Use of Onion Waste as Fuel for the Generation of Bioelectricity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Single-Chamber Microbial Fuel Cells
2.2. Onion Waste Collection and Preparation
2.3. Characterization of Microbial Fuel Cells
2.4. Isolation of Electrogenic Microorganisms in Anodic Chamber
2.5. Molecular Identification of Bacteria and Fungi
3. Results and Analysis
4. Conclusions and Future Development
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lott, B.E.; Okusanya, B.O.; Anderson, E.J.; Kram, N.A.; Rodriguez, M.; Thomson, C.A.; Rosales, C.; Ehiri, J.E. Interventions to increase uptake of Human Papillomavirus (HPV) vaccination in minority populations: A systematic review. Prev. Med. Rep. 2020, 19, 101163. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Khatoon, A.; Mohd Setapar, S.H.; Umar, K.; Parveen, T.; Mohamad Ibrahim, M.N.; Ahmad, A.; Rafatullah, M. Outlook on the role of microbial fuel cells in remediation of environmental pollutants with electricity generation. Catalysts 2020, 10, 819. [Google Scholar] [CrossRef]
- Ludlow, J.; Jalil-Vega, F.; Rivera, X.S.; Garrido, R.; Hawkes, A.; Staffell, I.; Balcombe, P. Organic waste to energy: Resource potential and barriers to uptake in Chile. Sustain. Prod. Consum. 2021, 28, 1522–1537. [Google Scholar] [CrossRef]
- Nazario-Naveda, R.; Benites, S.M. Sugar Industry Waste for Bioelectricity Generation. Environ. Res. Eng. Manag. 2021, 77, 15–22. [Google Scholar]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Szulc, W.; Rutkowska, B.; Gawroński, S.; Wszelaczyńska, E. Possibilities of using organic waste after biological and physical processing—An overview. Processes 2021, 9, 1501. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; López, G.; Kaparaju, P. Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia 2017, 134, 286–295. [Google Scholar] [CrossRef]
- Pellejero, G.; Miglierina, A.; Aschkar, G.; Turcato, M.; Jiménez-Ballesta, R. Effects of the onion residue compost as an organic fertilizer in a vegetable culture in the Lower Valley of the Rio Negro. Int. J. Recycl. Org. Waste Agric. 2017, 6, 159–166. [Google Scholar] [CrossRef]
- Pagliano, G.; Ventorino, V.; Panico, A.; Pepe, O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: A review of microbial processes. Biotechnol. Biofuels 2017, 10, 1–24. [Google Scholar] [CrossRef]
- Aravindhan, A.; Lingeshwaran, N.; Goutami, K. Bio-Gas production from different organic wastes. Mater. Today Proc. 2021, 47, 5457–5461. [Google Scholar]
- Segundo, R.F.; Renny, N.N.; Moises, G.C.; Daniel, D.N.; Natalia, D.D.; Karen, V.R. Generation of Bioelectricity from Organic Fruit Waste. Environ. Res. Eng. Manag. 2021, 77, 6–14. [Google Scholar]
- Saba, B.; Christy, A.D. Bioelectricity Generation in Algal Microbial Fuel Cells. In Handbook of Algal Science, Technology and Medicine; Academic Press: Cambridge, MA, USA, 2020; pp. 377–384. [Google Scholar]
- Jatoi, A.S.; Akhter, F.; Mazari, S.A.; Sabzoi, N.; Aziz, S.; Soomro, S.A.; Mubarak, N.M.; Baloch, H.; Memon, A.Q.; Ahmed, S. Advanced microbial fuel cell for wastewater treatment—A review. Environ. Sci. Pollut. Res. 2021, 28, 5005–5019. [Google Scholar] [CrossRef]
- Leung, D.H.L.; Lim, Y.S.; Uma, K.; Pan, G.T.; Lin, J.H.; Chong, S.; Yang, T.C.K. Engineering S. oneidensis for performance improvement of microbial fuel cell—A mini-review. Appl. Biochem. Biotechnol. 2021, 193, 1170–1186. [Google Scholar] [CrossRef]
- Raychaudhuri, A.; Behera, M. Review of the process optimization in microbial fuel cells using design of experiment methodology. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020013. [Google Scholar] [CrossRef]
- Cecconet, D.; Molognoni, D.; Callegari, A.; Capodaglio, A.G. Agro-food industry wastewater treatment with microbial fuel cells: Energetic recovery issues. Int. J. Hydrogen Energy 2018, 43, 500–511. [Google Scholar] [CrossRef]
