Detection and Risk Assessments of Multi-Pesticides in Traditional Chinese Medicine Chuanxiong Rhizoma by LC/MS-MS and GC/MS-MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quality Assurance of Method
2.2. Pesticide Residues Concentrations
2.3. Health Risk Assessment
2.3.1. Long-Term Risk Assessment
2.3.2. Short-Term Risk Assessment
2.3.3. Cumulative Risk Assessment
3. Materials and Methods
3.1. Sample Collection
3.2. Reagents and Chemicals
3.3. Sample Preparation and Analysis
3.3.1. Sample Preparation
3.3.2. Sample Analysis
3.4. Risk Assessments of Pesticide Contents in CX
3.5. Statistic Analysis
4. Conclusions
- Strengthen the scientific rationale for the use of pesticides, as well as for the supervision of banned and restricted pesticides;
- Speed up the registration of pesticides for CX via the Regulations of the People’s Republic of China on Pesticide Management, (http://www.moa.gov.cn/gk/zcfg/xzfg/201704/t20170405549362.htm (accessed on 1 October 2021)) and select high-efficiency, low-toxicity biological pesticides instead of prohibited and restricted pesticides;
- Establish the whole process of supervision for the production and circulation of CX planting, processing, storage, and transportation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume I, pp. 42–43.
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015; Volume I, pp. 40–41.
- Shan, F.; Hao, J.D. Herbal textual research on origin and development of Chuanxiong. Chin. J. Chin. Mater. Med. 2011, 36, 2306–2310. [Google Scholar] [CrossRef]
- Jiang, G.H.; Ma, Y.Y.; Hou, J.; Jia, M.R.; Ma, L.; Fan, Q.J.; Tan, L. Research on investigation, collection and preservation of Chuanxiong germplasm resources. Chin. Tradit. Herbal. Drugs 2008, 4, 601–604. [Google Scholar]
- Chen, Z.J.; Zhang, C.; Gao, F.; Fu, Q.; Fu, C.; He, Y.; Zhang, J.M. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food. Chem. Toxicol. 2018, 119, 309–325. [Google Scholar] [CrossRef]
- Zhang, D.L.; Yu, W.; Wang, M.; Ren, M.; Gou, Y.; Liu, W.; Li, M. Improvement effects for the contents of 5 heavy metals, the yield, and quality of Chuanxiong Rhizoma via quicklime treatments. Nat. Prod. Res. Dev. 2021, 33, 1925–1935. [Google Scholar] [CrossRef]
- Jia, M.R. Research on Good Agricultural Practice (GAP) of Rhizoma Chuanxiong and Radix Angelica Dahuricae Produced Sichuan; Sichuan Science and Technology Press: Chengdu, China, 2007; p. 1. [Google Scholar]
- Mu, X.R. The Research on Rational and Standardized use of Two Common Pesticides in Ligusticum chuanxiong Planting. Master’s Thesis, Chengdu University of TCM, Chengdu, China, 2014. [Google Scholar]
- Xia, Y.L.; Ding, J.; Li, J.L.; Hu, P.; Shu, G.M. Species and prevention methods of main diseases and pests in Rhizoma Chuanxiong. Resour. Dev. Mark. 2008, 24, 39–391. [Google Scholar] [CrossRef]
- Peng, D.; He, Y.Q.; Wang, S.Y.; Wei, R.; Zhu, Y.B. Research progress on the prevention and control of main diseases and pests in Ligusticum chuanxiong. J. Agric. Catastrophol. 2012, 2, 4–7. [Google Scholar] [CrossRef]
- Huang, S.B.; Zhou, H.J. Effect of herbicide on weeds of Ligusticum chuanxiong before sprouting. Agric. Mater. Sci. Technol. 1997, 16, 20. [Google Scholar]
- Zeng, H.L.; Ye, P.S.; Ni, G.C.; He, L.; Zhang, Y.; Yang, H.X.; Wei, S.G. Studies on the law of occurrence and damage of main diseases and pests in Chuanxiong field. Southwest Chin. J. Agric. Sci. 2009, 22, 99–101. [Google Scholar] [CrossRef]
- Yi, X.H.; Lu, Y.T. Study on residues of pesticides and heavy metals in Ligusticum wallichii Franch and other seven kinds of traditional Chinese medicine. Res. Pract. Chin. Med. 2004, 18, 7–9. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, D.L.; Gou, Y.; Wang, M.; Li, M.; Yu, X.Y. Determination of 65 pesticide residues in Chuanxiong Rhizoma by GC-MS/MS. Chin. J. Pharm. Anal. 2021, 41, 1009–1018. [Google Scholar] [CrossRef]
- Tan, P.; Xu, L.; Wei, X.C.; Huang, H.Z.; Zhang, D.K.; Zeng, C.J.; Geng, F.N.; Bao, X.M.; Hua, H.; Zhao, J.N. Rapid screening and quantitative analysis of 74 pesticide residues in herb by retention index combined with GC-QQQ-MS/MS. J. Anal. Method Chem. 2021, 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Li, Y.F.; Meng, W.T.; Li, D.X.; Sun, H.; Tong, L.; Sun, G.X. A multi-residue method for simultaneous determination of 74 pesticides in chinese material medica using modified quechers sample preparation procedure and gas chromatography tandem mass spectrometry. J. Chromatogr. B. 2016, 1015–1016, 1–12. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission of the People’s Republic of China; Ministry of Agriculture and Rural Affairs of the People’s Republic of China; State Administration for Market Regulation. National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. GB 2763–2021; Standards Press of China: Beijing, China, 2021. Available online: http://www.cnhfa.org.cn/fagui/show.php?itemid=602 (accessed on 3 July 2021).
