Acid-Catalyzed Liquefaction of Biomasses from Poplar Clones for Short Rotation Coppice Cultivations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Liquefaction Procedure
2.2. Fourier Transformed Infrared (FTIR-ATR) Analysis of Biomass and Bio-Oil
2.3. Elemental Analysis
2.4. Higher Heating Value (HHV) Calculation
2.5. Energy Densification Ratio (EDR) Calculation
2.6. Van Krevelen Diagram
2.7. Thermogravimetric Analysis (TGA)
2.8. Pearson’s Correlations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Timmermans, F.; Katainen, J. Reflection Paper: Towards a Sustainable Europe by 2030; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Office of the European Commission, P. R&D and Eco-Innovation Fact Sheet; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Silvestre, W.P.; Pauletti, G.F.; Godinho, M.; Baldasso, C. Fodder radish seed cake pyrolysis for bio-oil production in a rotary kiln reactor. Chem. Eng. Process. Process Intensif. 2018, 124, 235–244. [Google Scholar] [CrossRef]
- Konwar, L.J.; Mikkola, J.P.; Bordoloi, N.; Saikia, R.; Chutia, R.S.; Kataki, R. Sidestreams from bioenergy and biorefinery complexes as a resource for circular bioeconomy. In Waste Biorefinery: Potential and Perspectives; Elsevier B.V: Amsterdam, The Netherlands, 2018; pp. 85–125. ISBN 9780444639929. [Google Scholar]
- Searle, S. Sustainability Challenges of Lignocellulosic Bioenergy Crops; International Council on Clean Transportation (ICCT): Washington, DC, USA, 2018. [Google Scholar]
- Song, C.; Zhang, C.; Zhang, S.; Lin, H.; Kim, Y.; Ramakrishnan, M.; Du, Y.; Zhang, Y.; Zheng, H.; Barceló, D. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives. Sci. Total Environ. 2020, 749, 141972. [Google Scholar] [CrossRef] [PubMed]
- Vanbeveren, S.P.P.; Ceulemans, R. Biodiversity in short-rotation coppice. Renew. Sustain. Energy Rev. 2019, 111, 34–43. [Google Scholar] [CrossRef]
- Research, F. Resources Short Rotation Coppice. Available online: https://www.forestresearch.gov.uk/tools-and-resources/fthr/biomass-energy-resources/fuel/energy-crops/short-rotation-coppice/ (accessed on 13 September 2021).
- Rodrigues, A.; Vanbeveren, S.P.P.; Costa, M.; Ceulemans, R. Relationship between soil chemical composition and potential fuel quality of biomass from poplar short rotation coppices in Portugal and Belgium. Biomass Bioenergy 2017, 105, 66–72. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Costa, M.M.G.; Nunes, L.J.R. Short rotation woody coppices for biomass production: An integrated analysis of the potential as an energy alternative. Curr. Sustain. Energy Rep. 2021, 8, 70–89. [Google Scholar] [CrossRef]
- Sixto, H.; Hernandez, M.J.; Barrio, M.; Carrasco, J.; Cañellas, I. Populus genus for the biomass production for energy use: A review. Investig. Agrar. Sist. Recur. For. 2007, 16, 277. [Google Scholar] [CrossRef] [Green Version]
- Robbins, M.P.; Evans, G.; Valentine, J.; Donnison, I.S.; Allison, G.G. New opportunities for the exploitation of energy crops by thermochemical conversion in northern Europe and the UK. Prog. Energy Combust. Sci. 2012, 38, 138–155. [Google Scholar] [CrossRef]
- Štochlová, P.; Novotná, K.; Costa, M.; Rodrigues, A. Biomass production of poplar short rotation coppice over five and six rotations and its aptitude as a fuel. Biomass Bioenergy 2019, 122, 183–192. [Google Scholar] [CrossRef]
