Design, Synthesis and Cytotoxicity of Thiazole-Based Stilbene Analogs as Novel DNA Topoisomerase IB Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Top1 Inhibitory Activities
2.3. Cytotoxicity
3. Experimental Section
3.1. Chemistry
3.1.1. General Information
3.1.2. Synthesis of 4-(4-Halophenyl)-2-methylthiazole 2
3.1.3. Synthesis of 5-Bromo-4-(4-halophenyl)-2-methylthiazole 3
3.1.4. Synthesis of 5-Bromo-2-(bromomethyl)-4-(4-halophenyl)thiazole 4
3.1.5. Synthesis of Diethyl ((4-(4-Halophenyl)thiazol-2-yl)methyl)phosphonate 5
3.1.6. General Synthetic Procedure for Compounds 6–32
3.1.7. Synthesis of Compounds 33–35
3.1.8. Synthesis of Compounds 36 and 37
3.2. Bioassay of Top1-Mediated Relaxation Assay
3.3. Molecular Modeling
3.4. Cell Culture and MTT Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Latest Global Cancer Data: Cancer Burden Rises to 19.3 Million New Cases and 10.0 Million Cancer Deaths in 2020. Questions and Answers (Q&A). Available online: https://www.iarc.who.int/faq/latest-global-cancer-data-2020-qa/ (accessed on 12 December 2021).
- Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones—A review. RSC Adv. 2015, 5, 20309–20338. [Google Scholar] [CrossRef]
- Ranjbar, S.; Edraki, N.; Khoshneviszadeh, M.; Foroumadi, A.; Miri, R.; Khoshneviszadeh, M. Design, synthesis, cytotoxicity evaluation and docking studies of 1,2,4-triazine derivatives bearing different arylidene-hydrazinyl moieties as potential mTOR inhibitors. Res. Pharm. Sci. 2018, 13, 1–11. [Google Scholar] [PubMed]
- Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem. 2001, 70, 369–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, L.; Redinbo, M.R.; Qiu, X.; Hol, W.G.J.; Champoux, J.J. A model for the mechanism of human topoisomerase I. Science 1998, 279, 1534–1541. [Google Scholar] [CrossRef]
- Pommier, Y.; Sung, Y.; Huang, S.N.; Nitiss, J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 2016, 17, 703–721. [Google Scholar] [CrossRef]
- Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer 2006, 6, 789–802. [Google Scholar] [CrossRef]
- Pommier, Y. Drugging Topoisomerases: Lessons and challenges. ACS Chem. Biol. 2013, 8, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010, 17, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Lian, Q.; Xu, J.; Yan, S.; Huang, M.; Ding, H.; Sun, X.; Bi, A.; Ding, J.; Sun, B.; Geng, M. Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res. 2017, 27, 784–800. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhang, Y.; Yan, X.L.; Xiao, L.G.; Hu, D.X.; Yu, Q.; An, L.K. Secondary metabolites from Isodon ternifolius (D. Don) Kudo and their anticancer activity as DNA topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg. Med. Chem. 2020, 28, 115527. [Google Scholar] [CrossRef]