- Wu, P.L.; Wang, P.S.; Gu, M.Y.; Xue, J.; Wu, X. Human health risk assessment of pesticide residues in honeysuckle samples from different planting bases in China. Sci. Total Environ. 2021, 759, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tong, L.; Li, D.; Meng, W.; Sun, W.; Zhao, Y.; Yu, Z. Comparison of two extraction methods for the determination of 135 pesticides in Corydalis Rhizoma, Chuanxiong Rhizoma and Angelicae Sinensis Radix by liquid chromatography-triple quadrupole-mass spectrometry. Application to the roots and rhizomes of Chinese herbal medicines. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1, 233–240. [Google Scholar] [CrossRef]
- Gou, Y.; Gao, B.X.; Geng, Z.; Zhong, L.; Qi, J.L.; Li, M.; Deng, J.J.; Zhou, J.; Xiong, L. Determination of pesticide residues in Pinelliae Rhizoma processed products by ultra performance liquid chromatography-tandem mass spectrometry. Chin. J. Pestic. Sci. 2020, 22, 837–846. [Google Scholar] [CrossRef]
- Lemos, J.; Sampedro, M.C.; de Arino, A.; Ortiz, A.; Barrio, R.J. Risk assessment of exposure to pesticides through dietary intake of vegetables typical of the Mediterranean diet in the Basque Country. J. Food Compos. Anal. 2016, 49, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.J.; Xu, X.; Wang, F.; Ma, J.J.; Liao, M.; Shi, Y.H.; Fang, Q.K.; Cao, H.Q. Analysis of exposure to pesticide residues from Traditional Chinese Medicine. J. Hazard. Mater. 2019, 5, 857–867. [Google Scholar] [CrossRef]
- Ishii, H.; Udagawa, H.; Yanase, H.; Yamaguchi, A. Resistance of Venturia nashicola to thiophanate-methyl and benomyl: Build-up and decline of resistance in the field. Plant Pathol. 1985, 34, 363–368. [Google Scholar] [CrossRef]
- European Commission. Pesticide Residue(s) and Maximum Residue Levels (mg/kg). In Commission Regulation (EC) No. 149/2008; European Commission: Brussels, Belgium, 2008; Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=details&pest_res_ids=190&product_ids=&v=1&e=search.pr (accessed on 3 July 2021).
- He, H.R.; Gao, F.; Zhang, Y.H.; Du, P.Q.; Feng, W.S.; Zheng, X.K. Effect of processing on the reduction of pesticide residues in a traditional Chinese medicine. Food. Addit. Contam. Part A 2020, 37, 1156–1164. [Google Scholar] [CrossRef]
- Kaushik, G.; Satya, S.; Naik, S.N. Food processing a tool to pesticide residue dissipation—A review. Food. Res. Int. 2009, 42, 26–40. [Google Scholar] [CrossRef]
- Oliva, J.; Cermeño, S.; Cámara, M.A.; Martínez, G.; Barba, A. Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food. Chem. 2017, 229, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Camara, M.A.; Barba, A.; Cermeño, S.; Martinez, G.; Oliva, J. Effect of processing on the disappearance of pesticide residues in fresh-cut lettuce: Bioavailability and dietary risk. J. Environ. Sci. Health B 2017, 52, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.Q.; Dong, F.S.; Xu, J.; Liu, X.G.; Zhang, C.P.; Li, J.; Li, Y.B.; Chen, X.; Shan, W.L.; Zheng, Y.Q. Determination of difenocona-zole residue in tomato during home canning by UPLC-MS/MS. Food Control 2012, 23, 542–546. [Google Scholar] [CrossRef]
- Xiao, J.J.; Duan, J.S.; Xu, X.; Li, S.N.; Wang, F.; Fang, Q.K.; Liao, M.; Cao, H.Q. Behavior of pesticides and their metabolites in traditional Chinese medicine Paeoniae Radix Alba during processing and associated health risk. J. Pharm. Biomed. Anal. 2018, 161, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, U.; Sandhu, K.S. Effect of handling and processing on pesticide residues in food—A review. J. Food. Sci. Technol. 2014, 51, 201–220. [Google Scholar] [CrossRef] [Green Version]
- JMPR-FAO/WHO Joint Meeting on Pesticide Residues. Available online: http://www.fao.org/pest-and-pesticide-management/guidelines-standards/faowho-joint-meeting-on-pesticide-residues-jmpr/reports/en/ (accessed on 3 July 2021).
