Synthesis, X-ray Structure, Hirshfeld, DFT and Biological Studies on a Quinazolinone-Nitrate Complex
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Chracterizations
2.2. Structure Description
2.3. Hirshfeld Analysis
2.4. DFT Studies
2.4.1. Energetics and Stability
2.4.2. Optimized Geometry
2.4.3. Frontier Molecular Orbitals (FMOs) and Reactivity Descriptors
2.4.4. Natural Charge Population
2.5. Biological Studies
2.5.1. Antioxidant Activity
2.5.2. Cytotoxicity against Breast and Lung Carcinoma
2.5.3. Antimicrobial Activity
3. Experimental
3.1. Materials and Physical Measurements
3.2. Synthesis of 4HQZN
3.3. Crystal Structure Determination
3.4. Biological Studies
3.5. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mishra, B.B.; Kumar, D.; Mishra, A.; Mohapatra, P.P.; Tiwari, V.K. Cyclo-Release Strategy in Solid-Phase Combinatorial Synthesis of Heterocyclic Skeletons. Adv. Heterocycl. Chem. 2012, 107, 41–99. [Google Scholar]
- Kaur, N. Chapter 4. Metal- and Non-Metal-Assisted Synthesis of Six-Membered N,N-Heterocycles. In Metal and Nonmetal Assisted Synthesis of Six-Membered Heterocycles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 183–241. [Google Scholar] [CrossRef]
- Jen, T.; Dienel, B.; Dowalo, F.; Van Hoeven, H.; Bender, P.; Loev, B. Amidines. 5. Synthesis of pyrrolo [2, 3-b] isoquinoline imidazo [1, 2-b] isoquinoline, pyrrolo [2, 1-b] quinazoline, and 1, 3-thiazino [2, 3-b] quinazoline derivatives and related heterocycles as potential antihypertensive agents. J. Med. Chem. 1973, 16, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A.; Ishtiaq, A.M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011–2016). Expert Opin. Ther. Pat. 2018, 28, 281–297. [Google Scholar] [CrossRef]
- Mahato, A.K.; Srivastava, B.; Nithya, S. Chemistry, structure activity relationship and biological activity of quinazoline-4 (3H)-one derivatives. Inventi Rapid Med. Chem. 2011, 2, 13–19. [Google Scholar]
- Faisal, M.; Saeed, A. Chemical insights into the synthetic chemistry of quinazolines: Recent advances. Front. Chem. 2021, 8, 1204. [Google Scholar] [CrossRef]
- Al-Salahi, R.; Taie, H.A.; Bakheit, A.H.; Marzouk, M.; Almehizia, A.A.; Herqash, R.; Abuelizz, H.A. Antioxidant activities and molecular docking of 2-thioxobenzo [g] quinazoline derivatives. Pharmacol. Rep. 2019, 71, 695–700. [Google Scholar] [CrossRef]
- Devipriya, D.; Roopan, S.M. UV-light intervened synthesis of imidazo fused quinazoline and its solvatochromism, antioxidant, antifungal and luminescence properties. J. Photochem. Photobiol. B Biol. 2019, 190, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Pathak, D.; Sharma, G.K. Synthesis, antibacterial and antioxidant activity of novel 12-(N-arylmethaniminyl) indolo [1, 2-c] quinazolines. J. Res. Pharm. 2019, 23, 584–595. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, M.; Mohammadi-Khanaposhtani, M.; Pourrabia, P.; Razzaghi, N.; Ghadimi, R.; Imanparast, S.; Faramarzi, M.A.; Bandarian, F.; Esfahani, E.N.; Safavi, M.; et al. Design and synthesis of novel quinazolinone-1, 2, 3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg. Chem. 2019, 83, 161–169. [Google Scholar] [CrossRef]
- Barmak, A.; Niknam, K.; Mohebbi, G. Synthesis, Structural Studies, and α-Glucosidase Inhibitory, Antidiabetic, and Antioxidant Activities of 2, 3-Dihydroquinazolin-4 (1 H)-ones Derived from Pyrazol-4-carbaldehyde and Anilines. ACS Omega 2019, 4, 18087–18099. [Google Scholar] [CrossRef] [Green Version]
