Stability of Cocaine, Opiates, and Metabolites in Dried Saliva Spots
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Stability Protocol
2.2. Assay without Preservative
2.3. Long-Term Stability
3. Materials and Methods
3.1. Reagents and Standards
3.2. Biological Specimens
3.3. Gas Chromatographic and Mass Spectrometric Conditions
3.4. Sample Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldstein, R.A.; DesLauriers, C.; Burda, A.; Johnson-Arbor, K. Cocaine: History, social implications, and toxicity: A review. Semin. Diagn. Pathol. 2009, 26, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.J.; Langford, K.H.; Grung, M.; Gjerde, H.; Amundsen, E.J.; Morland, J.; Thomas, K.V. Estimation of cocaine consumption in the community: A critical comparison of the results from three complimentary techniques. BMJ Open 2012, 2, e001637. [Google Scholar] [CrossRef] [Green Version]
- European Monitoring Centre for Drugs and Drug Adiction Perspectives on Drugs—Emergency Health Consequences of Cocaine Use in Europe. Available online: https://www.emcdda.europa.eu/system/files/publications/2725/Cocaine%20related%20emergencies_updated.pdf (accessed on 13 October 2021).
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) European Drug Report 2019: Trends and Developments. Available online: https://www.emcdda.europa.eu/system/files/publications/11364/20191724_TDAT19001ENN_PDF.pdf (accessed on 21 June 2021).
- European Monitoring Centre for Drugs and Drug Adiction European Drug Report 2021: Trends and Developments. Available online: https://www.emcdda.europa.eu/system/files/publications/13236/TDAT20001ENN_web.pdf (accessed on 15 October 2021).
- United Nations Office on Drugs and Crime (UNODC) World Drug Report 2019. Available online: https://wdr.unodc.org/wdr2019/ (accessed on 13 May 2020).
- White, S.M.; Lambe, C.J.T. The pathophysiology of cocaine abuse. J. Clin. Forensic Med. 2003, 10, 27–39. [Google Scholar] [CrossRef]
- Chau, D.L.; Walker, V.; Pai, L.; Cho, L.M. Opiates and elderly: Use and side effects. Clin. Interv. Aging 2008, 3, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Tabarra, I.; Soares, S.; Rosado, T.; Gonçalves, J.; Luís, Â.; Malaca, S.; Barroso, M.; Keller, T.; Restolho, J.; Gallardo, E. Novel synthetic opioids—Oxicological aspects and analysis. Forensic Sci. Res. 2019, 4, 111–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, E.; Queiroz, J.A. The role of alternative specimens in toxicological analysis. Biomed. Chromatogr. 2008, 22, 795–821. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, E.; Barroso, M.; Queiroz, J.A. Current technologies and considerations for drug bioanalysis in oral fluid. Bioanalysis 2009, 1, 637–667. [Google Scholar] [CrossRef] [PubMed]
- Elmongy, H.; Abdel-Rehim, M. Saliva as an alternative specimen to plasma for drug bioanalysis: A review. Trends Anal. Chem. 2016, 83, 70–79. [Google Scholar] [CrossRef]
- Barroso, M.; Gallardo, E.; Queiroz, J.A. Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis 2009, 1, 977–1000. [Google Scholar] [CrossRef]
- Huestis, M.A.; Verstraete, A.; Kwong, T.C.; Morland, J.; Vincent, M.J.; de la Torre, R. Oral Fluid Testing: Promises and Pitfalls. Clin. Chem. 2011, 57, 805. [Google Scholar] [CrossRef] [PubMed]
- Neumann, J.; Beck, O.; Dahmen, N.; Böttcher, M. Potential of Oral Fluid as a Clinical Specimen for Compliance Monitoring of Psychopharmacotherapy. Ther. Drug Monit. 2018, 40, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ellefsen, K.N.; Concheiro, M.; Pirard, S.; Gorelick, D.A.; Huestis, M.A. Oral fluid cocaine and benzoylecgonine concentrations following controlled intravenous cocaine administration. Forensic Sci. Int. 2016, 260, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Truver, M.T.; Swortwood, M.J. Quantitative analysis of novel synthetic opioids, morphine and buprenorphine in oral fluid by LC–MS-MS. J. Anal. Toxicol. 2018, 42, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Grabenauer, M.; Moore, K.N.; Bynum, N.D.; White, R.M.; Mitchell, J.M.; Hayes, E.D.; Flegel, R. Development of a quantitative LC–MS-MS assay for codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone and oxymorphone in neat oral fluid. J. Anal. Toxicol. 2018, 42, 392–399. [Google Scholar] [CrossRef]