- Bhandari, G.; Zomer, P.; Atreya, K.; Mol, H.G.J.; Yang, X.; Geissen, V. Pesticide residues in Nepalese vegetables and potential health risks. Environ. Res. 2019, 172, 511–521. [Google Scholar] [CrossRef]
- Dowlati, M.; Sobhi, H.R.; Esrafili, A.; Farzadkia, M.; Yeganeh, M. Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends Food Sci. Technol. 2021, 109, 527–535. [Google Scholar] [CrossRef]
- Luo, L.; Dong, L.; Huang, Q.; Ma, S.C.; Fantke, P.; Li, J.; Jiang, J.; Fitzgerald, M.; Yang, J.; Jia, Z.; et al. Detection and risk assessments of multi-pesticides in 1771 cultivated herbal medicines by LC/MS-MS and GC/MS-MS. Chemosphere 2021, 262, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, A.D.; Li, J.W.; Liu, S.N.; Huang, J.P.; Jin, H.Y.; Zhang, L.; Ma, S.C. The survey of traditional Chinese medicine consumption among adult residents in 11 provinces and cities. Chin. Pharm. Aff. 2017, 31, 666–672. [Google Scholar] [CrossRef]
- Chang, J.W.; Chen, C.Y.; Yan, B.R.; Chang, M.H.; Tseng, S.H.; Kao, Y.M.; Chen, J.C.; Lee, C.C. Cumulative risk assessment for plasticizer-contaminated food using the hazard index approach. Environ. Pollut. 2014, 189, 77–84. [Google Scholar] [CrossRef] [PubMed]
- UN PIC & U.S. Pic-Nominated Pesticides List; U.S. Environmental Protection Agency: Washington, DC, USA, 2003. Available online: http://www.pic.int/Countries/CountryProfile/tabid/1087/language/en-US/Default.aspx (accessed on 12 June 2018).
- European Food Safety Authority. International frameworks dealing with human risk assessment of combined exposure to multiple chemicals. EFSA J. 2013, 11, 3313. [Google Scholar] [CrossRef]
No. | Pesticide * | Method | Calibration Curve | r | Linear Range (ng/mL) | LOD (μg/kg) | LOQ (μg/kg) | Recovery/RSD (%) | Precision/RSD (%) |
---|---|---|---|---|---|---|---|---|---|
1 | Azoxystrobin [B] | GC-MS/MS | y = 1.6974x − 0.1234 | 0.9997 | 2.00–200.08 | 5.00 | 16.67 | 99.67 ± 3.33 | 1.78 |
2 | Chlorpyrifos [I] | y = 4.6857x + 0.0105 | 0.9993 | 1.00–100.07 | 0.10 | 0.33 | 100.33 ± 6.20 | 1.07 | |
3 | Paclobutrazol [P] | y = 10.1504x − 0.0864 | 0.9997 | 1.00–99.99 | 1.00 | 3.33 | 127.10 ± 1.70 | 1.12 | |
4 | Procymidone [B] | y = 4.8649x − 0.0257 | 0.9997 | 1.00–100.08 | 0.20 | 0.67 | 80.75 ± 6.00 | 1.91 | |
5 | Profenofos [I] | y = 2.9991x − 0.1052 | 0.9997 | 9.98–998.40 | 0.30 | 1.00 | 102.67 ± 4.53 | 2.19 | |
6 | Pyrimethanil [B] | y = 6.8548x + 0.0241 | 0.9997 | 1.00–100.00 | 4.00 | 13.33 | 99.83 ± 7.00 | 6.70 | |
7 | Triazophos [I] | y = 3.9022x − 0.1621 | 0.9998 | 2.00–199.52 | 0.40 | 1.33 | 105.67 ± 5.93 | 2.27 | |
8 | Acetamiprid [I] | LC-MS/MS | y = 3613.5381x + 50.7307 | 0.9999 | 0.80–80.00 | 0.04 | 0.13 | 89.47 ± 1.12 | 0.47 |
9 | Carbendazim [B] | y = 5877.5340x − 281.5931 | 0.9989 | 1.00–19.90 | 0.20 | 0.67 | 90.00 ± 2.17 | 1.18 | |
10 | Carbofuran [I] | y = 6817.9976x − 144.2714 | 0.9998 | 5.03–503.00 | 0.10 | 0.33 | 94.86 ± 1.09 | 0.79 | |