- Khanaposhtani, M.M.; Yahyavi, H.; Imanparast, S.; Harandi, F.N.; Faramarzi, M.A.; Foroumadi, A.; Larijani, B.; Biglar, M.; Mahdavi, M. Benzoylquinazolinone derivatives as new potential antidiabetic agents: α- Glucosidase inhibition, kinetic, and docking studies. J. Chin. Chem. Soc. 2020, 67, 856–863. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Q.; Li, X.Q.; Wu, S.Q.; Wan, J.L.; Ouyang, G.P. Synthesis and Antibacterial Activity of 2-substitued-(3-pyridyl)-quinazolinone Derivatives. J. Heterocycl. Chem. 2018, 55, 743–749. [Google Scholar] [CrossRef]
- Ankireddy, A.R.; Syed, R.; Gundla, R.; Manasa, K.L.; Reddy, C.V.R.; Yatam, S.; Paidikondala, K. Kumada cross coupling reaction for the synthesis of quinazo-line derivatives, evaluation of their antibacterial activity and docking studies. Russ. J. Gen. Chem. 2019, 89, 2544–2557. [Google Scholar] [CrossRef]
- Shao, W.B.; Zheng, Y.T.; Liu, J.M.; Fu, Y.H.; Qi, P.Y.; Zhou, X.; Wu, Z.B.; Wang, P.Y.; Yang, S. Antibacterial activities against Ralstonia solanacearum and Xanthomonas oryzae pv. oryzae of 6-chloro-4-(4-substituted piperazinyl) quinazoline derivatives. Bioorg. Med. Chem. 2020, 30, 126912. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, G.; Wang, Y.; Wang, J.; Zhu, M.; Cen, S.; Wang, Y. Design, synthesis and anti-influenza A virus activity of novel 2, 4-disubstituted quinazoline derivatives. Bioorg. Med. Chem. 2020, 30, 127143. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Shi, J.; Zhang, A.; Lei, Z.; Zu, G.; Fu, Y.; Gan, X.; Yin, L.; Song, B.; Hu, D. Syntheses, antiviral activities and induced resistance mechanisms of novel quinazoline derivatives containing a dithioacetal moiety. Bioorg. Chem. 2018, 80, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.Y.; El-Bayouki, K.A.; Basyouni, W.M.; Mostafa, E.A. New series of 4(3H)-quinazolinone derivatives: Syntheses and evaluation of antitumor and antiviral activities. Med. Chem. Res. 2018, 27, 571–582. [Google Scholar] [CrossRef]
- Du, H.; Ding, M.; Luo, N.; Shi, J.; Huang, J.; Bao, X. Design, synthesis, crystal structure and in vitro antimicrobial activity of novel 1, 2, 4-triazolo [1, 5-a] pyrimidine-containing quinazolinone derivatives. Mol. Divers. 2021, 25, 711–722. [Google Scholar] [CrossRef]
- Fan, Z.; Shi, J.; Bao, X. Synthesis and antimicrobial evaluation of novel 1, 2, 4-triazole thioether derivatives bearing a quinazoline moiety. Mol. Divers. 2018, 22, 657–667. [Google Scholar] [CrossRef]
- Yang, L.; Ge, S.; Huang, J.; Bao, X. Synthesis of novel (E)-2-(4-(1 H-1, 2, 4-triazol-1-yl) styryl)-4-(alkyl/arylmethyleneoxy) quinazoline derivatives as antimicrobial agents. Mol. Divers. 2018, 22, 71–82. [Google Scholar] [CrossRef]
- Perupogu, N.; Krishna, C.; Ramachandran, D. Design, Synthesis and Anticancer Evaluation of 1, 2, 4-thiadiazole linked Benzoxazole-Quinazoline Derivatives. Chem. Data. Collect. 2020, 28, 100482. [Google Scholar] [CrossRef]
- Hu, H.; Dong, Y.; Li, M.; Wang, R.; Zhang, X.; Gong, P.; Zhao, Y. Design, synthesis and biological evaluation of novel thieno [3, 2-d] pyrimidine and quinazoline derivatives as potent antitumor agents. Bioorg. Chem. 2019, 90, 103086. [Google Scholar] [CrossRef]
- Gobinath, M.; Subramanian, N.; Alagarsamy, V.; Nivedhitha, S.; Solomon, V.R. Design and Synthesis of 1-Substituted-4-(4-Nitrophenyl)-[1, 2, 4] triazolo [4, 3-a] quinazolin-5 (4 H)-ones as a New Class of Antihistaminic Agents. Russ. J. Bioorg. Chem. 2020, 46, 403–408. [Google Scholar] [CrossRef]