- Shaparin, N.; Mehta, N.; Kunkel, F.; Stripp, R.; Borg, D.; Kolb, E. A novel chronic opioid monitoring tool to assess prescription drug steady state levels in oral fluid. Pain Med. 2017, 18, 2162–2169. [Google Scholar] [CrossRef] [Green Version]
- Tuyay, J.; Coulter, C.; Rodrigues, W.; Moore, C. Disposition of opioids in oral fluid: Importance of chromatography and mass spectral transitions in LC-MS/MS. Drug Test. Anal. 2012, 4, 395–401. [Google Scholar] [CrossRef]
- Fabresse, N.; Aouad, H.; Knapp, A.; Mayer, C.; Etting, I.; Larabi, I.A.; Alvarez, J. Development and validation of a liquid chromatography-tandem mass spectrometry method for simultaneous detection of 10 illicit drugs in oral fluid collected with FLOQSwabsTM and application to real samples. Drug Test. Anal. 2019, 11, 824–832. [Google Scholar] [CrossRef]
- Langel, K.; Gunnar, T.; Ariniemi, K.; Rajamäki, O.; Lillsunde, P. A validated method for the detection and quantitation of 50 drugs of abuse and medicinal drugs in oral fluid by gas chromatography-mass spectrometry. J. Chromatogr. B 2011, 879, 859–870. [Google Scholar] [CrossRef]
- Zancanaro, I.; Limberger, R.P.; Bohel, P.O.; dos Santos, M.K.; De Boni, R.B.; Pechansky, F.; Caldas, E.D. Prescription and illicit psychoactive drugs in oral fluid-LC-MS/MS method development and analysis of samples from Brazilian drivers. Forensic Sci. Int. 2012, 223, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Rubio, N.C.; Bermejo-Barrera, P.; Bermejo, A.M.; Moreda-Piñeiro, A. Development of a reliable method for assessing coca alkaloids in oral fluid by HPLC–MS-MS. J. Anal. Toxicol. 2019, 43, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Di Rago, M.; Chu, M.; Rodda, L.N.; Jenkins, E.; Kotsos, A.; Gerostamoulos, D. Ultra-rapid targeted analysis of 40 drugs of abuse in oral fluid by LC-MS/MS using carbon-13 isotopes of methamphetamine and MDMA to reduce detector saturation. Anal. Bioanal. Chem. 2016, 408, 3737–3749. [Google Scholar] [CrossRef] [PubMed]
- Concheiro, M.; Gray, T.R.; Shakleya, D.M.; Huestis, M.A. High-throughput simultaneous analysis of buprenorphine, methadone, cocaine, opiates, nicotine, and metabolites in oral fluid by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 398, 915–924. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Sparve, E.; Bergström, M. A simple validated multi-analyte method for detecting drugs in oral fluid by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Drug Test. Anal. 2018, 10, 1001–1008. [Google Scholar] [CrossRef]
- Ares, A.M.; Fernández, P.; Regenjo, M.; Fernández, A.M.; Carro, A.M.; Lorenzo, R.A. A fast bioanalytical method based on microextraction by packed sorbent and UPLC–MS/MS for determining new psychoactive substances in oral fluid. Talanta 2017, 174, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Montesano, C.; Simeoni, M.C.; Curini, R.; Sergi, M.; Lo Sterzo, C.; Compagnone, D. Determination of illicit drugs and metabolites in oral fluid by microextraction on packed sorbent coupled with LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 3647–3658. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, A.J.; Miller, A.C.; Shaw, L.A.; Champion, J.L.; Neiswonger, M.A. Oral cavity fluid as an investigative approach for qualitative and quantitative evaluations of drugs in postmortem subjects. J. Anal. Toxicol. 2019, 43, 444–451. [Google Scholar] [CrossRef]