11 | Chlorantraniliprole [I] | y = 1386.3755x − 379.9283 | 0.9997 | 2.40–120.18 | 0.04 | 0.13 | 93.04 ± 2.31 | 2.96 | |
12 | Diethofencarb [B] | y = 2247.1472x − 101.1371 | 0.9999 | 0.80–39.96 | 0.10 | 0.33 | 91.90 ± 3.87 | 1.13 | |
13 | Difenoconazole [B] | y = 1457.2105x + 63.9727 | 0.9994 | 1.00–99.60 | 0.20 | 0.67 | 89.39 ± 1.67 | 1.62 | |
14 | Dimethomorph [B] | y = 3451.6049x − 276.4722 | 0.9997 | 1.00–50.22 | 0.10 | 0.33 | 91.20 ± 1.76 | 1.09 | |
15 | Etoxazole [A] | y = 10024.1485x − 74.2240 | 0.9998 | 0.24–12.00 | 0.03 | 0.10 | 84.03 ± 1.23 | 1.80 | |
16 | Flutriafol [B] | y = 2339.5870x − 51.3784 | 0.9998 | 2.39–238.51 | 0.10 | 0.33 | 94.88 ± 3.09 | 1.20 | |
17 | Imidacloprid [I] | y = 996.5774x + 107.5277 | 0.9984 | 2.01–201.12 | 0.10 | 0.33 | 107.07 ± 1.34 | 1.41 | |
18 | Isofenphos-Methyl [I] | y = 4.5960x − 0.0197 | 0.9997 | 2.00–200.00 | 0.20 | 0.67 | 114.46 ± 1.56 | 2.49 | |
19 | Mefenacet [H] | y = 11117.9465x − 758.7031 | 1 | 1.01–50.30 | 0.03 | 0.10 | 89.69 ± 1.33 | 0.75 | |
20 | Mepiquat Chloride [P] | y = 1986.2665x + 32.5621 | 0.9995 | 0.98–98.20 | 0.20 | 0.67 | 45.30 ± 4.73 | 1.01 | |
21 | Myclobutanil [B] | y = 930.0140x − 14.2133 | 0.9996 | 1.00–50.10 | 0.20 | 0.67 | 92.35 ± 1.60 | 2.87 | |
22 | Phorate Sulfone [I] | y = 435.7915x + 61.2286 | 0.9993 | 2.00–100.12 | 0.40 | 1.33 | 88.60 ± 2.04 | 2.25 | |
23 | Phorate-Sulfoxide [I] | y = 3070.6656x − 196.0316 | 0.9998 | 2.00–200.24 | 0.20 | 0.67 | 91.94 ± 1.57 | 0.76 | |
24 | Phoxim [I] | y = 339.0084x − 19.5667 | 0.9993 | 1.00–50.05 | 1.00 | 3.33 | 97.49 ± 5.30 | 3.61 | |
25 | Pirimicarb [I] | y = 8456.4438x − 279.4627 | 0.9999 | 1.00–50.00 | 0.02 | 0.07 | 94.17 ± 1.0 | 0.82 | |
26 | Prometryn [H] | y = 8271.0951x − 530.4005 | 0.9991 | 0.40–40.00 | 0.003 | 0.01 | 96.34 ± 1.04 | 1.79 | |
27 | Propoxur [I] | y = 6167.7557x − 489.1121 | 0.9997 | 1.00–100.20 | 0.08 | 0.27 | 90.59 ± 1.73 | 0.82 | |
28 | Pyraclostrobin [B] | y = 1833.6016x + 1839.3435 | 0.9991 | 0.99–99.24 | 0.30 | 1.00 | 86.56 ± 4.18 | 2.37 | |
29 | Pyridaben [A] | y = 9412.2906x + 178.4811 | 0.9999 | 0.24–12.01 | 0.07 | 0.23 | 86.67 ± 4.65 | 0.96 | |
30 | Tebuconazole [B] | y = 1340.5254x − 169.6070 | 0.9998 | 5.93–296.40 | 0.40 | 1.33 | 88.74 ± 1.88 | 1.32 | |
31 | Terbufos-Sulfone [I] | y = 1287.3285x − 87.3501 | 0.9998 | 1.00–50.16 | 0.20 | 0.67 | 93.79 ± 1.63 | 1.90 | |
32 | Terbufoxon Sulfoxide [I] | y = 9252.2302x − 600.9546 | 0.9996 | 1.01–101.18 | 0.20 | 0.67 | 87.62 ± 2.82 | 0.85 | |
33 | Terbuthylazine [H] | y = 3045.6663x − 248.6583 | 0.9998 | 0.99–49.60 | 0.10 | 0.33 | 88.09 ± 1.12 | 0.97 | |
34 | Thiamethoxam [I] | y = 2953.8961x + 134.7366 | 0.9994 | 0.99–99.43 | 0.10 | 0.33 | 98.77 ± 1.56 | 2.03 | |
35 | Thiophanate-Methyl [B] | y = 3566.9849x − 671.2516 | 0.9994 | 1.03–51.55 | 0.10 | 0.33 | 76.00 ± 6.40 | 5.02 | |
