3505. [Google Scholar] [CrossRef] [Green Version]
- Son, B.; Lee, S.; Youn, H.; Kim, E.; Kim, W.; Youn, B. The role of tumor microenvironment in therapeutic resistance. Oncotarget 2017, 8, 3933–3945. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.Z.; Jin, W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target Ther. 2020, 5, 166. [Google Scholar] [CrossRef]
- Workman, P.; Aboagye, E.O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D.J.; Double, J.A.; Everitt, J.; Farningham, D.A.; Glennie, M.J.; et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 2010, 102, 1555–1577. [Google Scholar] [CrossRef] [Green Version]
ZST316 | ZST152 | |
---|---|---|
Actual LLOQ concentration (ng/mL) | 5.0 | 5.0 |
Mean concentration found (ng/mL) | 4.8 ± 0.3 | 5.3 ± 0.2 |
Accuracy % | 95.8 | 106.1 |
Precision % | 7.1 | 4.1 |
ZST316 | ZST152 | |||
---|---|---|---|---|
Actual Concentration (ng/mL) | 15.0 | 250.0 | 15.0 | 250.0 |
Mean concentration found (ng/mL) | 15.6 ± 0.91 | 237.6 ± 10.4 | 15.7 ± 0.78 | 228.6 ± 10.3 |
Accuracy % | 103.7 | 95.0 | 104.9 | 91.4 |
Precision % | 5.8 | 4.4 | 5.0 | 4.5 |
N | 5 | 5 | 5 | 5 |
Nominal Concentration (ng/mL) | ||
---|---|---|
15.0 | 250.0 | |
ZST316 | Measured Concentration | |
Day 1 | 14.6 | 234.0 |
16.4 | 256.0 | |
15.8 | 233.0 | |
16.4 | 231.0 | |
14.6 | 234.0 | |
Day 2 | 21.6* | 283.0 |
15.5 | 271.0 | |
16.2 | 257.0 | |
Day 3 | 19.6 | 279.0 |
15.9 | 290.0 | |
16.8 | 284.0 | |
Mean (n = 11) | 16.2 | 259.3 |
SD | 1.41 | 13.00 |
Precision (%) | 8.7 | 5.0 |
Accuracy (%) | 107.9 | 103.7 |
Nominal concentration (ng/mL) | ||
15.0 | 250.0 | |
ZST152 | Measured concentration | |
Day 1 | 15.6 | 241.0 |
15.8 | 229.0 | |
15.7 | 236.0 | |
14.7 | 216.0 | |
16.9 | 221.0 | |
Day 2 | 15.9 | 258.0 |
12.8 | 191.0 * | |
15.6 | 236.0 | |
Day 3 | 16.3 | 258.0 |
18.2 | 256.0 | |
13.9 | 258.0 | |
Mean (n = 11) | 15.6 | 241.4 |
SD | 1.44 | 16.9 |
Precision (%) | 9.2 | 7.0 |
Accuracy (%) | 103.9 | 96.6 |
ZST316 | ZST152 | |
---|---|---|
Actual concentration (µg/mL) | 30.0 | 30.0 |
Mean concentration found (µg/mL) | 33.3 ± 1.53 | 29.2 ± 1.1 |
Accuracy % | 111.2 | 97.2 |
Precision % | 4.6 | 3.8 |
N | 3 | 3 |
Nominal Concentration (µg/mL) | |
---|---|
30.0 | |
ZST316 | Measured Concentration |
Day 1 | 31.7 |
33.7 | |
34.7 | |
Day 2 | 34.2 |
33.7 | |
27.7 | |
Day 3 | 33.9 |
44.9* | |
29.7 | |
Mean (n = 8) | 32.4 |
SD | 2.51 |
Precision (%) | 7.7 |
Accuracy (%) | 108.0 |
Nominal concentration (µg/mL) | |
30.0 | |
ZST152 | Measured concentration |
Day 1 | 30.0 |
29.6 | |
27.9 | |
Day 2 | 28.8 |
29.2 | |
N.D.* | |
Day 3 | 28.5 |
30.5 | |
29.1 | |
Mean (N=8) | 29.2 |
SD | 0.83 |
Precision (%) | 2.8 |
Accuracy (%) | 97.3 |
ZST316 p.o. 60 mg/Kg | ZST316 i.v. 30 mg/Kg | ZST152 p.o. 60 mg/Kg | ZST152 i.v. 30 mg/Kg | |
---|---|---|---|---|
Cmax (μg/mL) | 1.02 | 67.4 | 4.34 | 24.9 |
Tmax (min) | 30 | 5 | 15 | 5 |