- Sjöström, E.; Alen, R.; Timell, T.E. Analytical Methods in Wood Chemistry, Pulping and Papermaking, Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Rodrigues, A.; Loureiro, L.; Nunes, L.J.R. Torrefaction of woody biomasses from poplar SRC and Portuguese roundwood: Properties of torrefied products. Biomass Bioenergy 2018, 108, 55–65. [Google Scholar] [CrossRef]
- Álvarez, A.; Migoya, S.; Menéndez, R.; Gutiérrez, G.; Pizarro, C.; Bueno, J.L. Torrefaction of Short Rotation Coppice Willow. Characterization, hydrophobicity assessment and kinetics of the process. Fuel 2021, 295, 2021. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Bio-oil from residues of short rotation coppice of poplar using a microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2016, 119, 224–232. [Google Scholar] [CrossRef]
- Yogalakshmi, K.N.; Sivashanmugam, T.P.D.P.; Kavitha, S.; Kannah, R.Y.; Varjani, S.; AdishKumar, S.; Kumar, G.; Banu, J.R. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere 2022, 286. [Google Scholar]
- Soares Dias, A.P.; Rego, F.; Fonseca, F.; Casquilho, M.; Rosa, F.; Rodrigues, A. Catalyzed pyrolysis of SRC poplar biomass. Alkaline carbonates and zeolites catalysts. Energy 2019, 183, 1114–1122. [Google Scholar] [CrossRef]
- Rego, F.; Soares Dias, A.P.; Casquilho, M.; Rosa, F.C.; Rodrigues, A. Pyrolysis kinetics of short rotation coppice poplar biomass. Energy 2020, 207, 2020. [Google Scholar] [CrossRef]
- Wu, X.F.; Zhou, Q.; Li, M.F.; Li, S.X.; Bian, J.; Peng, F. Conversion of poplar into bio-oil via subcritical hydrothermal liquefaction: Structure and antioxidant capacity. Bioresour. Technol. 2018, 270, 216–222. [Google Scholar] [CrossRef]
- Amado, M.; Bastos, D.; Gaspar, D.; Matos, S.; Vieira, S.; Bordado, J.M.; Galhano dos Santos, R. Thermochemical liquefaction of pinewood shaves—Evaluating the performance of cleaner and sustainable alternative solvents. J. Clean. Prod. 2021, 304, 127088. [Google Scholar] [CrossRef]
- Rohde, V.; Hahn, T.; Wagner, M.; Böringer, S.; Tübke, B.; Brosse, N.; Dahmen, N.; Schmiedl, D. Potential of a short rotation coppice poplar as a feedstock for platform chemicals and lignin-based building blocks. Ind. Crops Prod. 2018, 123, 698–706. [Google Scholar] [CrossRef]
- Kormin, S.; Rus, A.Z.M. Preparation and Characterization of Biopolyol from Liquefied Oil Palm Fruit Waste: Part 1. Mater. Sci. Forum 2017, 882, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Kormin, S.; Zafiah Rus, A.M.; Onn Malaysia, H.; Raja, P.; Pahat, B. Preparation and Characterization of Biopolyol From Liquefied Oil Palm Fruit Waste: Part 2; Trans Tech Publications, Ltd.: Stafa-Zurich, Switzerland.
- Mateus, M.M.; do Vale, M.; Rodrigues, A.; Bordado, J.C.J.C.; Galhano dos Santos, R. Is biomass liquefaction an option for the viability of poplar short rotation coppices? A preliminary experimental approach. Energy 2017, 124, 40–45. [Google Scholar] [CrossRef]
- Ma, L.; Wang, T.; Liu, Q.; Zhang, X.; Ma, W.; Zhang, Q. A review of thermal–chemical conversion of lignocellulosic biomass in China. Biotechnol. Adv. 2012, 30, 859–873. [Google Scholar] [CrossRef]
- Kunaver, M.; Jasiukaitytė, E.; Čuk, N. Ultrasonically assisted liquefaction of lignocellulosic materials. Bioresour. Technol. 2012, 103, 360–366. [Google Scholar] [CrossRef]