- Alagarsamy, V.; Parthiban, P.; Solomon, V.R.; Dhanabal, K.; Murugesan, S.; Saravanan, G.; Anjana, G.V. Synthesis and pharmacological investigation of novel 4-(4-Ethyl phenyl)-1-substituted-4H-[1, 2, 4] triazolo [4, 3-a]-quinazolin-5-ones as new class of H1-antihistaminic agents. J. Heterocycl. Chem. 2008, 45, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Alagarsamy, V.; Parthiban, P. Design and synthesis of novel 2-(3-substituted propyl)-3-(2-methyl phenyl) quinazolin-4-(3 H)-ones as a new class of H1-antihistaminic agents. J. Enzyme Inhib. Med. Chem. 2013, 28, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.U.; Rathore, A.; Siddiqui, A.A.; Parveen, G.; Yar, M.S. Synthesis and characterization of quinazoline derivatives: Search for hybrid molecule as diuretic and antihypertensive agents. J. Enzyme Inhib. Med. Chem. 2014, 29, 733–743. [Google Scholar] [CrossRef]
- Rosenberg, J.; Gustafsson, F.; Galatius, S.; Hildebrandt, P.R. Combination therapy with metolazone and loop diuretics in outpatients with refractory heart failure: An observational study and review of the literature. Cardiovasc. Drugs Ther. 2005, 19, 301–306. [Google Scholar] [CrossRef]
- Malasala, S.; Ahmad, M.N.; Gour, J.; Shukla, M.; Kaul, G.; Akhir, A.; Gatadi, S.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis, biological evaluation and molecular modelling insights of 2-arylquinazoline benzamide derivatives as anti-tubercular agents. J. Mol. Struct. 2020, 1218, 128493. [Google Scholar] [CrossRef]
- Gawad, J.; Bonde, C. Design, synthesis and biological evaluation of novel 6-(trifluoromethyl)-N-(4-oxothiazolidin-3-yl) quinazoline-2-carboxamide derivatives as a potential DprE1 inhibitors. J. Mol. Struct. 2020, 1217, 128394. [Google Scholar] [CrossRef]
- Rajasekhar, K.K.; Nizamuddin, N.D.; Surur, A.S.; Mekonnen, Y.T. Synthesis, characterization, antitubercular and antibacterial activity, and molecular docking of 2, 3-disubstituted quinazolinone derivatives. Res. Rep. Med. Chem. 2016, 6, 15–26. [Google Scholar]
- Martynenko, Y.; Antypenko, O.; Nosulenko, I.; Berest, G.; Kovalenko, S. Directed Search of Anti-inflammatory Agents Among (3H-Quinazoline-4-ylidene) hydrazides of N-protected Amino acids and their Heterocyclization Products. Anti Inflamm. Anti Allergy Agents Med. Chem. 2020, 19, 61–73. [Google Scholar]
- Alagarsamy, V.; Solomon, V.R.; Murugan, M.; Sankaranarayanan, R.; Periyasamy, P.; Deepa, R.; Anandkumar, T.D. Synthesis of 3-(2-pyridyl)-2-substituted-quinazolin-4 (3H)-ones as new analgesic and anti-inflammatory agents. Biomed. Pharmacother. 2008, 62, 454–461. [Google Scholar] [CrossRef]
- El-Sayed, E.H.; Mohamed, K.S. Synthesis and Anti-inflammatory Evaluation of Some New Pyrazole, Pyrimidine, Pyrazolo [1, 5-a] Pyrimidine, Imidazo [1, 2-b] Pyrazole and Pyrazolo [5, 1-b] Quinazoline Derivatives Containing Indane Moiety. Polycycl. Aromat. Compd. 2019, 41, 1077–1093. [Google Scholar] [CrossRef]
- Auti, P.S.; George, G.; Paul, A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv. 2020, 10, 41353–41392. [Google Scholar] [CrossRef]
- Connolly, D.J.; Cusack, D.; O’Sullivan, T.; Guiry, P.J. Synthesis of quinazolinones and quinazolines. Tetrahedron 2005, 61, 10153–10202. [Google Scholar] [CrossRef]
- Nayyar, P.; Arpana, R.; Mohd, I. An updated review: Newer quinazoline derivatives under clinical trial. Int. J. Pharm. Biol. Sci. Arch. 2011, 2, 1651–1657. [Google Scholar]
- Mhaske, S.B.; Argade, N.P. The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron 2006, 62, 9787–9826. [Google Scholar] [CrossRef]
- Witt, A.; Bergman, J. Recent developments in the field of quinazoline chemistry. Curr. Org. Chem. 2003, 7, 659–677. [Google Scholar] [CrossRef]