- de Asefi, B.; Li, S.L.; Moreno, H.A.; Sanchez-Torres, V.; Hu, A.; Li, J.; Yu, C.P. Characterization of electricity production and microbial community of food waste-fed microbial fuel cells. Process Saf. Environ. Prot. 2019, 125, 83–91. [Google Scholar] [CrossRef]
- Fogg, A.; Gadhamshetty, V.; Franco, D.; Wilder, J.; Agapi, S.; Komisar, S. Can a microbial fuel cell resist the oxidation of Tomato pomace? J. Power Sources 2015, 279, 781–790. [Google Scholar] [CrossRef]
- Shrestha, N.; Fogg, A.; Wilder, J.; Franco, D.; Komisar, S.; Gadhamshetty, V. Electricity generation from defective tomatoes. Bioelectrochemistry 2016, 112, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Umar, K. Biomass-derived composite anode electrode: Synthesis, characterizations, and application in microbial fuel cells (MFCs). J. Environ. Chem. Eng. 2021, 9, 106111. [Google Scholar] [CrossRef]
- Prokopov, T.; Chonova, V.; Slavov, A.; Dessev, T.; Dimitrov, N.; Petkova, N. Effects on the quality and health-enhancing properties of industrial onion waste powder on bread. J. Food Sci. Technol. 2018, 55, 5091–5097. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Gonzalez-Aguilar, G.A. Quantification of flavonoids, total phenols and antioxidant properties of onion skin: A comparative study of fifteen Indian cultivars. J. Food Sci. Technol. 2020, 57, 2423–2432. [Google Scholar] [CrossRef]
- Liguori, L.; Califano, R.; Albanese, D.; Raimo, F.; Crescitelli, A.; Di Matteo, M. Chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. J. Food Qual. 2017, 2017, 6873651. [Google Scholar] [CrossRef] [Green Version]
- Bedrníček, J.; Laknerová, I.; Linhartová, Z.; Kadlec, J.; Samková, E.; Bárta, J.; Bártová, V.; Mraz, J.; Pešek, M.; Winterová, R.; et al. Onion waste as a rich source of antioxidants for meat products. Czech J. Food Sci. 2019, 37, 268–275. [Google Scholar] [CrossRef]
- Celano, R.; Docimo, T.; Piccinelli, A.L.; Gazzerro, P.; Tucci, M.; Di Sanzo, R.; Carabetta, S.; Campone, L.; Russo, M.; Rastrelli, L. Onion peel: Turning a food waste into a resource. Antioxidants 2021, 10, 304. [Google Scholar] [CrossRef]
- Velenturf, A.P.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Chorolque, A.; Pellejero, G.; Sosa, M.C.; Palacios, J.; Aschkar, G.; García-Delgado, C.; Jiménez-Ballesta, R. Biological control of soil-borne phytopathogenic fungi through onion waste composting: Implications for circular economy perspective. Int. J. Environ. Sci. Technol. 2021, 1–10. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; Tomar, M.; et al. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef]
- Mihai, F.C.; Gündoğdu, S.; Markley, L.A.; Olivelli, A.; Khan, F.R.; Gwinnett, C.; Gutberlet, J.; Reyna-Bensusan, N.; Llanquileo-Melgarejo, P.; Meidiana, C.; et al. Plastic pollution, waste management issues, and circular economy opportunities in rural communities. Sustainability 2022, 14, 20. [Google Scholar] [CrossRef]
- Provin, A.P.; de Aguiar Dutra, A.R. Circular economy for fashion industry: Use of waste from the food industry for the production of biotextiles. Technol. Forecast. Soc. Change 2021, 169, 120858. [Google Scholar] [CrossRef]
- Stillitano, T.; Spada, E.; Iofrida, N.; Falcone, G.; De Luca, A.I. Sustainable agri-food processes and circular economy pathways in a life cycle perspective: State of the art of applicative research. Sustainability 2021, 13, 2472. [Google Scholar] [CrossRef]
- Sinha, S.; Tripathi, P. Trends and challenges in valorisation of food waste in developing economies: A case study of India. Case Stud. Chem. Environ. Eng. 2021, 4, 100162. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; Noriega, M.D.L.C.; Benites, S.M.; Gonzales, G.A.; Salinas, A.S.; Palacios, F.S. Generation of bioelectricity from fruit waste. Energy Rep. 2020, 6, 37–42. [Google Scholar] [CrossRef]