- Braz, A.; Mateus, M.M.M.M.; dos Santos, R.G.D.R.G.; Machado, R.; Bordado, J.M.J.M.; Correia, M.J.N.J.N. Modelling of pine wood sawdust thermochemical liquefaction. Biomass Bioenergy 2019, 120, 200–210. [Google Scholar] [CrossRef]
- Goncalves, D.; Orišková, S.; Matos, S.; Machado, H.; Vieira, S.; Bastos, D.; Gaspar, D.; Paiva, R.; Bordado, J.C.; Rodrigues, A.; et al. Thermochemical Liquefaction as a Cleaner and Efficient Route for Valuing Pinewood Residues from Forest Fires. Molecules 2021, 26, 7156. [Google Scholar] [CrossRef]
- Zhang, H.; Pang, H.; Shi, J.; Fu, T.; Liao, B. Investigation of liquefied wood residues based on cellulose, hemicellulose, and lignin. J. Appl. Polym. Sci. 2012, 123, 850–856. [Google Scholar] [CrossRef]
- Fernandes, F.; Matos, S.; Gaspar, D.; Silva, L.; Paulo, I.; Vieira, S.; Pinto, P.C.R.; Bordado, J.; dos Santos, R.G. Boosting the Higher Heating Value of Eucalyptus globulus via Thermochemical Liquefaction. Sustainability 2021, 13, 3717. [Google Scholar] [CrossRef]
- Mateus, M.M.M.M.; Guerreiro, D.; Ferreira, O.; Bordado, J.C.J.C.; dos Santos, R.G. Heuristic analysis of Eucalyptus globulus bark depolymerization via acid-liquefaction. Cellulose 2017, 24, 659–668. [Google Scholar] [CrossRef]
- Dos Santos, R.G.; Ventura, P.; Bordado, J.C.; Mateus, M.M. Valorizing potato peel waste: An overview of the latest publications. Rev. Environ. Sci. Biotechnol. 2016, 15, 585–592. [Google Scholar] [CrossRef]
- Soares, B.; Gama, N.; Freire, C.; Barros-Timmons, A.; Brandao, I.; Silva, R.; Neto, C.P.; Ferreira, A.; Pascoal Neto, C.; Ferreira, A. Ecopolyol Production from Industrial Cork Powder via Acid Liquefaction Using Polyhydric Alcohols. ACS Sustain. Chem. Eng. 2014, 2, 846–854. [Google Scholar] [CrossRef]
- Soares, B.; Gama, N.; Freire, C.S.R.; Barros-Timmons, A.; Brandão, I.; Silva, R.; Neto, C.P.; Ferreira, A. Spent coffee grounds as a renewable source for ecopolyols production. J. Chem. Technol. Biotechnol. 2015, 90, 1480–1488. [Google Scholar] [CrossRef]
- Daneshvar, S.; Behrooz, R.; Najafi, S.K.; Mir, G.; Sadeghi, M. Preparation of Polyurethane Adhesive from Wood Sawdust polyol: Application of Response Surface Methodology for Optimization of Catalyst and Glycerol. Biointerface Res. Appl. Chem. 2022, 12, 1870–1883. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.-Z. A novel method of utilizing the biomass resource: Rapid liquefaction of wheat straw and preparation of biodegradable polyurethane foam (PUF). J. Chin. Inst. Chem. Eng. 2007, 38, 95–102. [Google Scholar] [CrossRef]
- Liang, L.; Mao, Z.; Li, Y.; Wan, C.; Wang, T.; Zhang, L.; Zhang, L. Liquefaction of crop residues for polyol production. Bioresources 2006, 1, 248–256. [Google Scholar] [CrossRef]
- Patel, A.; Shah, A.R. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. J. Bioresour. Bioprod. 2021, 6, 108–128. [Google Scholar] [CrossRef]
- Dos Santos, R.G.; Carvalho, R.; Silva, E.R.; Bordado, J.C.; Cardoso, A.C.; Do Rosário Costa, M.; Mateus, M.M. Natural polymeric water-based adhesive from cork liquefaction. Ind. Crops Prod. 2016, 84, 314–319. [Google Scholar] [CrossRef]
- Vale, M.; Mateus, M.M.; dos Santos, R.G.; Nieto de Castro, C.; de Schrijver, A.; Bordado, J.C.; Marques, A.C. Replacement of petroleum-derived diols by sustainable biopolyols in one component polyurethane foams. J. Clean. Prod. 2019, 212, 1036–1043. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Arvindnarayan, S.; Prabhu, K.K.S.; Shobana, S.; Kumar, G.; Dharmaraja, J. Upgrading of micro algal derived bio-fuels in thermochemical liquefaction path and its perspectives: A review. Int. Biodeterior. Biodegrad. 2017, 119, 260–272. [Google Scholar] [CrossRef]