AUC 0-8h (μg/mL·h) | 1.94 | 21.4 | 6.17 | 9.25 |
AUC 0-last (μg/mL·h) | 1.94 | 21.5 | 6.17 | 9.25 |
AUC 0-inf (μg/mL·h) | 2.01 | 21.6 | 6.18 | 9.26 |
Half-life (h) | 1.63 | 6.06 | 0.86 | 1.17 |
Clp (mL/h/Kg) | - | 1.39 | - | 3.24 |
Vd (mL/Kg) | - | 12.17 | - | 5.49 |
F % | 4.7 | - | 33.3 | - |
24 h urinary excretion (% of dose) | 2.3 | 7.5 | 12.5 | 22.2 |
ZST316 | ZST152 | |||||||
---|---|---|---|---|---|---|---|---|
Oral | Intravenous | Oral | Intravenous | |||||
Total Dose 1.308 mg Mouse #3 | Tot. Dose 1.326 mg Mouse #1 | Tot. Dose 1.158 mg Mouse #3 | Tot. Dose 1.410 mg Mouse #1 | |||||
Amount Recovered (µg) | % of Dose | Amount Recovered (µg) | % of Dose | Amount Recovered (µg) | % of Dose | Amount Recovered (µg) | % of Dose | |
ZST316 | 28.9 | 2.2% | 41.2 | 3.1% | - | - | - | - |
ZST152 | - | - | - | - | 75.0 | 6.5% | 148 | 10.5% |
M1 | 2.74 | 0.21% | 0.23 | 0.017% | 1.02 | 0.088% | 0.55 | 0.039% |
M2 | - | - | - | - | 0.27 | 0.023% | 128 | 9.05% |
M3 | - | - | - | - | 49.1 | 4.2% | 2.62 | 0.19% |
M4 | 108 | 8.2% | 8.71 | 0.66% | 87.8 | 7.6% | 93.3 | 6.6% |
M5 | - | - | - | - | 1.84 | 0.16% | 298 | 21.2% |
M6 | - | - | - | - | 0.16 | 0.014% | 1.48 | 0.10% |
M7 | 991 | 76% | 86.1 | 6.5% | 2.58 | 0.22% | 1.77 | 0.13% |
M8 | 53.4 | 4.1% | 4.87 | 0.37% | - | - | - | - |
M9 | 71.0 | 5.4% | 4.28 | 0.32% | - | - | - | - |
ZST316 Acute Treatment | ZST316 Chronic Treatment | |
---|---|---|
Cmax (μg/mL) | 40.2 | 33.6 |
Tmax (min) | 0.25 | 0.25 |
AUC 0-8h (μg/mL·h) | 14.34 | 12.32 |
AUC 0-last (μg/mL·h) | 14.45 | 12.57 |
AUC 0-inf (μg/mL·h) | 14.48 | 12.71 |
Half-life (h) | 5.7 | 8.4 |
F % | 67.2 | 58.9 |
24-h urinary excretion (% of dose) | 56.1 | 54.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangoni, A.A.; Ceruti, T.; Frapolli, R.; Russo, M.; Fichera, S.; Zucchetti, M.; Tommasi, S. Pharmacokinetic Characterization of the DDAH1 Inhibitors ZST316 and ZST152 in Mice Using a HPLC-MS/MS Method. Molecules 2022, 27, 1017. https://doi.org/10.3390/molecules27031017
Mangoni AA, Ceruti T, Frapolli R, Russo M, Fichera S, Zucchetti M, Tommasi S. Pharmacokinetic Characterization of the DDAH1 Inhibitors ZST316 and ZST152 in Mice Using a HPLC-MS/MS Method. Molecules. 2022; 27(3):1017. https://doi.org/10.3390/molecules27031017
Chicago/Turabian StyleMangoni, Arduino A., Tommaso Ceruti, Roberta Frapolli, Massimo Russo, Stefania Fichera, Massimo Zucchetti, and Sara Tommasi. 2022. "Pharmacokinetic Characterization of the DDAH1 Inhibitors ZST316 and ZST152 in Mice Using a HPLC-MS/MS Method" Molecules 27, no. 3: 1017. https://doi.org/10.3390/molecules27031017
APA StyleMangoni, A. A., Ceruti, T., Frapolli, R., Russo, M., Fichera, S., Zucchetti, M., & Tommasi, S. (2022). Pharmacokinetic Characterization of the DDAH1 Inhibitors ZST316 and ZST152 in Mice Using a HPLC-MS/MS Method. Molecules, 27(3), 1017. https://doi.org/10.3390/molecules27031017