Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Techniques
3.2. Chemicals
3.3. Synthesis of Mesoporous Silica Nanoparticles (MSNs)
3.4. Synthesis of S1
3.5. Controlled Release Studies
3.6. Synthetic Urine Preparation
3.7. Calibration Curve with HSA
3.8. Selectivity Studies
3.9. HSA Determination in Synthetic Urine
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, D.Q.; Zhang, Q.L.; Tian, Y.; Liu, Z.Y.; Zhang, H.Q. Characterization of drug-binding levels to serum albumin using a wavelength modulation surface plasmon resonance sensor. Sens. Actuators B Chem. 2006, 117, 188–195. [Google Scholar] [CrossRef]
- Arques, S.; Ambrosi, P. Human serum albumin in the clinical syndrome of heart failure. J. Card. Fail. 2011, 17, 451–458. [Google Scholar] [CrossRef]
- Hoogenberg, K.; Sluiter, W.J.; Dullaart, R.P. Effect of grown hormone and insulin-like growth factor I on urinary albumin excretion: Studies in acromegaly and growth hormone deficiency. Acta Endocrinol. 1993, 129, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Amin, R.; Widmer, B.; Prevost, A.T.; Schwarze, P.; Coope, J.; Edge, J.; Marcovecchio, L.; Neil, A.; Dalton, R.N.; Dunger, D.B. Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: Prospective observational study. Br. Med. J. 2008, 336, 697–701. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.E.; Tian, L.; Chang, Y. A homogenous fluorescent sensor for human serum albumin. J. Pharm. Biomed. Anal. 2012, 63, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Tu, M.C.; Chang, Y.Z.; Kang, Y.T.; Chang, H.Y.; Chang, P.; Yew, T.R. A quantum dot-based optical immunosensor for human serum albumin detection. Biosens. Bioelectron. 2012, 34, 286–290. [Google Scholar] [CrossRef]
- Ghai, R.; Falconer, R.J.; Collins, B.M. Applications of isothermal titration calorimetry in pure and applied research—Survey of the literature from 2010. J. Mol. Recognit. 2012, 25, 32. [Google Scholar] [CrossRef]
- Reja, S.I.; Khan, I.A.; Bhalla, V.; Kumar, M. A TICT baser NIR-fluorescent probe for human serum albumin: A pre-clinical diagnosis in blood serum. Chem. Commun. 2016, 52, 1182–1185. [Google Scholar] [CrossRef]
- An, F.F.; Zhang, X.H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017, 7, 3667–3689. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Kasemsumran, S.; Woo, Y.A.; Kim, H.J.; Ozaki, Y. Optimization of informative spectral regions for the quantification of cholesterol, glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy. Chemom. Intell. Lab. Syst. 2006, 82, 90–96. [Google Scholar] [CrossRef]
- Chen, L.; Liu, M.; Zhou, Q.; Li, X. Recent developments of mesoporous silica nanoparticles in biomedicine. Emergent Mater. 2020, 3, 381–405. [Google Scholar] [CrossRef]
- Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 2019, 109, 1100–1111. [Google Scholar] [CrossRef]
- García-Fernández, A.; Aznar, E.; Martínez-Máñez, R.; Sancenón, F. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small 2020, 16, 1902242. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Colilla, M.; Izquierdo-Barba, I.; Manzano, M. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules 2018, 23, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugan, B.; Sagadevan, S.; Fatimah, I.; Fatema, K.N.; Oh, W.C.; Mohammad, F.; Johan, M.R. Role of mesoporous silica nanoparticles for the drug delivery applications. Mater. Res. Express 2020, 7, 102002. [Google Scholar] [CrossRef]
- Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B 2018, 8, 165–177. [Google Scholar] [CrossRef]