- dos Santos, R.G.; Bordado, J.C.; Mateus, M.M. Potential biofuels from liquefied industrial wastes—Preliminary evaluation of heats of combustion and van Krevelen correlations. J. Clean. Prod. 2016, 137, 195–199. [Google Scholar] [CrossRef]
- Lee, S.-H.; Teramoto, Y.; Shiraishi, N. Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J. Appl. Polym. Sci. 2002, 83, 1482–1489. [Google Scholar] [CrossRef]
- Dimitriou, I.; Rutz, D. Sustainable Short Rotation Coppice. A Handbook; y WIP Renewable Energies: Munich, Germany, 2015; ISBN 978-3-936338-36-2. [Google Scholar]
- Rego, F.; Soares Dias, A.P.; Casquilho, M.; Rosa, F.C.; Rodrigues, A. Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry. Biomass Bioenergy 2019, 122, 375–380. [Google Scholar] [CrossRef]
- Sheng, C.; Azevedo, J.L.T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Yin, C.-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef] [Green Version]
- Mateus, M.M.; Bordado, J.M.; dos Santos, R.G. Estimation of higher heating value (HHV) of bio-oils from thermochemical liquefaction by linear correlation. Fuel 2021, 302, 121149. [Google Scholar] [CrossRef]
- González-Arias, J.; Sánchez, M.E.; Martínez, E.J.; Covalski, C.; Alonso-Simón, A.; González, R.; Cara-Jiménez, J. Hydrothermal carbonization of olive tree pruning as a sustainableway for improving biomass energy potential: Effect of reaction parameters on fuel properties. Processes 2020, 8, 1201. [Google Scholar] [CrossRef]
- Mateus, M.M.M.M.; Carvalho, R.; Bordado, J.C.J.C.; dos Santos, R.G. Biomass acid-catalyzed liquefaction—Catalysts performance and polyhydric alcohol influence. Data Br. 2015, 5, 736–738. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, R.G.; Acero, N.F.; Matos, S.; Carvalho, R.; Vale, M.; Marques, A.C.; Bordado, J.C.; Mateus, M.M. One-Component Spray Polyurethane Foam from Liquefied Pinewood Polyols: Pursuing Eco-Friendly Materials. J. Polym. Environ. 2018, 26, 91–100. [Google Scholar] [CrossRef]
- Hassan, E.M.; Shukry, N. Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues. Ind. Crops Prod. 2008, 27, 33–38. [Google Scholar] [CrossRef]
- Pan, H.; Zheng, Z.; Hse, C.Y. Microwave-assisted liquefaction of wood with polyhydric alcohols and its application in preparation of polyurethane (PU) foams. Eur. J. Wood Wood Prod. 2012, 70, 461–470. [Google Scholar] [CrossRef]
- dos Santos, R.G.; Bordado, J.C.; Mateus, M.M. Microwave-assisted Liquefaction of Cork—From an Industrial Waste to Sustainable Chemicals. Ind Eng Manag. 2015, 4, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Vidal, M.; Bastos, D.; Silva, L.; Gaspar, D.; Paulo, I.; Matos, S.; Vieira, S.; Bordado, J.M.; dos Santos, R.G. Up-cycling tomato pomace by thermochemical liquefaction—A response surface methodology assessment. Biomass Bioenergy 2022, 156, 106324. [Google Scholar] [CrossRef]
- Condeço, J.A.D.; Hariharakrishnan, S.; Ofili, O.M.; Mateus, M.M.; Bordado, J.M.; Correia, M.J.N. Energetic valorisation of agricultural residues by solvent-based liquefaction. Biomass Bioenergy 2021, 147, 106003. [Google Scholar] [CrossRef]