- Almalki, A.H.; Ali, N.A.; Elroby, F.A.; El Ghobashy, M.R.; Emam, A.A.; Naguib, I.A. ESI–LC-MS/MS for Therapeutic Drug Monitoring of Binary Mixture of Pregabalin and Tramadol: Human Plasma and Urine Applications. Separations 2021, 8, 21. [Google Scholar] [CrossRef]
- Barroso, M.; Gallardo, E.; Vieira, D.N.; Queiroz, J.A.; López-Rivadulla, M. Bioanalytical procedures and recent developments in the determination of opiates/opioids in human biological samples. Anal. Bioanal. Chem. 2011, 400, 1665–1690. [Google Scholar] [CrossRef]
- Liu, H.-C.; Lee, H.-T.; Hsu, Y.-C.; Huang, M.-H.; Liu, R.H.; Chen, T.-J.; Lin, D.-L. Direct injection LC–MS-MS analysis of opiates, methamphetamine, buprenorphine, methadone and their metabolites in oral fluid from substitution therapy patients. J. Anal. Toxicol. 2015, 39, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Wang, I.T.; Feng, Y.T.; Chen, C.Y. Determination of 17 illicit drugs in oral fluid using isotope dilution ultra-high performance liquid chromatography/tandem mass spectrometry with three atmospheric pressure ionizations. J. Chromatogr. B 2010, 878, 3095–3105. [Google Scholar] [CrossRef]
- Malaca, S.; Busardò, F.P.; Gottardi, M.; Pichini, S.; Marchei, E. Dilute and shoot ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS) analysis of psychoactive drugs in oral fluid. J. Pharm. Biomed. Anal. 2019, 170, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Valen, A.; Leere, Å.M.; Strand, D.H.; Skari, R.; Berg, T. Determination of 21 drugs in oral fluid using fully automated supported liquid extraction and UHPLC-MS/MS. Drug Test. Anal. 2017, 9, 808–823. [Google Scholar] [CrossRef]
- Abu-Rabie, P.; Spooner, N. Dried matrix spot direct analysis: Evaluating the robustness of a direct elution technique for use in quantitative bioanalysis. Bioanalysis 2011, 3, 2769–2781. [Google Scholar] [CrossRef]
- Zimmer, J.S.D.; Christianson, C.D.; Johnson, C.J.L.; Needham, S.R. Recent advances in the bioanalytical applications of dried matrix spotting for the analysis of drugs and their metabolites. Bioanalysis 2013, 5, 2581–2588. [Google Scholar] [CrossRef]
- Zheng, N.; Zeng, J.; Ji, Q.C.; Angeles, A.; Aubry, A.F.; Basdeo, S.; Buzescu, A.; Landry, I.S.; Jariwala, N.; Turley, W.; et al. Bioanalysis of dried saliva spot (DSS) samples using detergent-assisted sample extraction with UHPLC-MS/MS detection. Anal. Chim. Acta 2016, 934, 170–179. [Google Scholar] [CrossRef]
- Abdel-Rehim, A.; Abdel-Rehim, M. Dried saliva spot as a sampling technique for saliva samples. Biomed. Chromatogr. 2014, 28, 875–877. [Google Scholar] [CrossRef]
- Numako, M.; Takayama, T.; Noge, I.; Kitagawa, Y.; Todoroki, K.; Mizuno, H.; Min, J.Z.; Toyo’Oka, T. Dried saliva spot (DSS) as a convenient and reliable sampling for bioanalysis: An application for the diagnosis of diabetes mellitus. Anal. Chem. 2016, 88, 635–639. [Google Scholar] [CrossRef]
- Carvalho, J.; Rosado, T.; Barroso, M.; Gallardo, E. Determination of antiepileptic drugs using dried saliva spots. J. Anal. Toxicol. 2019, 43, 61–71. [Google Scholar] [CrossRef]
- Ribeiro, A.; Prata, M.; Vaz, C.; Rosado, T.; Restolho, J.; Barroso, M.; Araújo, A.R.T.S.; Gallardo, E. Determination of methadone and EDDP in oral fluid using the dried saliva spots sampling approach and gas chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 2177–2187. [Google Scholar] [CrossRef]
- Caramelo, D.; Rosado, T.; Oliveira, V.; Rodilla, J.M.; Rocha, P.M.M.; Barroso, M.; Gallardo, E. Determination of antipsychotic drugs in oral fluid using dried saliva spots by gas chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 6141–6153. [Google Scholar] [CrossRef]
