Chemical Composition and Metabolomic Analysis of Amaranthus cruentus Grains Harvested at Different Stages
Abstract
:1. Introduction
2. Results
2.1. Proximate Analysis of Early and Normally Harvested Grains
Chemical Composition
2.2. Mineral Composition
2.3. Amino Acid Profile
2.4. Fatty Acids
2.5. Tocopherols and Tocotrienols
2.6. Secondary Metabolites
3. Discussion
4. Materials and Methods
4.1. Harvesting of Amaranth Grains
4.2. Chemical Analysis
4.3. Amino Acid Profile
4.4. Oil extraction and Fatty Acids Determination
4.5. Determination of Tocopherols and Tocotrienols
4.6. Determination of Secondary Metabolites
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Aswal, J.S.; Bisht, B.S.; Dobhal, R.; Uniyal, D.P. Historical Journey with Amaranth. Asian Agri-Hist. 2016, 20, 201–210. [Google Scholar]
- Huerta-Ocampo, J.A.; de la Rosa, A.P.B. Amaranth: A Pseudo-Cereal with Nutraceutical Properties. Curr. Nutr. Food Sci. 2011, 7, 1–9. [Google Scholar] [CrossRef]
- Balasubramanian, T.; Karthikeyan, M. Therapeutic Effect of Amaranthus hybridus on Diabetic Nephropathy. J. Dev. Drugs 2016, 5, 147. [Google Scholar]
- Robertson, K.R.; Clemants, S.E. Amaranthaceae. Flora N. Am. 2003, 4, 405–456. [Google Scholar]
- Negro, M.; Giardina, S.; Marzani, B. Branched–chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J. Sports Med. Phys. Fit. 2008, 48, 347–351. [Google Scholar]
- Januszewska-Jóźwiak, K.; Synowiecki, J. Characteristics and suitability of amaranth components in food biotechnology. Biotechnologia 2008, 3, 89–102. [Google Scholar]
- Fidantsi, A.; Doxastakis, G. Emulsifying and foaming properties of amaranth seed protein isolates. Colloids Surf. B Biointerfaces 2001, 21, 119–124. [Google Scholar] [CrossRef]
- Paśko, P.; Sajewicz, M.; Gorinstein, S.; Zachwieja, Z. Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. Acta Chromatogr. 2008, 20, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Martınez-Nunez, M.; Ruiz-Rivas, M.; Vera-Hernandez, P.F.; Bernal-Munoz, R.; Luna-Suarez, S.; Rosas-Cardenas, F.F. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. S. Afr. J. Bot. 2019, 124, 436–443. [Google Scholar] [CrossRef]
- Nasirpour-Tabrizi, P.; Azadmard-Damirchi, S.; Hesari, J.; Piravi-Vanak, Z. Nutritional Value of Amaranth. IntechOpen 2020. Available online: https://www.intechopen.com/chapters/71167 (accessed on 31 December 2021).
- Manyelo, T.G.; Sebola, N.A.; van Rensburg, E.J.; Mabelebele, M. The probable use of Genus Amaranthus as feed material for monogastric animals. Animals 2020, 10, 1504. [Google Scholar] [CrossRef]
- Kamboh, A.A.; Hang, S.Q.; Khan, M.A.; Zhu, W.Y. In vivo immunomodulatory effects of plant flavonoids in lipopolysaccharide-challenged broilers. Animals 2016, 10, 1619–1625. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Abd El, T.; Mostafa, S.A.K. Utilization of polyethylene glycol and tannase enzyme to reduce the negative effect of tannins on digestibility, milk production and animal performance. Asian J. Anim. Vet. Adv. 2018, 13, 201–209. [Google Scholar]
- Alt, D.S.; Paul, P.A.; Lindsey, A.J.; Lindsey, L.E. Early Wheat harvest influenced grain quality and profit but not yield. Crop Forage Turfgrass Manag. 2019, 5, 190001. [Google Scholar] [CrossRef]
- Weeks, W.J.; Louw, S.M. Trouble shooting for the introduction of a new crop: Amaranth pest survey. In Proceedings of the IXVIII Congress of the Entomological Society of Southern Africa, North-West University, Potchefstroom, South Africa, 30 June –3 July 2013. [Google Scholar]