- Hindatu, Y.; Annuar, M.S.M.; Gumel, A.M. Mini review: Anode modification for improved performance of microbial fuel cell. Renew. Sustain. Energy Rev. 2017, 73, 236–248. [Google Scholar] [CrossRef]
- Santiago, B.; Rojas-Flores, S.; De La Cruz Noriega, M.; Cabanillas-Chirinos, L.; Otiniano, N.M.; Silva-Palacios, F.; Luis, A.S. Bioelectricity from Saccharomyces cerevisiae yeast through low-cost microbial fuel cells. In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering, Integration, and Alliances for a Sustainable Development, Virtual, 27–31 July 2020. [Google Scholar]
- Rojas-Flores, S.J.; Benites, S.M.; Agüero Quiñones, R.; Enríquez-León, R.; Angelats Silva, L. Bioelectricity through microbial fuel cells from decomposed fruits using lead and copper electrodes (Bioelectricidad mediante Celdas de Combustible Microbiana a partir de frutas descompuestas usando electrodos de plomo y cobre). In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering, Integration, and Alliances for a Sustainable Development, Virtual, 27–31 July 2020. [Google Scholar]
- Rojas Flores, S.; Naveda, R.N.; Paredes, E.A.; Orbegoso, J.A.; Céspedes, T.C.; Salvatierra, A.R.; Rodríguez, M.S. Agricultural Wastes for Electricity Generation Using Microbial Fuel Cells. Open Biotechnol. J. 2020, 14, 52–58. [Google Scholar] [CrossRef]
- Flores, S.J.R.; Benites, S.M.; Rosa, A.L.R.A.L.; Zoilita, A.L.Z.A.L.; Luis, A.S.L. The Using Lime (Citrus× aurantiifolia), Orange (Citrus× sinensis), and Tangerine (Citrus reticulata) Waste as a Substrate for Generating Bioelectricity: Using lime (Citrus× aurantiifolia), orange (Citrus× sinensis), and tangerine (Citrus reticulata) waste as a substrate for generating bioelectricity. Environ. Res. Eng. Manag. 2020, 76, 24–34. [Google Scholar]
- Din, M.I.; Iqbal, M.; Hussain, Z.; Khalid, R. Bioelectricity generation from waste potatoes using single chambered microbial fuel cell. Energy Sources Pt. A Recovery Util. Environ. Eff. 2020, 1–11. [Google Scholar] [CrossRef]
- Moqsud, M.A.; Omine, K.; Yasufuku, N.; Hyodo, M.; Nakata, Y. Microbial fuel cell (MFC) for bioelectricity generation from organic wastes. Waste Manag. 2013, 33, 2465–2469. [Google Scholar] [CrossRef]
- Subha, C.; Kavitha, S.; Abisheka, S.; Tamilarasan, K.; Arulazhagan, P.; Banu, J.R. Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell. Fuel 2019, 251, 224–232. [Google Scholar] [CrossRef]
- Moharir, P.V.; Tembhurkar, A.R. Effect of recirculation on bioelectricity generation using microbial fuel cell with food waste leachate as substrate. Int. J. Hydrogen Energy 2018, 43, 10061–10069. [Google Scholar] [CrossRef]
- Rahman, W.; Yusup, S.; Mohammad, S.A. Screening of fruit waste as substrate for microbial fuel cell (MFC). AIP Conf. Proc. 2021, 2332, 020003. [Google Scholar] [CrossRef]
- Rossi, R.; Cario, B.P.; Santoro, C.; Yang, W.; Saikaly, P.E.; Logan, B.E. Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance. Environ. Sci. Technol. 2019, 53, 3977–3986. [Google Scholar] [CrossRef] [Green Version]
- Stefanova, A.; Angelov, A.; Bratkova, S.; Genova, P.; Nikolova, K. Influence of electrical conductivity and temperature in a microbial fuel cell for treatment of mining wastewater. In Annals of the Constantin Brâncuși University of Târgu Jiu; Letters and Social Science Series; University Constantin Brancusi of Targu Jiu: Târgu Jiu, Romania, 2018. [Google Scholar]
- Gandu, B.; Rozenfeld, S.; Hirsch, L.O.; Schechter, A.; Cahan, R. Enhancement of Electrochemical Activity in Bioelectrochemical Systems by Using Bacterial Anodes: An Overview. Bioelectrochem. Syst. 2020, 1, 211–238. [Google Scholar]
- Geng, Y.K.; Yuan, L.; Liu, T.; Li, Z.H.; Zheng, X.; Sheng, G.P. Thermal/alkaline pretreatment of waste activated sludge combined with a microbial fuel cell operated at alkaline pH for efficient energy recovery. Appl. Energy 2020, 275, 115291. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, J.; Li, X.; Yang, N.; Wang, X. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment. Bioelectrochemistry 2018, 120, 145–149. [Google Scholar] [CrossRef]