- Cho, S.J.; Mohamed, A.A.; Elroby, S.A. Theoretical investigation of the tautomerism of isoorotic acid in gaseous and aqueous phases. J. Quantum Chem. 2007, 107, 63–71. [Google Scholar] [CrossRef]
- Karelson, M.M.; Katritzky, A.R.; Szafran, M.; Zerner, M.C. Quantitative predictions of tautomeric equilibria for 2-, 3-, and 4-substituted pyridines in both the gas phase and aqueous solution: Combination of AM1 with reaction field theory. J. Org. Chem. 1989, 54, 6030–6034. [Google Scholar] [CrossRef]
- Wong, M.W.; Leung-Toung, R.; Wentrup, C. Tautomeric equilibrium and hydrogen shifts of tetrazole in the gas phase and in solution. J. Am. Chem. Soc. 1993, 115, 2465–2472. [Google Scholar] [CrossRef]
- Parchment, O.G.; Green, D.V.; Taylor, P.J.; Hillier, I.H. The prediction of tautomer equilibria in hydrated 3-hydroxypyrazole: A challenge to theory. J. Am. Chem. Soc. 1993, 115, 2352–2356. [Google Scholar] [CrossRef]
- Cieplak, P.; Bash, P.; Singh, U.C.; Kollman, P.A. A theoretical study of tautomerism in the gas phase and aqueous solution: A combined use of state-of-the-art ab initio quantum mechanics and free energy-perturbation methods. J. Am. Chem. Soc. 1987, 109, 6283–6289. [Google Scholar] [CrossRef]
- Cao, M.; Teppen, B.J.; Miller, D.M.; Pranata, J.; Schafer, L. Tautomeric equilibria of 3-hydroxypyrazole in the gas phase and in solution: A theoretical study combining ab initio quantum mechanics and Monte Carlo simulation methods. J. Phys. Chem. 1994, 98, 11353–11361. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. Correlation and solvation effects on heterocyclic equilibria in aqueous solution. J. Am. Chem. Soc. 1993, 115, 8810–8817. [Google Scholar] [CrossRef]
- Orozco, M.; Luque, F.J. Self-consistent reaction field computation of the reactive characteristics of DNA bases in water. Biopolymers 1993, 33, 1851–1869. [Google Scholar] [CrossRef]
- Kwiatkowski, J.S.; Bartlett, R.J.; Person, W.B. Contributions from electron correlation to the relative stabilities of the tautomers of nucleic acid bases. J. Am. Chem. Soc. 1988, 110, 2353–2358. [Google Scholar] [CrossRef]
- Polat, T.; Yurdakul, Ş. Structure and vibrational assignment of tautomerism of 4-hydroxyquinazoline in gaseous and aqueous phases. J. Mol. Struct. 2011, 1001, 16–22. [Google Scholar] [CrossRef]
- Nataraj, A.; Balachandran, V.; Karthick, T. Molecular structure, vibrational spectra, first hyperpolarizability and HOMO–LUMO analysis of p-acetylbenzonitrile using quantum chemical calculation. J. Mol. Struct. 2013, 1038, 134–144. [Google Scholar] [CrossRef]
- Ruiz-Morales, Y. HOMO−LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: A theoretical study. I. J. Phys. Chem. A. 2002, 106, 11283–11308. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free radical and active oxygen species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Program for Empirical Absorption Correction of Area Detector Data; University of Gttingen: Gttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer 17; University of Western Australia: Crawley, Australia, 2017. [Google Scholar]
- Foresman, J.B.; Frisch, A.E. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Dennington, R., II; Keith, T.; Millam, J. GaussView, version 4.1, Semichem Inc.: Shawnee Mission, KS, USA, 2007.
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mortier, W.J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J. Am. Chem. Soc. 1986, 108, 5708–5711. [Google Scholar]
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. NBO, Version 3.1, University of Wisconsin: Madison, WI, USA, 1998.