- Jadhav, A.; Ahmed, I.; Baloch, A.G.; Jadhav, H.; Nizamuddin, S.; Siddiqui, M.T.H.; Baloch, H.A.; Qureshi, S.S.; Mubarak, N.M. Utilization of oil palm fronds for bio-oil and bio-char production using hydrothermal liquefaction technology. Biomass Convers. Biorefinery 2019, 1–9. [Google Scholar] [CrossRef]
- Grilc, M.; Likozar, B.; Levec, J. Kinetic model of homogeneous lignocellulosic biomass solvolysis in glycerol and imidazolium-based ionic liquids with subsequent heterogeneous hydrodeoxygenation over NiMo/Al2O3 catalyst. Catal. Today 2015, 256, 302–314. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Mateus, M.M.; Ventura, P.; Rego, A.; Mota, C.; Castanheira, I.; Bordado, J.M.; dos Santos, R.G. Acid liquefaction of potato (Solanum tuberosum) and sweet potato (Ipomoea batatas) cultivars peels—Pre-screening of antioxidant activity/total phenolic and sugar contents. BioResources 2017, 12, 1463–1478. [Google Scholar] [CrossRef] [Green Version]
- Traoré, M.; Kaal, J.; Martínez Cortizas, A. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Sci. Technol. 2017, 52, 487–504. [Google Scholar] [CrossRef] [Green Version]
- Zohdi, V.; Whelan, D.R.; Wood, B.R.; Pearson, J.T.; Bambery, K.R.; Black, M.J. Importance of Tissue Preparation Methods in FTIR Micro-Spectroscopical Analysis of Biological Tissues: ‘Traps for New Users’. PLoS ONE 2015, 10, e0116491. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G. Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl. Sci. 2020, 10, 4345. [Google Scholar] [CrossRef]
- Bui, N.Q.; Fongarland, P.; Rataboul, F.; Dartiguelongue, C.; Charon, N.; Vallée, C.; Essayem, N. FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process: Application to SC ethanol liquefaction of pine wood. Fuel Process. Technol. 2015, 134, 378–386. [Google Scholar] [CrossRef]
- Yona, A.M.C.; Budija, F.; Kričej, B.; Kutnar, A.; Pavlič, M.; Pori, P.; Tavzes, Č.; Petrič, M.; Kricej, B.; Kutnar, A.; et al. Production of biomaterials from cork: Liquefaction in polyhydric alcohols at moderate temperatures. Ind. Crops Prod. 2014, 54, 296–301. [Google Scholar] [CrossRef]
- Popescu, C.M.; Popescu, M.C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. Spectral characterization of eucalyptus wood. Appl. Spectrosc. 2007, 61, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Mateus, M.M.; Gaspar, D.; Matos, S.; Rego, A.; Motta, C.; Castanheira, I.; Bordado, J.M.; Dos Santos, R.G. Converting a residue from an edible source (Ceratonia siliqua L.) into a bio-oil. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Hui, L.; Wang, H. Diols as solvent media for liquefaction of corn stalk at ambient pressure. BioResources 2019, 13, 6818–6836. [Google Scholar] [CrossRef]
- Seehar, T.H.; Toor, S.S.; Shah, A.A.; Pedersen, T.H.; Rosendahl, L.A. Biocrude production from wheat straw at sub and supercritical hydrothermal liquefaction. Energies 2020, 13, 3114. [Google Scholar] [CrossRef]
- Shawal, N.N.; Murtala, A.M.; Adilah, A.K.; Hamza, U.D. Identification of Functional Groups of Sustainable Bio-Oil Substrate and its Potential for Specialty Chemicals Source. Adv. Mater. Res. 2012, 557–559, 1179–1185. [Google Scholar] [CrossRef]
Lignocellulosic Content (%) | |||||
---|---|---|---|---|---|
Genotype | Origin | Parentage | Hemicellulose | Cellulose | Lignin |
AF8 | Portugal | Hybrid P. generosa | 23 | 48 | 28 |