- Clark, C.J.; Shaw, M.L.; Wright, K.M.; McCallum, J.A. Quantification of free sugars, fructan, pungency and sweetness indices in onion populations by FT-MIR spectroscopy. J. Sci. Food Agric. 2018, 98, 5525–5533. [Google Scholar] [CrossRef]
- Lawson, K.; Rossi, R.; Regan, J.M.; Logan, B.E. Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Bioresour. Technol. 2020, 316, 123919. [Google Scholar] [CrossRef]
- Arkatkar, A.; Mungray, A.K.; Sharma, P. Effect of microbial growth on internal resistances in MFC: A case study. In Innovations in Infrastructure; Springer: Singapore, 2019; pp. 469–479. [Google Scholar]
- Rossi, R.; Logan, B.E. Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells. Bioresour. Technol. 2020, 318, 123921. [Google Scholar] [CrossRef]
- Echeverría, M. Bioelectricity production with organic substrates, nitrates and lead using high Andean soils. Innov. Res. A Driv. Force Socio-Econo-Technol. Dev. 2020, 1277, 198. [Google Scholar]
- Yang, Y.; Lin, E.; Sun, S.; Chen, H.; Chow, A.T. Direct electricity production from subaqueous wetland sediments and banana peels using membrane-less microbial fuel cells. Ind. Crops Prod. 2019, 128, 70–79. [Google Scholar] [CrossRef]
- Asensio, Y.; Fernandez-Marchante, C.M.; Lobato, J.; Cañizares, P.; Rodrigo, M.A. Influence of the ion-exchange membrane on the performance of double-compartment microbial fuel cells. J. Electroanal. Chem. 2018, 808, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Verma, M.; Singh, S.S.J.; Rose, N.M. Phytochemical screening of onion skin (Allium cepa) dye extract. J. Pharmacogn. Phytochem. 2018, 7, 1414–1417. [Google Scholar]
- Zzeyani, S.; Mikou, M.; Naja, J.; Bouyazza, L.; Fekkar, G.; Aiboudi, M. Assessment of the waste lubricating oils management with antioxidants vegetables extracts based resources using EPR and FTIR spectroscopy techniques. Energy 2019, 180, 206–215. [Google Scholar] [CrossRef]
- Liu, D.; Wu, F. Biosynthesis of Pd nanoparticle using onion extract for electrochemical determination of carbendazim. Int. J. Electrochem. Sci 2017, 12, 2125–2134. [Google Scholar] [CrossRef]
- Luo, H.; Liu, G.; Zhang, R.; Jin, S. Phenol degradation in microbial fuel cells. Chem. Eng. J. 2009, 147, 259–264. [Google Scholar] [CrossRef]
- Gustincich, S.; Manfioletti, G.; Del Sal, G.; Schneider, C.; Carninci, P. A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 1991, 11, 298–300. [Google Scholar]
- Valenzuela-González, F.; Casillas-Hernández, R.; Villalpando, E.; Vargas-Albores, F. El gen ARNr 16S en el estudio de comunidades microbianas marinas (The 16S rRNA gene in the study of marine microbial communities). Cienc. Mar. 2015, 41, 297–313. [Google Scholar] [CrossRef] [Green Version]
- Paz-Zarza, V.M.; Mangwani-Mordani, S.; Martínez-Maldonado, A.; Álvarez-Hernández, D.; Solano-Gálvez, S.G.; Vázquez-López, R. Pseudomonas aeruginosa: Patogenicidad y resistencia antimicrobiana en la infección urinaria (Pseudomonas aeruginosa: Pathogenicity and antimicrobial resistance in urinary tract infection). Rev. Chilena Infectol. 2019, 36, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Strateva, T.; Yordanov, D. Pseudomonas aeruginosa—A phenomenon of bacterial resistance. J. Med. Microbiol. 2009, 58, 1133–1148. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, S.; Anam, M.; Ali, N. Evaluating the production and bio-stimulating effect of 5-methyl 1, hydroxy phenazine on microbial fuel cell performance. Int. J. Environ. Sci. Technol. 2017, 14, 1439–1450. [Google Scholar] [CrossRef]
- Raghavulu, S.V.; Modestra, J.A.; Amulya, K.; Reddy, C.N.; Venkata Mohan, S. Relative effect of bioaugmentation withelectrochemically active and nonactive bacteria on bioelec-trogenesis in microbial fuel cell. Bioresour. Technol. 2013, 146, 696703. [Google Scholar] [CrossRef]