- Hu, D.X.; Tang, W.L.; Zhang, Y.; Yang, H.; Wang, W.; Agama, K.; Pommier, Y.; An, L.K. Synthesis of methoxy-, methylenedioxy-, hydroxy-, and halo- substituted benzophenanthridinone derivatives as DNA topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors and their biological activity for drug-resistant cancer. J. Med. Chem. 2021, 64, 7617–7629. [Google Scholar] [CrossRef]
- Xu, S.; Yao, H.; Qiu, Y.; Zhou, M.; Li, D.; Wu, L.; Yang, D.H.; Chen, Z.S.; Xu, J. Discovery of novel polycyclic heterocyclic derivatives from evodiamine for the potential treatment of triple-negative breast cancer. J. Med. Chem. 2021, 64, 17346–17365. [Google Scholar] [CrossRef]
- Thomas, A.; Pommier, Y. Targeting topoisomerase I in the era of precision medicine. Clin. Cancer Res. 2019, 25, 6581–6589. [Google Scholar] [CrossRef]
- Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531–541. [Google Scholar] [CrossRef]
- Keylor, M.H.; Matsuura, B.S.; Stephenson, C.R.J. Chemistry and biology of resveratrol-derived natural products. Chem. Rev. 2015, 115, 8976–9027. [Google Scholar] [CrossRef]
- Nawaz, W.; Zhou, Z.; Deng, S.; Ma, X.; Ma, X.; Li, C.; Shu, X. Therapeutic versatility of resveratrol derivatives. Nutrients 2017, 9, 1188. [Google Scholar] [CrossRef] [Green Version]
- Wahedi, H.M.; Ahmad, S.; Abbasi, S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 3225–3234. [Google Scholar] [CrossRef]
- Jang, M.S.; Cai, E.N.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [Green Version]
- Remsberg, C.M.; Yanez, J.A.; Ohgami, Y.; Vega-Villa, K.R.; Rimando, A.M.; Davies, N.M. Pharmacometrics of pterostilbene: Preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res. 2008, 22, 169–179. [Google Scholar] [CrossRef]
- Jordan, V.C. Tamoxifen: A most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2003, 2, 205–213. [Google Scholar] [CrossRef]
- Cai, J.Z.; Tang, R.; Ye, G.F.; Qiu, S.X.; Zhang, N.L.; Hu, Y.J.; Shen, X.L. A halogen-containing stilbene derivative from the leaves of cajanus cajan that induces osteogenic differentiation of human mesenchymal stem cells. Molecules 2015, 20, 10839–10847. [Google Scholar] [CrossRef] [Green Version]
- Tron, G.C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A.A. Medicinal chemistry of combretastatin A4: Present and future directions. J. Med. Chem. 2006, 49, 3033–3044. [Google Scholar] [CrossRef]
- Kashyap, S.J.; Garg, V.K.; Sharma, P.K.; Kumar, N.; Dudhe, R.; Gupta, J.K. Thiazoles: Having diverse biological activities. Med. Chem. Res. 2012, 21, 2123–2132. [Google Scholar] [CrossRef]
- Vaddula, B.R.; Tantak, M.P.; Sadana, R.; Gonzalez, M.A.; Kumar, D. One-pot synthesis and in-vitro anticancer evaluation of 5-(2′-indolyl)thiazoles. Sci. Rep. 2016, 6, 23401. [Google Scholar] [CrossRef] [Green Version]
- Kumawat, M.K. Thiazole containing heterocycles with antimalarial activity. Curr. Drug Discov. Technol. 2018, 15, 196–200. [Google Scholar] [CrossRef]