Bakan | Belgium | Hybrid P. trichocarpa × P. maximowiczii | 19 | 52 | 28 |
Brandaris | Belgium | Species P. nigra | 23 | 47 | 29 |
Ellert | Belgium | Hybrid P. canadensis | 24 | 48 | 26 |
Grimminge | Belgium | Triple hybrid P. deltoides × (P. trichocarpa × P. deltoides) | 24 | 48 | 27 |
Hees | Belgium | Hybrid P. canadensis | 23 | 50 | 26 |
Skado | Belgium | Hybrid P. trichocarpa × P. maximowiczii | 20 | 49 | 30 |
Wolterson | Belgium | Species P. nigra | 24 | 48 | 27 |
Samples | Chemical Composition 1 (%) | Ash (%) | Moisture (%) | HHV 2 (MJ/kg) | 10H/C | O/C | Empirical Formula | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | ||||||||
Biomass [15] | AF8 | 51.5 | 5.2 | <0.5 | 43.3 | 2.18 | 9.58 | 17.20 | 1.01 | 0.84 | CH1.22O0.61 |
Bakan | 51.5 | 5.4 | 0.6 | 42.5 | 1.56 | 10.80 | 17.49 | 1.04 | 0.83 | ||
Brandaris | 52.0 | 5.2 | 0.7 | 42.1 | 2.87 | 8.08 | 17.58 | 1.00 | 0.81 | ||
Ellert | 51.8 | 5.3 | 0.6 | 42.4 | 2.25 | 10.10 | 17.52 | 1.02 | 0.82 | ||
Grimminge | 52.2 | 5.3 | 0.5 | 42.0 | 1.76 | 9.42 | 17.75 | 1.02 | 0.81 | ||
Hees | 51.8 | 5.2 | 0.7 | 42.3 | 2.39 | 7.90 | 17.48 | 1.01 | 0.82 | ||
Skado | 51.6 | 5.3 | 0.4 | 42.7 | 1.47 | 9.91 | 17.45 | 1.03 | 0.83 | ||
Wolterson | 51.9 | 5.3 | 0.7 | 42.1 | 2.28 | 9.73 | 17.64 | 1.02 | 0.81 | ||
Mean | 51.79 | 5.27 | 0.59 | 42.42 | 2.09 | 9.44 | 17.51 | 1.02 | 0.82 | ||
Bio-oil | AF8 | 64.4 | 8.4 | <0.5 | 27.2 | 0.4 | 1.30 | 29.85 | 1.31 | 0.42 | CH1.61O0.30 |
Bakan | 65.6 | 8.9 | <0.5 | 25.5 | 0.3 | 1.13 | 30.95 | 1.36 | 0.39 | ||
Brandaris | 64.4 | 8.6 | <0.5 | 27.0 | 0.3 | 1.49 | 30.03 | 1.33 | 0.42 | ||
Ellert | 66.1 | 8.8 | <0.5 | 25.1 | 0.4 | 1.15 | 31.06 | 1.33 | 0.38 | ||
Grimminge | 64.8 | 8.9 | <0.5 | 26.3 | 0.1 | 0.96 | 30.62 | 1.38 | 0.41 | ||
Hees | 65.3 | 8.8 | <0.5 | 25.9 | 0.2 | 1.18 | 30.67 | 1.34 | 0.40 | ||
Skado | 64.5 | 8.4 | <0.5 | 27.1 | 0.3 | 1.37 | 29.90 | 1.31 | 0.42 | ||
Wolterson | 65.3 | 8.9 | <0.5 | 25.8 | 0.2 | 1.42 | 30.84 | 1.37 | 0.39 | ||
Mean | 65.05 | 8.72 | -- | 26.23 | 0.28 | 1.25 | 30.49 | 1.34 | 0.40 | ||
Solid residues | AF8 | 52.3 | 5.9 | <0.5 | 41.8 | 0.3 | -- | 18.44 | 1.13 | 0.80 | CH1.34O0.66 |
Bakan | 50.4 | 5.8 | <0.5 | 43.8 | 0.3 | -- | 17.36 | 1.15 | 0.87 | ||
Brandaris | 50.0 | 5.0 | <0.5 | 45.0 | 0.2 | -- | 16.25 | 1.00 | 0.90 | ||
Ellert | 49.0 | 5.7 | <0.5 | 45.3 | 0.7 | -- | 16.52 | 1.16 | 0.93 | ||
Grimminge | 50.6 | 5.8 | <0.5 | 43.6 | 0.3 | -- | 17.48 | 1.15 | 0.86 | ||
Hees | 48.6 | 5.8 | <0.5 | 45.6 | 0.8 | -- | 16.48 | 1.19 | 0.94 | ||
Skado | 50.9 | 5.4 | <0.5 | 43.7 | 0.1 | -- | 17.14 | 1.06 | 0.86 | ||
Wolterson | 49.7 | 5.6 | 0.5 | 44.2 | 0.6 | -- | 16.81 | 1.12 | 0.89 | ||
Mean | 50.19 | 5.62 | 0.52 | 44.13 | 0.41 | -- | 17.06 | 1.12 | 0.88 | ||
Torrefied biomass [15] | AF8 | 66.3 | 4.9 | 0.36 | 28.44 | 3.46 | -- | 24.2 | 0.74 | 0.43 | CH0.89O0.32 |
Bakan | 65.9 | 4.94 | 0.66 | 28.5 | 2.7 | -- | 24.1 | 0.75 | 0.43 | ||
Brandaris | 66.9 | 4.99 | 0.88 | 27.29 | 4.0 | -- | 24.6 | 0.75 | 0.41 | ||
Ellert | 67.8 | 5.1 | 0.73 | 26.37 | 3.49 | -- | 25.2 | 0.75 | 0.39 | ||
Grimminge | 68.3 | 5.06 | 0.69 | 25.94 | 2.97 | -- | 25.4 | 0.74 | 0.38 | ||
Hees | 67.3 | 4.8 | 0.84 | 27.06 | 3.54 | -- | 24.6 | 0.71 | 0.40 | ||
Skado | 67.4 | 5.04 | 0.54 | 27.02 | 2.63 | -- | 24.9 | 0.75 | 0.40 | ||
Wolterson | 63.5 | 4.95 | 0.7 | 30.85 | 2.93 | -- | 22.9 | 0.74 | 0.49 | ||
Mean | 66.7 | 4.97 | 0.68 | 27.68 | 3.22 | -- | 24.47 | 0.75 | 0.42 |