- Radu, D.R.; Lai, C.Y.; Jeftinija, K.; Rowe, E.W.; Jeftinija, S.; Lin, V.S.Y. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 2004, 126, 13216–13217. [Google Scholar] [CrossRef]
- Kordasht, H.K.; Pazhuhi, M.; Pashazadeh-Panahi, P.; Hasanzadeh, M.; Shadjou, N. Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: Recent advances. Trends Anal. Chem. 2020, 124, 115778. [Google Scholar] [CrossRef]
- Pla, L.; Santiago-Felipe, S.; Tormo-Mas, M.A.; Ruiz-Gaitán, A.; Pemán, J.; Valentín, E.; Sancenón, F.; Aznar, E.; Martínez-Máñez, R. Oligonucleotide-capped nanoporous anodic alumina biosensor as diagnostic tool for rapid and accurate detection of Candida auris in clinical samples. Emerg. Microbes Infect. 2021, 10, 407–415. [Google Scholar] [CrossRef]
- Pascual, L.; Cerqueira-Coutinho, C.; García-Fernández, A.; de Luis, B.; Bernardes, E.S.; Albernaz, M.S.; Missailidis, S.; Martínez-Máñez, R.; Santos-Oliveira, R.; Orzaez, M.; et al. MUC-1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radioimaging applications. Nanomedicine 2017, 13, 2495–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, B.G.; Kim, J. Functional mesoporous silica nanoparticles for bioimaging applications. Nanomed. Nanobiotechnol. 2019, 11, e1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polo, L.; Gómez-Cerezo, N.; Aznar, E.; Vivancos, J.L.; Sancenón, F.; Arcos, D.; Vallet-Regí, M.; Martínez-Máñez, R. Molecular gates in bioactive glasses for the treatment of bone tumors and infection. Acta Biomater. 2017, 50, 114–126. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, X.; He, C. Mesoporous silica nanoparticles for tissue engineering applications. Nanomed. Nanobiotechnol. 2019, 11, e1573. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Jiao, X.; Fan, W.; Yang, Z.; Wen, Y.; Chen, X. Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics. Biomaterials 2020, 256, 120191. [Google Scholar] [CrossRef] [PubMed]
- Fontana, F.; Liu, D.; Hirvonen, J.; Santos, H.A. Delivery of therapeutics with nanoparticles: What’s new in cancer immunotherapy? Nanomed. Nanobiotechnol. 2017, 9, e1421. [Google Scholar] [CrossRef]
- Hao, M.; Chen, B.; Zhao, X.; Zhao, N.; Xu, F.J. Organic/inorganic nanocomposites for cancer immunotherapy. Mater. Chem. Front. 2020, 4, 2571–2609. [Google Scholar] [CrossRef]
- Llopis-Lorente, A.; Díez, P.; Sánchez, A.; Marcos, M.D.; Sancenón, F.; Martínez-Ruiz, P.; Villalonga, R.; Martínez-Máñez, R. Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat. Commun. 2017, 8, 15511. [Google Scholar] [CrossRef] [Green Version]
- De Luis, B.; Llopis-Lorente, A.; Rincón, P.; Gadea, J.; Sancenón, F.; Aznar, E.; Villalonga, R.; Murguía, J.R.; Martínez-Máñez, R. An interactive model of communication between abiotic nanodevices and microorganisms. Angew. Chem. Int. Ed. 2019, 58, 14986–14990. [Google Scholar] [CrossRef]
- De Luis, B.; Llopis-Lorente, A.; Sancenón, F.; Martínez-Máñez, R. Engineering chemical communication between micro/nanosystems. Chem. Soc. Rev. 2021, 50, 8829–8856. [Google Scholar] [CrossRef]
- De Luis, B.; Morellá-Aucejo, A.; Llopis-Lorente, A.; Godoy-Reyes, T.M.; Villalonga, R.; Aznar, E.; Sancenón, F.; Martínez-Máñez, R. A chemical circular communication network at the nanoscale. Chem. Sci. 2021, 12, 1551–1559. [Google Scholar] [CrossRef]
- Sancenón, F.; Pascual, L.; Oroval, M.; Aznar, E.; Martínez-Máñez, R. Gated silica mesoporous materials in sensing applications. ChemistryOpen 2015, 4, 418–437. [Google Scholar] [CrossRef] [PubMed]
- Otri, I.; El Sayed, S.; Medaglia, S.; Aznar, E.; Martínez-Máñez, R.; Sancenón, F. Simple endotoxin detection using polymyxin-B-gated nanoparticles. Chem. Eur. J. 2019, 25, 3770–3774. [Google Scholar] [CrossRef]