- Weeks, W.J. First steps toward understanding insect pests associated with quinoa (Chenopodium quinoa Wild.) in Central South Africa. In Proceedings of the Second International Quinoa Research Symposium, Washington State University, Washington, DC, USA, 17–19 August 2020. [Google Scholar]
- Ma, J.; Sun, G.; Shah, A.M.; Fan, X.; Li, S.; Yu, X. Effects of different growth stages of Amaranth silage on the rumen degradation of dairy cows. Animals 2019, 9, 793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindberg, J.E. Fiber effects in nutrition and gut health in pigs. J. Anim. Sci. Biotechnol. 2014, 5, 2–17. [Google Scholar] [CrossRef]
- Mariotti, F.; Gardner, C.D. Dietary Protein and amino acids in vegetarian diets—A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef] [Green Version]
- Soriano-García, M.; Arias-Olguín, I.I.; Montes, J.P.C. Nutritional, functional value and therapeutic utilization of Amaranth. J. Anal. Pharm Res. 2018, 7, 596–600. [Google Scholar] [CrossRef] [Green Version]
- Sindhu, R.; Khatkar, B.S. Characterization of Amaranth (Amaranthus Hypocondriacus) Starch. Int. J. Eng. Res. 2016, 5, 463–469. [Google Scholar] [CrossRef]
- De Bock, P.; Daelemans, L.; Selis, L.; Raes, K.; Vermeir, P.; Eeckhout, M.; Van Bockstaele, F. Comparison of the Chemical and Technological Characteristics of Wholemeal Flours Obtained from Amaranth (Amaranthus sp.), Quinoa (Chenopodium quinoa) and Buckwheat (Fagopyrum sp.) Seeds. Foods 2021, 10, 651. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F. Physicochemical properties of quinoa flour as affected by starch interactions. Food Chem. 2017, 221, 1560–1568. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Bryden, W.L. Calcium and phosphorus metabolism and nutrition of poultry: Are current diets formulated in excess? Anim. Prod. Sci. 2017, 57, 2304–2310. [Google Scholar] [CrossRef]
- Firman, J.D. Nutrient Requirements of Chickens and Turkeys. Nutrient Requirements of Chickens and Turkeys; University of Missouri Extension: Columbia, MO, USA, 1993; Available online: https://extension.missouri.edu/publications/g8352 (accessed on 15 October 2021).
- Pacheco, B.H.C.; Nakagi, V.S.; Kobashigawa, E.H.; Caniatto, A.R.M.; Faria, D.E. Dietary levels of zinc and manganese on the performance of broilers between 1 to 42 days of Age. Braz. J. Poult. Sci. 2017, 19, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Baloš, M.; Jakšić, S.; Knežević, S.; Miloš, K. Electrolytes—sodium, potassium and chlorides in poultry nutrition elektroliti—natrijum, kalijum i hloridi u ishrani živine. Arch. Vet. Sci. 2016, 9, 1820–9955. [Google Scholar]
- Voet, G.; Judith, W.; Pratt, C. Fundamentals of Biochemistry: Life at the Molecular Level; Wiley: New York, NY, USA, 2016; ISBN 9781118918401. [Google Scholar]
- Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P. Characterization of Amaranth seed oils. J. Food Lipids 2007, 14, 323–334. [Google Scholar] [CrossRef]
- He, H.P.; Corke, H. Oil and Squalene in Amaranthus grain and leaf. J. Agric. Food Chem. 2003, 51, 7913–7920. [Google Scholar] [CrossRef]
- Hlinková, A.; Bednárová, A.; Havrlentová, M.; Šupová, J.; Cicová, I. Evaluation of fatty acid composition among selected amaranth grains grown in two consecutive years. Biologia 2013, 68, 641–650. [Google Scholar] [CrossRef]
- El Madfa, I.; Kornsteiner, M. Fats and fatty acid requirement for adults. Ann. Nutr. Metab. 2009, 55, 56–75. [Google Scholar] [CrossRef]