Sample | C Gain (%) | H Gain (%) | O Loss (%) | Ash Loss (%) | HHV Gain (%) | Moisture Loss (%) | H/C Gain (%) | O/C Loss (%) |
---|---|---|---|---|---|---|---|---|
AF8 | 25.05 | 61.54 | 37.18 | 81.65 | 73.56 | 95.82 | 29.70 | 50.00 |
Bakan | 27.38 | 64.81 | 40.00 | 80.77 | 76.98 | 97.22 | 30.77 | 53.01 |
Brandaris | 23.85 | 65.38 | 35.87 | 89.55 | 70.82 | 96.29 | 33.00 | 48.15 |
Ellert | 27.61 | 66.04 | 40.80 | 82.22 | 77.26 | 96.04 | 30.39 | 53.66 |
Grimminge | 24.14 | 67.92 | 37.38 | 94.32 | 72.50 | 98.94 | 35.29 | 49.38 |
Hees | 26.06 | 69.23 | 38.77 | 91.63 | 75.48 | 97.47 | 32.67 | 51.22 |
Skado | 25.00 | 58.49 | 36.53 | 79.59 | 71.34 | 96.97 | 27.18 | 49.40 |
Wolterson | 25.82 | 67.92 | 38.72 | 91.23 | 74.83 | 97.94 | 34.31 | 51.85 |
Mean | 25.61 | 65.17 | 38.16 | 86.37 | 74.10 | 97.09 | 31.67 | 50.83 |
Variables (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | C Gain | H Gain | O Loss | Ash Loss | HHV Gain | Moisture Loss | H/C Gain | O/C Loss | ||
Variables (%) | C | 1 | 0.669 | −0.980 2 | 0.902 2 | 0.485 | 0.973 2 | 0.042 | 0.917 2 | 0.049 | 0.090 | 0.943 |
H | 0.669 | 1 | −0.803 1 | 0.389 | 0.814 1 | 0.617 | 0.595 | 0.561 | 0.676 | 0.712 | 0.537 | |
O | −0.980 2 | −0.803 1 | 1 | −0.827 1 | −0.605 | −0.945 2 | −0.192 | −0.885 2 | −0.219 | −0.261 | −0.899 | |
C Gain | 0.902 2 | 0.389 | −0.827 1 | 1 | 0.150 | 0.947 2 | −0.311 | 0.943 2 | −0.201 | −0.272 | 0.972 | |
H Gain | 0.485 | 0.8141 | −0.605 | 0.150 | 1 | 0.405 | 0.650 | 0.400 | 0.502 | 0.868 | 0.291 | |
O Loss | 0.973 2 | 0.617 | −0.945 2 | 0.947 2 | 0.405 | 1 | −0.119 | 0.978 2 | 0.000 | 0.012 | 0.984 | |
Ash Loss | 0.042 | 0.595 | −0.192 | −0.311 | 0.650 | −0.119 | 1 | −0.207 | 0.813 | 0.739 | −0.205 | |
HHV Gain | 0.917 2 | 0.561 | −0.885 2 | 0.943 2 | 0.400 | 0.978 2 | −0.207 | 1 | −0.062 | −0.001 | 0.970 | |
Moisture Loss | 0.049 | 0.676 | −0.219 | −0.201 | 0.502 | 0.000 | 0.813 1 | −0.062 | 1 | 0.643 | −0.068 | |
H/C Gain | 0.090 | 0.712 1 | −0.261 | −0.272 | 0.868 2 | 0.012 | 0.739 1 | −0.001 | 0.643 | 1 | −0.091 | |
O/C Loss | 0.943 2 | 0.537 | −0.899 2 | 0.972 2 | 0.291 | 0.9842 | −0.205 | 0.970 2 | −0.068 | −0.091 | 1 |
Peaks (cm−1) | Band Assignment | Ref. | |||
---|---|---|---|---|---|
Biomass | Bio-Oil | Residues | Functional Group | Compounds | |
1720 | 1723 | 1718 | C=O carbonyls in ester groups and acetyl groups in xylan | Ketones, esters, hemicellulose, and carboxylic acids and esters | [62,63,64] |
1646 | O-H bending | Water | [65,66] | ||
1604 | 1611 | 1612 | C=C aromatic ring vibration | Lignin | [62,67] |
1514 | 1519 | 1514 | C=C aromatic ring stretching | Lignin | [32,68] |
1444 | 1465 | 1462 | OCH3-, -CH2-, and C-H stretching | Cellulose, hemicellulose | [69] |
1378 | 1378 | 1365 | Aromatic C-H deformation | Syringyl rings | [63] |
1330 | C-O syringyl ring | Lignin | [62] | ||
1246 | 1248 | 1263 | Aromatic ring vibration | Guaicyl lignin | [62] |
1164 | 1174 | 1197 | C-O-C asymmetrical stretching | Cellulose, hemicellulose | [62] |
1096 | 1108 | 1101 | C-O-C stretching | Cellulose, hemicellulose | [64] |
1020 | 1031 | 1029 | C-O, C=C, and C-C-O stretching | Cellulose, hemicellulose, lignin | [62] |
906 | Glycosidic linkage | Cellulose, hemicellulose | [62,68] | ||
816 | 811 | C-H out-of-plane | Cellulose, hemicellulose | [70] |
Samples | TGA Curve | ||||||||