Bond Lengths | |||
---|---|---|---|
C(1)-N(2) | 1.3068(12) | C(4)-N(2) | 1.3998(12) |
C(1)-N(3) | 1.3281(12) | C(5)-C(6) | 1.3828(15) |
C(2)-O(4) | 1.2141(12) | C(6)-C(7) | 1.3984(15) |
C(2)-N(3) | 1.4057(12) | C(7)-C(8) | 1.3838(14) |
C(2)-C(3) | 1.4652(13) | ||
C(3)-C(8) | 1.4004(13) | N(1)-O(1) | 1.2470(10) |
C(3)-C(4) | 1.4009(13) | N(1)-O(2) | 1.2530(11) |
C(4)-C(5) | 1.3955(13) | N(1)-O(3) | 1.2622(10) |
Bond Angles | |||
C(1)-N(2)-C(4) | 121.44(8) | C(5)-C(4)-C(3) | 121.30(9) |
C(1)-N(3)-C(2) | 123.88(8) | N(2)-C(4)-C(3) | 118.67(8) |
N(2)-C(1)-N(3) | 121.89(9) | C(6)-C(5)-C(4) | 118.65(9) |
O(4)-C(2)-N(3) | 120.17(9) | C(5)-C(6)-C(7) | 120.66(9) |
O(4)-C(2)-C(3) | 125.69(9) | C(8)-C(7)-C(6) | 120.70(9) |
N(3)-C(2)-C(3) | 114.14(8) | C(7)-C(8)-C(3) | 119.44(9) |
C(8)-C(3)-C(4) | 119.24(9) | ||
C(8)-C(3)-C(2) | 120.87(9) | O(1)-N(1)-O(2) | 120.28(8) |
C(4)-C(3)-C(2) | 119.88(8) | O(1)-N(1)-O(3) | 119.39(8) |
C(5)-C(4)-N(2) | 120.03(9) | O(2)-N(1)-O(3) | 120.31(8) |
D-H…A | d(D-H) | d(H…A) | d(D…A) | <(DHA) |
---|---|---|---|---|
N(3)-H(3)…O(2)#1 | 0.875(15) | 1.911(16) | 2.7790(11) | 171.2(14) |
N(2)-H(2)…O(3)#2 | 0.914(14) | 1.881(15) | 2.7943(11) | 176.3(13) |
N(2)-H(2)…O(1)#2 | 0.914(14) | 2.391(14) | 2.9950(12) | 123.6(11) |
C(5)-H(5)…O(1)#3 | 0.95 | 2.36 | 3.1953(13) | 147 |
C(6)-H(6)…O(2)#1 | 0.95 | 2.73 | 3.5690(13) | 148.1 |
C(8)-H(8)…O(4)#1 | 0.95 | 2.5 | 3.4461(13) | 176.6 |
C(1)-H(1)…O(3)#1 | 0.95 | 2.35 | 3.0961(12) | 135.5 |
C(1)-H(1)…O(1)#2 | 0.95 | 2.37 | 2.9920(13) | 123 |
Contact | Distance (Å) | Contact | Distance (Å) |
---|---|---|---|
C2…C2 | 3.155 | H1…O1 | 2.297 |
C4…N1 | 3.134 | H1…O3 | 2.253 |
C1…O4 | 3.158 | H2…O1 | 2.339 |
C2…O4 | 3.093 | H2…O3 | 1.787 |
C3…O4 | 3.156 | H3…O2 | 1.799 |
C1…O4 | 3.158 | H5…O1 | 2.247 |
H8…O4 | 2.364 |
Parameter | E1 | E2 | E3 | E4 | E5 |
---|---|---|---|---|---|
Gas | |||||
E | −774.161 | −774.158 | −774.151 | −774.177 | −774.15 |
ZPVE b | 0.1564 | 0.1566 | 0.1557 | 0.1569 | 0.1558 |
Ecorr c | −774.004 | −774.002 | −773.995 | −774.02 | −773.994 |
∆E | 9.6086 | 11.3197 | 15.3745 | 0 | 16.1 |
H | −773.991 | −773.988 | −773.981 | −774.006 | −773.98 |
S | 116.539 | 118.847 | 117.635 | 114.764 | 118.397 |
G | −774.046 | −774.044 | −774.037 | −774.061 | −774.036 |
Methanol | |||||
E | −774.195 | −774.185 | −774.178 | −774.189 | −774.168 |
ZPVE b | 0.157 | 0.1548 | 0.1567 | 0.1558 | 0.1541 |
Ecorr c | −774.038 | −774.031 | −774.022 | −774.033 | −774.014 |
∆E | 0 | 4.4565 | 10.1334 | 2.7482 | 14.7667 |
H | −774.024 | −774.017 | −774.008 | −774.02 | −774.001 |
S | 118.292 | 116.599 | 117.834 | 115.358 | 116.384 |
G | −774.08 | −774.073 | −774.064 | −774.075 | −774.056 |
DMSO | |||||
E | −774.195 | −774.186 | −774.179 | −774.189 | −774.169 |
ZPVE b | 0.157 | 0.1546 | 0.1567 | 0.1558 | 0.1539 |