- Ali, N.; Anam, M.; Yousaf, S.; Maleeha, S.; Bangash, Z. Characterization of the Electric Current Generation Potential of the Pseudomonas aeruginosa Using Glucose, Fructose, and Sucrose in Double Chamber Microbial Fuel Cell. Iran. J. Biotechnol. 2017, 15, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Brady, M.F.; Jamal, Z.; Pervin, N. Acinetobacter. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Reyes, S.M.; Bolettieri, E.; Allen, D.; Hay, A.G. Genome Sequences of Four Strains of Acinetobacter bereziniae Isolated from Human Milk Pumped with a Personal Breast Pump and Hand-Washed Milk Collection Supplies. Microbiol. Resour. Announc. 2020, 9, e00770-20. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Berg, G. Stenotrophomonas maltophilia. Trends Microbiol. 2018, 26, 637–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Treviño, H.; Bocanegra-Ibarias, P.; Camacho-Ortiz, A.; Morfín-Otero, R.; Salazar-Sesatty, H.A.; Garza-González, E. Stenotrophomonas maltophilia biofilm: Its role in infectious diseases. Expert Rev. Anti-Infect. Ther. 2019, 17, 877–893. [Google Scholar] [CrossRef]
- Toding, O.S.L.; Virginia, C.; Suhartini, S. Conversion banana and orange peel waste into electricity using microbial fuel cell. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 209, p. 12049. [Google Scholar]
- Romo, D.M.; Gutiérrez, N.H.; Pazos, J.O.; Figueroa, L.V.; Ordóñez, L.A. Bacterial diversity in the Cr(VI) reducing biocathode of a Microbial Fuel Cell with salt bridge. Rev. Argentina Microbiol. 2019, 51, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Groenewald, M.; Boekhout, T.; Neuvéglise, C.; Gaillardin, C.; van Dijck, P.W.; Wyss, M. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich-Wyder, M.T.; Arias-Roth, E.; Jakob, E. Cheese yeasts. Yeast 2019, 36, 129–141. [Google Scholar] [CrossRef] [PubMed]
BLAST Characterization | Consensus Sequence Length (nt) | % Maximum Identity | Accession Number | Phylogeny |
---|---|---|---|---|
Pseudomona aeruginosa | 1442 | 100.00% | MT633047.1 | Cellular organisms; Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas; Pseudomonas aeruginosa group |
Acinetobacter bereziniae | 1468 | 99.93 % | CP018259.1 | Cellular organisms; Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Moraxellaceae; Acinetobacter |
Stenotrophomonas maltophilia | 1477 | 100.00% | NR_041577.1 | Cellular organisms; Bacteria; Proteobacteria; Gammaproteobacteria; Xanthomonadales; Xanthomonadaceae; Stenotrophomonas; Stenotrophomonas maltophilia group |
Caracterización BLAST | Consensus Sequence Length (nt) | % Maximum Identity | Accession Number | Phylogeny |
---|---|---|---|---|
Yarrowia lipolytica | 369 | 100.00% | MN124085.1 | Cellular organisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina; Saccharomycetes; Saccharomycetales; Dipodascaceae; Yarrowia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segundo, R.-F.; De La Cruz-Noriega, M.; Milly Otiniano, N.; Benites, S.M.; Esparza, M.; Nazario-Naveda, R. Use of Onion Waste as Fuel for the Generation of Bioelectricity. Molecules 2022, 27, 625. https://doi.org/10.3390/molecules27030625
Segundo R-F, De La Cruz-Noriega M, Milly Otiniano N, Benites SM, Esparza M, Nazario-Naveda R. Use of Onion Waste as Fuel for the Generation of Bioelectricity. Molecules. 2022; 27(3):625. https://doi.org/10.3390/molecules27030625
Chicago/Turabian StyleSegundo, Rojas-Flores, Magaly De La Cruz-Noriega, Nélida Milly Otiniano, Santiago M. Benites, Mario Esparza, and Renny Nazario-Naveda. 2022. "Use of Onion Waste as Fuel for the Generation of Bioelectricity" Molecules 27, no. 3: 625. https://doi.org/10.3390/molecules27030625
APA StyleSegundo, R. -F., De La Cruz-Noriega, M., Milly Otiniano, N., Benites, S. M., Esparza, M., & Nazario-Naveda, R. (2022). Use of Onion Waste as Fuel for the Generation of Bioelectricity. Molecules, 27(3), 625. https://doi.org/10.3390/molecules27030625