36 | Triadimefon [B] | y = 1236.5048x − 72.8577 | 0.9998 | 1.20–119.98 | 0.50 | 1.67 | 93.91 ± 2.46 | 1.57 | |
37 | Tricyclazole [B] | y = 3332.3058x − 291.4985 | 0.9996 | 1.01–100.52 | 0.04 | 0.13 | 84.67 ± 2.37 | 0.70 |
No. | Pesticide | Available Range | Number of Batches Detected | Detected Rate/% | Range (μg/kg) | Median (μg/kg) | Mean ± SD (μg/kg) | MRL (mg/kg) * |
---|---|---|---|---|---|---|---|---|
1 | Carbendazim | Common | 99 | 100.00% | 0.38–343.55 | 7.77 | 38.92 ± 83.68 | 0.02–20.00 a |
2 | Prometryn | Common | 99 | 100.00% | 0.31–59.48 | 38.49 | 49.56 ± 59.09 | 0.02–0.50 a |
3 | Dimethomorph | Common | 98 | 98.99% | 1.38–364.44 | 1.82 | 3.95 ± 7.94 | 0.01–40.00 a |
4 | Chlorpyrifos | Common | 89 | 89.90% | 0.79–134.00 | 9.22 | 14.69 ± 22.04 | 0.20 d |
5 | Chlorantraniliprole | Common | 81 | 81.82% | 0.28–4.49 | 1.64 | 1.80 ± 1.12 | 0.01–40.00 a |
6 | Pyraclostrobin | Common | 74 | 74.75% | 0.44–3013.17 | 316.96 | 496.39 ± 617.16 | 0.02–30.00 a |
7 | Paclobutrazol | Common | 68 | 68.69% | 0.33–1780.00 | 1.33 | 35.52 ± 216.49 | 0.05–0.50 a |
8 | Procymidone | Common | 49 | 49.49% | 0.40–21.57 | 2.46 | 4.72 ± 4.74 | 0.20–30 a |
9 | Mefenacet | Common | 44 | 44.44% | 0.05–11.64 | 0.12 | 0.49 ± 1.77 | 0.05 a |
10 | Pyrimethanil | Common | 43 | 43.43% | 0.66–74.60 | 3.26 | 8.91 ± 12.66 | 0.01–20.00 a |
11 | Tricyclazole | Common | 39 | 39.39% | 0.18–0.98 | 0.65 | 0.62 ± 0.2 | 0.50–5.00 a |
12 | Carbofuran | Forbidden | 35 | 35.35% | 0.13–124.17 | 0.61 | 19.26 ± 31.1 | 0.05 b |
13 | Tebuconazole | Common | 30 | 30.30% | 0.40–184.44 | 1.65 | 17.26 ± 35.88 | 0.05–40.00 a |
14 | Imidacloprid | Common | 29 | 29.29% | 0.78–31.90 | 3.61 | 5.91 ± 6.53 | 0.01–20.00 a |
15 | Azoxystrobin | Common | 26 | 26.26% | 1.11–4.39 | 1.82 | 1.96 ± 0.75 | 0.01–70.00 a |
16 | Phorate Sulfone and Phorate-Sulfoxide | Forbidden | 21 | 21.21% | 0.55–355.90 | 180.73 | 156.44 ± 125.09 | 0.02 b |
17 | Triadimefon | Common | 21 | 21.21% | 0.57–10.55 | 1.12 | 2.02 ± 2.26 | 0.01–10.00 a |
18 | Flutriafol | Common | 19 | 19.19% | 0.43–423.29 | 57.02 | 98.6 ± 112.48 | 0.01–10.00 a |
19 | Myclobutanil | Common | 19 | 19.19% | 0.63–13.64 | 4.93 | 5.8 ± 4.18 | 0.01–20.00 a |
20 | Difenoconazole | Common | 14 | 14.14% | 0.39–19.67 | 0.87 | 3.9 ± 6.1 | 0.01–10.00 a |
21 | terbufos | Forbidden | 11 | 11.11% | 0.11–7.76 | 0.94 | 1.49 ± 2.19 | 0.01–0.05 a |
22 | Propoxur | Common | 8 | 8.08% | 0.10–0.23 | 0.16 | 0.17 ± 0.05 | 0.05–1.00 c |
23 | Diethofencarb | Common | 7 | 7.07% | 0.23–2.16 | 0.39 | 0.6 ± 0.69 | 0.2–5.00 a |
24 | Pyridaben | Common | 7 | 7.07% | 0.12–0.88 | 0.23 | 0.41 ± 0.32 | 0.1–5.00 a |
25 | Mepiquat Chloride | Common | 6 | 6.06% | 0.53–1.89 | 0.81 | 1.03 ± 0.55 | 0.05–5.00 a |
26 | Thiophanate-Methyl | Common | 6 | 6.06% | 0.41–2.73 | 0.66 | 0.97 ± 0.88 | 0.1–5.00 a |
27 | Triazophos | Common | 5 | 5.05% | 29.00–122.00 | 50.50 | 67.78 ± 42.12 | 0.05–1.00 a |