- El-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem. 2009, 44, 3746–3753. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Weng, J.; Yu, Q.; Yuan, J.; Chen, J. Synthesis and biological activity of natural stilbene-inspired substituted styrylthiazole derivates. Chin. J. Org. Chem. 2020, 40, 1055–1061. [Google Scholar] [CrossRef]
- Limbach, D.; Geffe, M.; Detert, H. Synthesis of carbolines via microwave-assisted cadogan reactions of aryl-nitropyridines. ChemistrySelect 2018, 3, 249–252. [Google Scholar] [CrossRef]
- Weng, J.Q.; Ali, A.; Estep, A.; Becnel, J.; Meyer, S.L.F.; Wedge, D.E.; Jacob, M.; Rimando, A.M. Synthesis and biological evaluation of 3,5-dimethoxystilbene analogs. Chem. Biodivers. 2016, 13, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Dou, D.F.; He, G.J.; Li, Y.; Lai, Z.; Wei, L.Q.; Alliston, K.R.; Lushington, G.H.; Eichhorn, D.M.; Groutas, W.C. Utilization of the 1,2,3,5-thiatriazolidin-3-one 1,1-dioxide scaffold in the design of potential inhibitors of human neutrophil proteinase 3. Bioorg. Med. Chem. 2010, 18, 1093–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocabas, E.; Sariguney, A.B.; Coskun, A. A rapid and high-yileding synthesis of thiazoles and aminothiazoles using tetrabutylammonium salts. Heterocycles 2010, 81, 2849–2854. [Google Scholar] [CrossRef]
- Zhu, D.J.; Chen, J.X.; Wu, D.Z.; Liu, M.C.; Ding, J.C.; Wu, H.Y. An efficient, catalyst- and solvent-free synthesis of imidazo[1,2-a]pyridines and 2,4-disubstituted thiazoles on grinding. J. Chem. Res. 2009, 2009, 84–86. [Google Scholar] [CrossRef]
- Wetherill, J.P.; Hann, R.M. 2-Methyl- and 2-ethyl-4-(p-halogenphenyl)-thiazoles and some of their derivatives. J. Am. Chem. Soc. 1934, 56, 970–971. [Google Scholar] [CrossRef]
- Pommier, Y.; Covey, J.M.; Kerrigan, D.; Markovits, J.; Pham, R. DNA unwinding and inhibition of mouse leukemia L1210 DNA topoisomerase I by intercalators. Nucleic Acids Res. 1987, 15, 6713–6731. [Google Scholar] [CrossRef] [Green Version]
- Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B.; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA 2002, 99, 15387–15392. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.D.; Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 1987, 47, 936–942. [Google Scholar]
Comp. | X | R | Overall Yield (%) | Relaxation Assay a | Comp. | X | R | Overall Yield (%) | Relaxation Assay a |
---|---|---|---|---|---|---|---|---|---|
6 | F | H | 20.3 | ++ | 22 | Cl | 3-Me | 28.1 | ++ |
7 | F | 2-Me | 24.8 | ++ | 23 | Cl | 4-tert-Bu | 25.9 | + |
8 | F | 3-Me | 25.0 | ++++ | 24 | Cl | 2-OMe | 33.9 | ++ |
9 | F | 4-Me | 24.7 | + | 25 | Cl | 2-Cl | 31.9 | + |
10 | F | 4-CF3 | 26.4 | +++ | 26 | Br | 3-Me | 29.1 | ++ |
11 | F | 4-tert-Bu | 24.5 | +++ | 27 | Br | 4-CF3 | 25.2 | ++ |
12 | F | 2-OMe | 22.2 | ++ | 28 | Br | 4-tert-Bu | 27.2 | + |
13 | F | 3-OMe | 22.9 | +++ | 29 | Br | 4-F | 20.8 | ++ |
14 | F | 4-OMe | 25.8 | + | 30 | Br | 2-OMe | 24.9 | + |
15 | F | 4-F | 21.4 | +++ | 31 | Br | 3-OMe | 26.5 | + |