- El Gendy, A.N.G.; Tavarini, S.; Conte, G.; Pistelli, L.; Hendawy, S.F.; Omer, E.A.; Angelini, L.G. Yield and qualitative characterisation of seeds of Amaranthus hypochondriacus L. and Amaranthus cruentus L. grown in central Italy. Ital. J. Agron. 2018, 13, 63–73. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Cai, Y.; Sun, M.; Corke, H. Extraction and Purification of Squalene from Amaranthus Grain. J. Agric. Food Chem. 2002, 50, 368–372. [Google Scholar] [CrossRef]
- Gresta, F.; Meineri, G.; Oteri, M.; Santonoceto, C.; Lo Presti, V.; Costale, A.; Chiofalo, B. Productive and qualitative traits of Amaranthus cruentus L.: An unconventional healthy ingredient in animal feed. Animals 2020, 10, 1428. [Google Scholar] [CrossRef]
- Lehmann, J.W.; Putnam, D.H.; Qureshi, A.A. Vitamin E isomers in grain amaranths (Amaranthus spp.). Lipids 1994, 29, 177–181. [Google Scholar] [CrossRef]
- Ogrodowska, D.; Zadernowski, R.; Czaplicki, S.; Derewiaka, D.; Wronowska, B. Amaranth seeds and products—The source of bioactive compounds. Polish. J. Food Nutr. Sci. 2014, 64, 165–170. [Google Scholar]
- Khor, H.T.; Chieng, D.Y. Effect of squalene, tocotrienols and α-tocopherol supplementations in the diet on serum and liver lipids in the hamster. Nutr. Res. 1997, 17, 475–483. [Google Scholar] [CrossRef]
- Karamać, M.G.; Longato, F.; Giorgia, E.; Janiak, M.; Amarowicz, M.; Giorgio, R.P. Antioxidant activity and phenolic composition of amaranth (Amaranthus caudatus) during plant growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Muthuraman, A. Therapeutic evaluation of rutin in two-kidney one-clip model of renovascular hypertension in rat. Life Sci. 2016, 50, 89–94. [Google Scholar] [CrossRef]
- Ou, S.; Kwok, K. Ferulic acid: Pharmaceutical functions, preparation and applications in food. J. Sci. Food Agric. 2004, 84, 1261–1269. [Google Scholar] [CrossRef]
- Bai, M.; Liu, H.; Xu, K.; Oso, A.O.; Wu, X.; Liu, G.; Yin, Y. A review of the immunomodulatory role of dietary tryptophan in livestock and poultry. Amino Acids 2017, 49, 67–74. [Google Scholar] [CrossRef]
- de Lima, M.B.; Sakomura, N.K.; PDorigam, J.C.; da Silva, E.P.; Ferreira, N.T.; Fernandes, J.B.K. Maintenance valine, isoleucine, and tryptophan requirements for poultry. Poult. Sci. 2016, 95, 842–850. [Google Scholar] [CrossRef]
- Goliomytis, M.; Tsoureki, D.; Simitzis, P.E.; Charismiadou, M.A.; Hager-Theodorides, A.L. and Deligeorgis, S.G. The effects of quercetin dietary supplementation on broiler growth performance, meat quality, and oxidative stability. Poult. Sci. 2014, 93, 1957–1962. [Google Scholar] [CrossRef]
- Kang, D.G.; Moon, M.K.; Sohn, E.J.; Lee, D.H.; Lee, H.S. Effects of morin on blood pressure and metabolic changes in fructose-induced hypertensive rats. Biol. Pharm. Bull. 2004, 27, 1779–1783. [Google Scholar] [CrossRef] [Green Version]
- Bhutto, Z.A.; He, F.; Zloh, M.; Yang, J.; Huang, J.; Guo, T.; Wang, L. Use of quercetin in animal feed: Effects on the P-gp expression and pharmacokinetics of orally administrated enrofloxacin in chicken. Sci. Rep. 2018, 8, 4400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.P.; Yang, J.S.; Lin, J.J.; Lai, K.C.; Lu, H.F.; Ma, C.Y.; Sai-Chuen, W.R.; Wu, K.C.; Chueh, F.S.; Gibson, W.W.; et al. Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environ. Toxicol. 2012, 27, 480–484. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- SAS. Statistical Analysis Software User’s Guide: Statistics, 9th ed.; SAS Institute, Inc.: Raleigh, NC, USA, 2010. [Google Scholar]
Nutrient | Grain Maturity | SEM | Probability | |
---|---|---|---|---|
PHG | MHG | |||
DM | 90.02 | 90.60 | 0.050 | 0.015 |
CP | 18.16 | 18.26 | 0.050 | 0.293 |
CF | 5.77 b | 6.91 a | 0.050 | 0.004 |
NDF | 9.33 b | 11.08 a | 0.050 | 0.002 |