- Pascual, L.; El Sayed, S.; Marcos, M.D.; Martínez-Máñez, R.; Sancenón, F. Acetylcholinesterase-capped mesoporous silica nanoparticles controlled by the presence of inhibitors. Chem. Asian J. 2017, 12, 775–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Sayed, S.; Milani, M.; Licchelli, M.; Martínez-Máñez, R.; Sancenón, F. Hexametaphosphate-capped silica mesoporous nanoparticles containing Cu(II) complexes for the selective and sensitive optical detection of hydrogen sulfide in water. Chem. Eur. J. 2015, 21, 7002–7006. [Google Scholar] [CrossRef] [Green Version]
- Ribes, A.; Santiago-Felipe, S.; Xifre-Pérez, E.; Tormo-Mas, M.A.; Peman, J.; Marsal, L.F.; Martínez-Máñez, R. Selective and sensitive probe based in oligonucleotide-capped nanoporous alumina for the rapid screening of infection produced by Candida albicans. ACS Sens. 2019, 4, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Zebib, B.; Mouloungui, Z.; Noirot, V. Stabilization of curcumin by complexation with divalent cations in glycerol/water system. Bioinorg. Chem. Appl. 2010, 2010, 292760. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.C.P.; Sudharshan, E.; Rao, A.G.A. Interaction of curcumin with human serum albumin-A spectroscopic study. Lipids 1999, 34, 1025–1029. [Google Scholar] [CrossRef]
- Bourassa, P.; Kanakis, C.D.; Tarantilis, P.; Pollissiou, M.G.; Tajmir-Riahi, H.A. Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B. 2010, 114, 3348–3354. [Google Scholar] [CrossRef]
- Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T. Multifucntional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 2014, 26, 435–451. [Google Scholar] [CrossRef]
- Kankala, R.K.; Han, Y.-H.; Na, J.; Lee, C.-H.; Sun, Z.; Wang, S.-B.; Kimura, T.; Ok, Y.S.; Yamauchi, Y.; Chen, A.-Z.; et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 2020, 32, 1907035. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Máñez, R.; Sancenón, F.; Hecht, M.; Biyical, M.; Rurack, K. Nanoscopic optical sensors based on functional supramolecular hybrid materials. Anal. Bioanal. Chem. 2011, 399, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Ma, M.; Zhu, B.; Zhu, L. A near infrared fluorescent probe for sensitive determination of human serum albumin. Anal. Sci. 2016, 32, 1291–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Particles Diameter 1 (nm) | Surface Area, SBET (m2 g−1) | Pore Volume 2 (cm3 g−1) | Pore Size 3 (nm) |
---|---|---|---|---|
Calcined MSNs | 101 | 1207.3 | 0.444 | 2.56 |
S1 | 110 | 17.6 | - | - |
Sample | Spiked HSA (μg) | Determined HSA (μg) | Recovery (%) |
---|---|---|---|
1 | 100 | 108 | 108 |
2 | 350 | 316 | 90.3 |
3 | 500 | 436 | 87.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otri, I.; Medaglia, S.; Aznar, E.; Sancenón, F.; Martínez-Máñez, R. Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles. Molecules 2022, 27, 1133. https://doi.org/10.3390/molecules27031133
Otri I, Medaglia S, Aznar E, Sancenón F, Martínez-Máñez R. Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles. Molecules. 2022; 27(3):1133. https://doi.org/10.3390/molecules27031133
Chicago/Turabian StyleOtri, Ismael, Serena Medaglia, Elena Aznar, Félix Sancenón, and Ramón Martínez-Máñez. 2022. "Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles" Molecules 27, no. 3: 1133. https://doi.org/10.3390/molecules27031133
APA StyleOtri, I., Medaglia, S., Aznar, E., Sancenón, F., & Martínez-Máñez, R. (2022). Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles. Molecules, 27(3), 1133. https://doi.org/10.3390/molecules27031133