16 | F | 2-Cl | 25.2 | ++ | 32 | Br | 4-OMe | 29.0 | + |
17 | F | 4-Cl | 21.2 | + | 33 | Br | 2-OH | 15.8 | + |
18 | F | 2-Br | 19.8 | ++ | 34 | Br | 3-OH | 17.3 | + |
19 | F | 3-Br | 21.2 | +++ | 35 | Br | 4-OH | 21.7 | + |
20 | F | 2,4-di-Cl | 19.6 | + | 36 | Br | 3-O-prenyl | 10.8 | ++ |
21 | Cl | 2-Me | 30.2 | + | 37 | Br | 4-O-prenyl | 12.6 | + |
Comp. | MCF-7 | HCT116 | HEK293T | Comp. | MCF-7 | HCT116 | HEK293T |
---|---|---|---|---|---|---|---|
Cytotoxicity (IC50, μM) | Cytotoxicity (IC50, μM) | ||||||
6 | 22.16 ± 5.01 | 5.78 ± 1.89 | - b | 23 | 7.22 ± 0.40 | 2.87 ± 0.26 | 18.67 ± 1.37 |
7 | 31.42 ± 4.21 | 6.47 ± 0.62 | - | 24 | >100 | 49.42 ± 3.49 | - |
8 | 0.78 ± 0.12 | 1.48 ± 0.16 | 10.15 ± 0.68 | 25 | 48.52 ± 6.67 | 50.98 ± 3.70 | - |
9 | 65.52 ± 3.11 | 21.87 ± 4.29 | - | 26 | 10.79 ± 2.42 | 2.09 ± 0.15 | - |
10 | 17.27 ± 1.62 | 22.60 ± 2.41 | - | 27 | 24.27 ± 5.62 | 34.90 ± 5.66 | - |
11 | 6.31 ± 0.51 | 0.62 ± 0.09 | 12.02 ± 2.45 | 28 | 3.78 ± 1.66 | 1.39 ± 0.16 | 21.78 ± 3.80 |
12 | 49.53 ± 9.08 | 17.80 ± 1.16 | - | 29 | >100 | 63.25 ± 6.17 | - |
13 | 9.85 ± 0.47 | 4.99 ± 0.80 | 25.16 ± 1.52 | 30 | >100 | >100 | - |
14 | >100 | >100 | - | 31 | 45.82 ± 4.47 | 40.30 ± 7.80 | - |
15 | 4.14 ± 0.40 | 10.22 ± 1.07 | - | 32 | >100 | >100 | - |
16 | 15.20 ± 1.18 | 8.42 ± 1.10 | - | 33 | 39.18 ± 1.79 | 4.15 ± 0.76 | - |
17 | 43.27 ± 1.42 | 27.09 ± 0.41 | - | 34 | 22.79 ± 1.40 | 9.99 ± 0.19 | - |
18 | 20.04 ± 2.07 | 12.29 ± 1.10 | - | 35 | 38.01 ± 5.82 | 2.86 ± 0.46 | - |
19 | 11.45 ± 1.74 | 6.95 ± 0.33 | - | 36 | >100 | >100 | - |
20 | 72.43 ± 2.15 | 54.79 ± 0.73 | - | 37 | >100 | >100 | - |
21 | 39.51 ± 1.06 | 41.72 ± 1.92 | - | CPT a | 0.34 ± 0.026 | 0.012 ± 0.001 | 0.10 ± 0.003 |
22 | >100 | >100 | - | vp-16 a | 24.68 ± 3.12 | 18.95 ± 1.35 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.-C.; Chen, B.; Yang, J.-L.; Weng, J.-Q.; Yu, Q.; Hu, D.-X. Design, Synthesis and Cytotoxicity of Thiazole-Based Stilbene Analogs as Novel DNA Topoisomerase IB Inhibitors. Molecules 2022, 27, 1009. https://doi.org/10.3390/molecules27031009
Liu J-C, Chen B, Yang J-L, Weng J-Q, Yu Q, Hu D-X. Design, Synthesis and Cytotoxicity of Thiazole-Based Stilbene Analogs as Novel DNA Topoisomerase IB Inhibitors. Molecules. 2022; 27(3):1009. https://doi.org/10.3390/molecules27031009
Chicago/Turabian StyleLiu, Jin-Chuan, Bo Chen, Jia-Lin Yang, Jian-Quan Weng, Qian Yu, and De-Xuan Hu. 2022. "Design, Synthesis and Cytotoxicity of Thiazole-Based Stilbene Analogs as Novel DNA Topoisomerase IB Inhibitors" Molecules 27, no. 3: 1009. https://doi.org/10.3390/molecules27031009
APA StyleLiu, J. -C., Chen, B., Yang, J. -L., Weng, J. -Q., Yu, Q., & Hu, D. -X. (2022). Design, Synthesis and Cytotoxicity of Thiazole-Based Stilbene Analogs as Novel DNA Topoisomerase IB Inhibitors. Molecules, 27(3), 1009. https://doi.org/10.3390/molecules27031009