ADF | 5.91 b | 7.24 a | 0.050 | 0.003 |
ADL | 2.07 | 1.99 | 0.050 | 0.375 |
GE | 17.47 | 17.55 | 0.050 | 0.375 |
EE | 6.33 b | 7.75 a | 0.050 | 0.003 |
Starch | 37.96 a | 29.11 b | 0.050 | 0.000 |
Ash | 3.13 | 3.75 | 0.050 | 0.013 |
Nutrient | Grain Maturity | SEM | Probability | |
---|---|---|---|---|
PHG | MHG | |||
Macro-Minerals | ||||
Calcium | 2125.41 b | 2771.07 a | 0.05000 | 0.0001 |
Phosphorus | 3966.24 b | 5024.56 a | 0.05000 | 0.0001 |
Magnesium | 2805.53 b | 3501.36 a | 0.05000 | 0.0001 |
Potassium | 4951.02 b | 5101.99 a | 0.03536 | 0.0001 |
Sodium | 46.99 a | 29.45 b | 0.05000 | 0.0001 |
Trace Minerals | ||||
Copper | 6.95 a | 5.95 b | 0.05000 | 0.0050 |
Manganese | 31.31 a | 23.71 b | 0.05000 | 0.0001 |
Iron | 104.97 b | 147.01 a | 0.05000 | 0.0001 |
Zinc | 59.96 a | 49.97 b | 0.05000 | 0.0001 |
Grains Maturity | ||||
---|---|---|---|---|
PHG | MHG | SEM | Probability | |
Essential Amino Acids | ||||
Histidine | 2.41 | 3.21 | 0.050 | 0.049 |
Arginine | 5.60 | 5.66 | 0.050 | 0.001 |
Threonine | 3.71 | 3.67 | 0.050 | 0.058 |
Lysine | 3.22 | 4.18 | 0.050 | 0.058 |
Tyrosine | 0.56 | 0.46 | 0.050 | 0.036 |
Methionine | 2.21 | 2.26 | 0.050 | 0.167 |
Valine | 2.18 | 2.28 | 0.050 | 0.003 |
Leucine | 3.10 | 3.99 | 0.050 | 0.017 |
Non-Essential Amino Acids | ||||
Serine | 4.41 | 4.48 | 0.050 | 0.049 |
Glycine | 3.60 | 1.60 | 0.050 | 0.009 |
Aspartic acid | 4.71 | 4.87 | 0.050 | 0.058 |
Glutamine | 11.22 | 11.18 | 0.050 | 0.058 |
Alanine | 3.56 | 3.46 | 0.050 | 0.036 |
Proline | 2.21 | 2.26 | 0.050 | 0.167 |
Isoleucine | 2.18 | 2.28 | 0.050 | 0.0003 |
Phenylalanine | 1.00 | 0.99 | 0.050 | 0.017 |
Grain Maturity | ||||
---|---|---|---|---|
Fatty Acid Composition | PHG | MHG | SEM | Probability |
Saturated Fatty Acids | ||||
Myristic acid (C14:0) | 0.16 | 0.16 | 0.000 | 0.0001 |
Palmitic acid (C16:0) | 15.15 | 12.03 | 0.000 | 0.0001 |
Stearic acid (C18:0) | 2.52 | 2.02 | 0.007 | 0.0001 |
Arachidic acid (C20:0) | 0.56 | 1.55 | 0.007 | 0.0001 |
Unsaturated Fatty Acids | ||||
Linoleic acid (C18:2) | 38.75 | 39.74 | 0.000 | 0.0001 |
Linolenic acid (C18:3) | 0.68 | 0.55 | 0.010 | 0.0001 |
Palmitoleic acid (C16:1 cis) | 0.18 | 0.03 | 0.000 | 0.0001 |
Oleic acid (C18:1) | 28.67 | 30.65 | 0.010 | 0.0001 |
Saturated | 18.39 | 15.76 | 0.010 | 0.0001 |
Unsaturated | 68.29 | 70.97 | 0.000 | 0.0001 |
Saturated/unsaturated | 0.27 | 0.22 | 0.007 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manyelo, T.G.; Sebola, N.A.; Hassan, Z.M.; Ng’ambi, J.W.; Weeks, W.J.; Mabelebele, M. Chemical Composition and Metabolomic Analysis of Amaranthus cruentus Grains Harvested at Different Stages. Molecules 2022, 27, 623. https://doi.org/10.3390/molecules27030623
Manyelo TG, Sebola NA, Hassan ZM, Ng’ambi JW, Weeks WJ, Mabelebele M. Chemical Composition and Metabolomic Analysis of Amaranthus cruentus Grains Harvested at Different Stages. Molecules. 2022; 27(3):623. https://doi.org/10.3390/molecules27030623
Chicago/Turabian StyleManyelo, Tlou Grace, Nthabiseng Amenda Sebola, Zahra Mohammed Hassan, Jones Wilfred Ng’ambi, William James Weeks, and Monnye Mabelebele. 2022. "Chemical Composition and Metabolomic Analysis of Amaranthus cruentus Grains Harvested at Different Stages" Molecules 27, no. 3: 623. https://doi.org/10.3390/molecules27030623
APA StyleManyelo, T. G., Sebola, N. A., Hassan, Z. M., Ng’ambi, J. W., Weeks, W. J., & Mabelebele, M. (2022). Chemical Composition and Metabolomic Analysis of Amaranthus cruentus Grains Harvested at Different Stages. Molecules, 27(3), 623. https://doi.org/10.3390/molecules27030623