28 | Phoxim | Common | 4 | 4.04% | 2.46–7.37 | 3.38 | 4.15 ± 2.29 | 0.05–0.30 a |
29 | Terbufos-Sulfone and Terbufoxon Sulfoxide | Common | 4 | 4.04% | 0.59–2.46 | 1.33 | 1.43 ± 0.77 | 0.02 b |
30 | Profenofos | Common | 3 | 3.03% | 7.21–13.70 | 9.01 | 9.97 ± 3.35 | 0.01–20.00 a |
31 | Acetamiprid | Common | 2 | 2.02% | 0.14–0.45 | 0.30 | 0.3 ± 0.22 | 0.01–10.00 a |
32 | Pirimicarb | Common | 2 | 2.02% | 0.08–0.14 | 0.11 | 0.11 ± 0.04 | 0.01–20.00 a |
33 | Thiamethoxam | Common | 2 | 2.02% | 0.33–0.71 | 0.52 | 0.52 ± 0.27 | 0.01–10.00 a |
34 | Etoxazole | Common | 1 | 1.01% | 0.28–0.28 | 0.28 | 0.28 | 0.01–15.00 a |
35 | Isofenphos-Methyl | Forbidden | 1 | 1.01% | 32.20–32.20 | 32.20 | 32.20 | 0.02 b |
Pesticide | EDI (mg/kg bw/day) | ADI (mg/kg bw/day) * | HQc | ESTI (mg/kg bw/day) | ARfD (mg/kg bw/day) | HQa |
---|---|---|---|---|---|---|
Acetamiprid | 2.25 × 10−9 | 0.07 a | 3.22 × 10−8 | 5.28 × 10−9 | 0.10 a | 5.28 × 10−8 |
Azoxystrobin | 1.39 × 10−8 | 0.20 a | 6.93 × 10−8 | 5.15 × 10−8 | - | / |
Carbendazim | 5.93 × 10−8 | 0.03 a | 1.98 × 10−6 | 4.03 × 10−6 | 0.50 a | 8.07 × 10−6 |
Carbofuran | 4.66 × 10−9 | 0.001 a | 4.66 × 10−6 | 1.46 × 10−6 | 0.001 a | 1.46 × 10−3 |
Chlorantraniliprole | 1.25 × 10−8 | 2.00 a | 6.26 × 10−9 | 5.27 × 10−8 | - | / |
Chlorpyrifos | 7.04 × 10−8 | 0.01 a | 7.04 × 10−6 | 1.57 × 10−6 | 0.10 a | 1.57 × 10−5 |
Diethofencarb | 2.98 × 10−9 | 0.004 b | 7.44 × 10−7 | 2.54 × 10−8 | - | / |
Difenoconazole | 6.64 × 10−9 | 0.01 a | 6.64 × 10−7 | 2.31 × 10−7 | 0.30 a | 7.70 × 10−7 |
Dimethomorph | 1.39 × 10−8 | 0.20 a | 6.93 × 10−8 | 6.98 × 10−7 | 0.60 a | 1.16 × 10−6 |
Etoxazole | 2.14 × 10−9 | 0.05 a | 4.27 × 10−8 | 3.29 × 10−9 | - | / |
Flutriafol | 4.35 × 10−7 | 0.01 a | 4.35 × 10−5 | 4.97 × 10−6 | 0.05 a | 9.94 × 10−5 |
Imidacloprid | 2.76 × 10−8 | 0.06 a | 4.59 × 10−7 | 3.75 × 10−7 | 0.40 a | 9.36 × 10−7 |
Isofenphos-Methyl | 2.46 × 10−7 | 0.003 b | 8.19 × 10−5 | 3.78 × 10−7 | - | / |
Mefenacet | 9.16 × 10−10 | 0.0007 b | 1.31 × 10−6 | 1.37 × 10−7 | - | / |
Mepiquat Chloride | 6.18 × 10−9 | 0.195 b | 3.17 × 10−8 | 2.22 × 10−8 | - | / |
Myclobutanil | 3.76 × 10−8 | 0.03 a | 1.25 × 10−6 | 1.60 × 10−7 | - | / |
Paclobutrazol | 1.01 × 10−8 | 0.10 b | 1.01 × 10−7 | 2.09 × 10−5 | - | / |
Phorate Sulfone and Phorate-Sulfoxide | 1.38 × 10−6 | 0.0007 a | 1.97 × 10−3 | 4.18 × 10−6 | 0.003 a | 1.39 × 10−3 |
Phoxim | 2.58 × 10−8 | 0.004 b | 6.45 × 10−6 | 8.65 × 10−8 | - | / |
Pirimicarb | 8.40 × 10−10 | 0.02 a | 4.20 × 10−8 | 1.64 × 10−9 | 0.10 a | 1.64 × 10−8 |
Procymidone | 1.88 × 10−8 | 0.10 a | 1.88 × 10−7 | 2.53 × 10−7 | 0.10 a | 2.53 × 10−6 |
Profenofos | 6.88 × 10−8 | 0.03 a | 2.29 × 10−6 | 1.61 × 10−7 | 1.00 a | 1.61 × 10−7 |
Prometryn | 2.94 × 10−7 | 0.04 b | 7.34 × 10−6 | 4.28 × 10−6 | - | / |
Propoxur | 1.22 × 10−9 | 0.02 b | 6.11 × 10−8 | 2.70 × 10−9 | - | / |
Pyraclostrobin | 2.42 × 10−6 | 0.09 a | 2.69 × 10−5 | 3.54 × 10−5 | 0.09 a | 3.93 × 10−4 |