Ecorr c | −774.038 | −774.031 | −774.022 | −774.034 | −774.015 |
∆E | 0 | 4.4703 | 10.2289 | 3.0336 | 14.8717 |
H | −774.025 | −774.018 | −774.008 | −774.02 | −774.001 |
S | 118.389 | 116.655 | 117.771 | 115.372 | 116.514 |
G | −774.081 | −774.073 | −774.064 | −774.075 | −774.056 |
Cyclohexane | |||||
E | −774.17 | −774.169 | −774.158 | −774.181 | −774.157 |
ZPVE b | 0.1559 | 0.1564 | 0.1553 | 0.1565 | 0.1557 |
Ecorr c | −774.014 | −774.012 | −774.003 | −774.025 | −774.001 |
∆E | 6.5339 | 7.8153 | 13.7591 | 0 | 14.7695 |
H | −774.001 | −773.999 | −773.989 | −774.012 | −773.988 |
S | 116.365 | 117.962 | 116.737 | 114.879 | 117.226 |
G | −774.056 | −774.055 | −774.045 | −774.066 | −774.043 |
Medium | A a | B a | C a | D a |
---|---|---|---|---|
Gas | 1.64 | - | 1.543 | 1.932 |
Cyclohexane | 1.563 | - | 1.513 | 1.971 |
DMSO | - | 1.664 | 1.462 | 2.023 |
Methanol | - | 1.661 | 1.463 | 2.021 |
Medium | EHOMO | ELUMO | ∆E |
---|---|---|---|
Gas | −7.389 | −2.342 | 5.047 |
Cyclohexane | −7.2673 | −2.236 | 5.031 |
DMSO | −7.128 | −2.499 | 4.630 |
Methanol | −7.114 | −2.506 | 4.608 |
Microbe | 4HQZ | 4HQZN | Control |
---|---|---|---|
A. fumigatus | NA | 18 | 19 a |
C. albicans | 9 | 10 | 20 a |
S. aureus | 10 | 11 | 24 b |
B. subtilis | 9 | 11 | 26 b |
E. coli | 11 | 14 | 30 b |
P. vulgaris | 11 | 13 | 25 b |
Microbe | 4HQZ | 4HQZN | Control |
---|---|---|---|
A. fumigatus | NA | 312.5 | 156.25 a |
C. albicans | 5000 | 2500 | 312.5 a |
S. aureus | 2500 | 1250 | 9.7 b |
B. subtilis | 2500 | 2500 | 4.9 b |
E. coli | 1250 | 625 | 4.9 b |
P. vulgaris | 1250 | 625 | 4.9 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathalla, E.M.; Altowyan, M.S.; Albering, J.H.; Barakat, A.; Abu-Youssef, M.A.M.; Soliman, S.M.; Badr, A.M.A. Synthesis, X-ray Structure, Hirshfeld, DFT and Biological Studies on a Quinazolinone-Nitrate Complex. Molecules 2022, 27, 1089. https://doi.org/10.3390/molecules27031089
Fathalla EM, Altowyan MS, Albering JH, Barakat A, Abu-Youssef MAM, Soliman SM, Badr AMA. Synthesis, X-ray Structure, Hirshfeld, DFT and Biological Studies on a Quinazolinone-Nitrate Complex. Molecules. 2022; 27(3):1089. https://doi.org/10.3390/molecules27031089
Chicago/Turabian StyleFathalla, Eman M., Mezna Saleh Altowyan, Jörg H. Albering, Assem Barakat, Morsy A. M. Abu-Youssef, Saied M. Soliman, and Ahmed M. A. Badr. 2022. "Synthesis, X-ray Structure, Hirshfeld, DFT and Biological Studies on a Quinazolinone-Nitrate Complex" Molecules 27, no. 3: 1089. https://doi.org/10.3390/molecules27031089
APA StyleFathalla, E. M., Altowyan, M. S., Albering, J. H., Barakat, A., Abu-Youssef, M. A. M., Soliman, S. M., & Badr, A. M. A. (2022). Synthesis, X-ray Structure, Hirshfeld, DFT and Biological Studies on a Quinazolinone-Nitrate Complex. Molecules, 27(3), 1089. https://doi.org/10.3390/molecules27031089