---|---|---|---|---|---|---|---|---|---|
1st Stage | 2nd Stage | 3rd Stage | 4th Stage | ||||||
Temp. Range (°C) | Mass Loss (%) | Temp. Range (°C) | Mass Loss (%) | Temp. Range (°C) | Mass Loss (%) | Temp. Range (°C) | Mass Loss (%) | ||
AF8 | Biomass | <120 | 6 | 80–300 | 18 | 300–400 | 46 | >400 | 7 |
Bio-oil | 50–185 | 18 | 185–300 | 35 | 300–600 | 16 | -- | -- | |
Residue | <115 | 3 | 125–260 | 32 | 260–525 | 26 | >525 | 4 | |
Balkan | Biomass | <120 | 8 | 80–300 | 20 | 300–400 | 46 | >400 | 6 |
Bio-oil | 50–185 | 15 | 185–300 | 37 | 300–600 | 18 | -- | ||
Residue | <115 | 4 | 125–260 | 26 | 260–525 | 28 | >525 | 6 | |
Brandaris | Biomass | <120 | 8 | 80–300 | 19 | 300–400 | 42 | >400 | 8 |
Bio-oil | 50–185 | 16 | 185–300 | 37 | 300–600 | 17 | -- | -- | |
Residue | <115 | 3 | 125–260 | 30 | 260–525 | 25 | >525 | 7 | |
Ellert | Biomass | <120 | 7 | 80–300 | 20 | 300–400 | 46 | >400 | 7 |
Bio-oil | 50–185 | 10 | 185–300 | 44 | 300–600 | 18 | -- | ||
Residue | <115 | 3 | 125–260 | 34 | 260–525 | 24 | >525 | 6 | |
Grimminge | Biomass | <120 | 6 | 80–300 | 19 | 300–400 | 49 | >400 | 6 |
Bio-oil | 50–185 | 17 | 185–300 | 38 | 300–600 | 16 | -- | -- | |
Residue | <115 | 4 | 125–260 | 29 | 260–525 | 26 | >525 | 6 | |
Hees | Biomass | <120 | 7 | 80–300 | 20 | 300–400 | 46 | >400 | 6 |
Bio-oil | 50–185 | 16 | 185–300 | 38 | 300–600 | 16 | -- | -- | |
Residue | <115 | 4 | 125–260 | 31 | 260–525 | 25 | >525 | 6 | |
Skado | Biomass | <120 | 8 | 80–300 | 19 | 300–400 | 51 | >400 | 6 |
Bio-oil | 50–185 | 17 | 185–300 | 35 | 300–600 | 17 | -- | -- | |
Residue | <115 | 4 | 125–260 | 22 | 260–525 | 28 | >525 | 6 | |
Wolterson | Biomass | <120 | 8 | 80–300 | 19 | 300–400 | 47 | >400 | 6 |
Bio-oil | 50–185 | 20 | 185–300 | 35 | 300–600 | 16 | -- | -- | |
Residue | <115 | 4 | 125–260 | 33 | 260–525 | 23 | >525 | 6 | |
Mean | Biomass | <120 | 7 | 80–300 | 19 | 300–400 | 47 | >400 | 7 |
Bio-oil | 50–185 | 16 | 185–300 | 37 | 300–600 | 17 | -- | -- | |
Residue | <115 | 3 | 125–260 | 30 | 260–525 | 26 | >525 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulo, I.; Costa, L.; Rodrigues, A.; Orišková, S.; Matos, S.; Gonçalves, D.; Gonçalves, A.R.; Silva, L.; Vieira, S.; Bordado, J.C.; et al. Acid-Catalyzed Liquefaction of Biomasses from Poplar Clones for Short Rotation Coppice Cultivations. Molecules 2022, 27, 304. https://doi.org/10.3390/molecules27010304
Paulo I, Costa L, Rodrigues A, Orišková S, Matos S, Gonçalves D, Gonçalves AR, Silva L, Vieira S, Bordado JC, et al. Acid-Catalyzed Liquefaction of Biomasses from Poplar Clones for Short Rotation Coppice Cultivations. Molecules. 2022; 27(1):304. https://doi.org/10.3390/molecules27010304
Chicago/Turabian StylePaulo, Ivo, Luis Costa, Abel Rodrigues, Sofia Orišková, Sandro Matos, Diogo Gonçalves, Ana Raquel Gonçalves, Luciana Silva, Salomé Vieira, João Carlos Bordado, and et al. 2022. "Acid-Catalyzed Liquefaction of Biomasses from Poplar Clones for Short Rotation Coppice Cultivations" Molecules 27, no. 1: 304. https://doi.org/10.3390/molecules27010304
APA StylePaulo, I., Costa, L., Rodrigues, A., Orišková, S., Matos, S., Gonçalves, D., Gonçalves, A. R., Silva, L., Vieira, S., Bordado, J. C., & Galhano dos Santos, R. (2022). Acid-Catalyzed Liquefaction of Biomasses from Poplar Clones for Short Rotation Coppice Cultivations. Molecules, 27(1), 304. https://doi.org/10.3390/molecules27010304