Pyridaben | 1.76 × 10−9 | 0.01 b | 1.76 × 10−7 | 1.03 × 10−8 | - | / |
Pyrimethanil | 2.49 × 10−8 | 0.20 a | 1.24 × 10−7 | 8.76 × 10−7 | - | / |
Tebuconazole | 1.26 × 10−8 | 0.03 a | 4.20 × 10−7 | 2.17 × 10−6 | 0.30 a | 7.22 × 10−6 |
Terbufos-Sulfone and Terbufoxon Sulfoxide | 7.17 × 10−9 | 0.0006 a | 1.20 × 10−5 | 9.11 × 10−8 | 0.002 a | 4.56 × 10−5 |
Terbuthylazine | 1.01 × 10−8 | 0.003 b | 3.37 × 10−6 | 2.89 × 10−8 | - | / |
Thiamethoxam | 3.97 × 10−9 | 0.08 a | 4.96 × 10−8 | 8.34 × 10−9 | 1.00 a | 8.34 × 10−9 |
Thiophanate-Methyl | 5.00 × 10−9 | 0.08 a | 6.25 × 10−8 | 3.21 × 10−8 | - | / |
Triadimefon | 8.55 × 10−9 | 0.03 a | 2.85 × 10−7 | 1.24 × 10−7 | 0.08 a | 1.55 × 10−6 |
Triazophos | 3.85 × 10−7 | 0.001 a | 3.85 × 10−4 | 1.43 × 10−6 | 0.001 a | 1.43 × 10−3 |
Tricyclazole | 4.96 × 10−9 | 0.04 b | 1.24 × 10−7 | 1.15 × 10−8 | - | / |
No. | Pesticide | Retention Time (min) | Quantitative Ion Pair (m/z) | Collision Energy (eV) | Qualitative Ion Pair 1 (m/z) | Collision Energy 1 (eV) | Qualitative Ion Pair 2 (m/z) | Collision Energy 2 (eV) | ME/% |
---|---|---|---|---|---|---|---|---|---|
1 | Azoxystrobin | 59.237 | 344.1 > 183.1 | 24 | 344.1 > 329.1 | 16 | 344.1 > 156.1 | 32 | 93 |
2 | Chlorpyrifos | 30.055 | 313.9 > 257.9 | 14 | 313.9 > 285.9 | 8 | 313.9 > 193.9 | 28 | 115 |
3 | Paclobutrazol | 35.505 | 236.1 > 125.0 | 14 | 236.1 > 167.0 | 10 | 236.1 > 132.0 | 16 | 104 |
4 | Procymidone | 34.91 | 283.0 > 96.0 | 10 | 283.0 > 255.0 | 12 | 283.0 > 68.0 | 24 | 146 |
5 | Profenofos | 38.81 | 336.9 > 266.9 | 14 | 336.9 > 308.9 | 6 | 336.9 > 294.9 | 10 | 98 |
6 | Pyrimethanil | 23.785 | 198.1 > 183.1 | 14 | 198.1 > 158.1 | 18 | 198.1 > 118.1 | 28 | 105 |
7 | Triazophos | 47.985 | 257.0 > 162.0 | 8 | 257.0 > 134.0 | 22 | 257.0 > 119.0 | 26 | 106 |
8 | Triphenyl phosphate (internal standard) | 48.75 | 326.0 > 233.0 | 10 | 326.0 > 215.0 | 25 | 326.0 > 169.0 | 30 | 90 |
No. | Pesticide | Fragmentor (V) | Retention Time (min) | Quantitative Ion Pair (m/z) | Collision Energy (eV) | Qualitative Ion Pair (m/z) | Collision Energy (eV) | ME/% |
---|---|---|---|---|---|---|---|---|
1 | acetamiprid | 80 | 4.409 | 223.0 > 126.0 | 15 | 223.0 > 56.0 | 15 | 79.4 |
2 | Carbendazim | 92 | 1.695 | 192.3 > 160.1 | 16 | 192.3 > 132.1 | 32 | 93.4 |
3 | carbofuran | 90 | 7.155 | 222.1 > 165.1 | 5 | 222.1 > 123.1 | 17 | 80.5 |
4 | chlorantraniliprole | 102 | 8.991 | 484.0 > 453.0 | 13 | 484.0 > 286.0 | 10 | 120.2 |
5 | diethofencarb | 80 | 9.526 | 268.0 > 226.0 | 5 | 268.0 > 152.0 | 20 | 86.6 |
6 | difenoconazole | 160 | 11.509 | 406.0 > 251.0 | 20 | 406.0 > 337.0 | 15 | 92.7 |
7 | Dimethomorph | 120 | 9.236 | 388.0 > 301.0 | 20 | 388.0 > 165.0 | 25 | 118.8 |
8 | etoxazole | 110 | 14.149 | 360.5 > 141.1 | 32 | 360.5 > 113.1 | 60 | 117 |
9 | flutriafol | 81 | 7.705 | 302.0 > 70.2 | 16 | 302.0 > 123.1 | 32 | 85.8 |
10 | imidacloprid | 80 | 3.736 | 256.0 > 209.0 | 10 | 256.0 > 175.0 | 10 | 85.9 |
11 | isofenphos-methyl | 100 | 12.011 | 231.0 > 121.0 | 15 | 231.0 > 199.0 | 15 | 88.5 |
12 | Mefenacet | 60 | 10.011 | 299.1 > 148.1 | 10 | 299.1 > 120.1 | 30 | 82.8 |
13 | mepiquat chloride | 105 | 1.068 | 114.0 > 58.2 | 28 | 114.0 > 98.2 | 28 | 83.3 |
14 | myclobutanil | 120 | 9.852 | 289.0 > 70.0 | 15 | 289.0 > 125.0 | 20 | 97.3 |
15 | Phorate sulfone | 65 | 9.122 | 293.0 > 171.0 | 8 | 293.0 > 247.0 | 81.9 | |
16 | Phorate-sulfoxide | 80 | 7.615 | 277.0 > 97.0 | 25 | 277.0 > 171.0 | 15 | 94.8 |
17 | phoxim | 60 | 12.303 | 299.0 > 77.2 | 32 | 299.0 > 129.1 | 8 | 96.2 |
18 | pirimicarb | 120 | 4.942 | 239.0 > 72.0 | 20 | 239.0 > 182.0 | 15 | 83.9 |
19 | prometryn | 120 | 9.341 | 242.2 > 158.1 | 20 | 242.2 > 200.2 | 20 | 87.8 |
20 | propoxur | 80 | 7.005 | 210.0 > 111.0 | 10 | 210.0 > 168.0 | 5 | 94.4 |
21 | Pyraclostrobin | 92 | 11.998 | 388.4 > 194.1 | 16 | 388.4 > 163.1 | 8 | 114.1 |
22 | pyridaben | 80 | 14.767 | 365.0 > 309.0 | 10 | 365.0 > 147.0 | 20 | 85.6 |
23 | tebuconazole | 120 | 10.32 | 308.0 > 70.0 | 20 | 308.0 > 151.0 | 20 | 83.2 |
24 | Terbufos-Sulfone | 75 | 10.242 | 321.1 > 171.2 | 4 | 321.1 > 97.0 | 48 | 94.8 |
25 | Terbufoxon Sulfoxide | 60 | 8.985 | 305.1 > 187.2 | 4 | 305.1 > 97.0 | 50 | 91.5 |
26 | Terbuthylazine | 102 | 9.342 | 230.0 > 174.1 | 12 | 230.0 > 68.2 | 40 | 88.4 |
27 | thiamethoxam | 80 | 2.429 | 292.0 > 211.0 | 5 | 292.0 > 181.0 | 20 | 81.4 |
28 | thiophanate-methyl | 105 | 6.825 | 343.1 > 151.0 | 17 | 343.1 > 117.9 | 65 | 106.7 |
29 | triadimefon | 120 | 10.003 | 294.0 > 69.0 | 20 | 294.0 > 197.0 | 15 | 85.6 |
30 | tricyclazole | 120 | 4.62 | 190.0 > 163.0 | 25 | 190.0 > 136.0 | 30 | 95.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Gou, Y.; Yu, X.; Wang, M.; Yu, W.; Zhou, J.; Liu, W.; Li, M. Detection and Risk Assessments of Multi-Pesticides in Traditional Chinese Medicine Chuanxiong Rhizoma by LC/MS-MS and GC/MS-MS. Molecules 2022, 27, 622. https://doi.org/10.3390/molecules27030622
Zhang D, Gou Y, Yu X, Wang M, Yu W, Zhou J, Liu W, Li M. Detection and Risk Assessments of Multi-Pesticides in Traditional Chinese Medicine Chuanxiong Rhizoma by LC/MS-MS and GC/MS-MS. Molecules. 2022; 27(3):622. https://doi.org/10.3390/molecules27030622
Chicago/Turabian StyleZhang, Delin, Yan Gou, Xingyu Yu, Mei Wang, Wen Yu, Juan Zhou, Wei Liu, and Min Li. 2022. "Detection and Risk Assessments of Multi-Pesticides in Traditional Chinese Medicine Chuanxiong Rhizoma by LC/MS-MS and GC/MS-MS" Molecules 27, no. 3: 622. https://doi.org/10.3390/molecules27030622
APA StyleZhang, D., Gou, Y., Yu, X., Wang, M., Yu, W., Zhou, J., Liu, W., & Li, M. (2022). Detection and Risk Assessments of Multi-Pesticides in Traditional Chinese Medicine Chuanxiong Rhizoma by LC/MS-MS and GC/MS-MS. Molecules, 27(3), 622. https://doi.org/10.3390/molecules27030622