- Jacques, A.L.B.; dos Santos, M.K.; Limberger, R.P. Development and validation of a method using dried oral fluid spot to determine drugs of abuse. J. Forensic Sci. 2019, 64, 1906–1912. [Google Scholar] [CrossRef]
- Mason, R.L.; Gunst, R.F.; Hess, J.L. Design and Analysis with Factorial Structure in Statistical Design and Analysis of Experiments with Applications to Engineering and Science, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003; ISBN 978-0-471-45851-7. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 3rd ed.; Pearson Education Limited: Harlow, UK, 1993. [Google Scholar]
- Costa, S.; Barroso, M.; Castañera, A.; Dias, M. Design of experiments, a powerful tool for method development in forensic toxicology: Application to the optimization of urinary morphine 3-glucuronide acid hydrolysis. Anal. Bioanal. Chem. 2010, 396, 2533–2542. [Google Scholar] [CrossRef]
- Ventura, M.; Pichini, S.; Ventura, R.; Zuccaro, P.; Pacifici, R.; De La Torre, R. Stability studies of principal illicit drugs in oral fluid: Preparation of reference materials for external quality assessment schemes. Ther. Drug Monit. 2007, 29, 662–665. [Google Scholar] [CrossRef]
- Langel, K.; Engblom, C.; Pehrsson, A.; Gunnar, T.; Ariniemi, K.; Lillsunde, P. Drug testing in oral fluid—Evaluation of sample collection devices. J. Anal. Toxicol. 2008, 32, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.M.E.; Øiestad, E.L.; Gjerde, H.; Christophersen, A.S. Drugs of abuse in oral fluid collected by two different sample kits—Stability testing and validation using ultra performance tandem mass spectrometry analysis. J. Chromatogr. B 2011, 879, 3367–3377. [Google Scholar] [CrossRef]
- Cohier, C.; Mégarbane, B.; Roussel, O. Illicit drugs in oral fluid: Evaluation of two collection devices. J. Anal. Toxicol. 2017, 41, 71–76. [Google Scholar] [CrossRef]
- Marchei, E.; Malaca, S.; Graziano, S.; Gottardi, M.; Pichini, S.; Busardò, F.P. Stability and degradation pathways of different psychoactive drugs in neat and in buffered oral fluid. J. Anal. Toxicol. 2020, 44, 570–579. [Google Scholar] [CrossRef]
- Fernández, N.; Cabanillas, L.M.; Rosado, T.; Barroso, M.; Gallardo, E.; Quiroga, P.N. Dried saliva spots: Development and validation of a new method for the quantification of drugs of abuse in oral fluid by GC-MS. In Proceedings of the XIV TIAFT Latin-American Regional Meeting I International meeting on NPS and Drug design, Buenos Aires, Argentina, 26–28 November 2018. [Google Scholar]
Run Order | Temperature | Light | Preservative | Time |
---|---|---|---|---|
1 | Refrigerator | Presence | Low | 1 Day |
2 | Refrigerator | Presence | Low | 7 Days |
3 | Refrigerator | Presence | High | 7 Days |
4 | Refrigerator | Absence | Low | 1 Day |
5 | Room | Presence | High | 7 Days |
6 | Room | Absence | Low | 7 Days |
7 | Room | Absence | High | 7 Days |
8 | Room | Absence | Low | 1 Day |
9 | Refrigerator | Absence | High | 7 Days |
10 | Room | Absence | High | 1 Day |
11 | Room | Presence | Low | 7 Days |
12 | Refrigerator | Absence | Low | 7 Days |
13 | Room | Presence | High | 1 Day |
14 | Refrigerator | Presence | High | 1 Day |
15 | Room | Presence | Low | 1 Day |
16 | Refrigerator | Absence | High | 1 Day |
Condition | EME | COC | COET | BEG | NCOC | COD | MOR | 6-MAM |
---|---|---|---|---|---|---|---|---|
1 | 0.16 ± 0.008 | 0.17 ± 0.002 | 0.14 ± 0.019 | 0.36 ± 0.050 | 0.03 ± 0.008 | 0.02 ± 0.004 | 0.21 ± 0.015 | 0.03 ± 0.006 |
2 | 0.16 ± 0.011 | 0.18 ± 0.021 | 0.24 ± 0.010 | 0.30 ± 0.005 | 0.06 ± 0.007 | 0.03 ± 0.021 | 0.39 ± 0.099 | 0.03 ± 0.008 |
3 | 0.15 ± 0.034 | 0.18 ± 0.002 | 0.28 ± 0.034 | 0.36 ± 0.04 | 0.07 ± 0.005 | 0.02 ± 0.0006 | 0.21 ± 0.009 | 0.03 ± 0.005 |
4 | 0.18 ± 0.031 | 0.17 ± 0.058 | 0.29 ± 0.016 | 0.28 ± 0.071 | 0.08 ± 0.002 | 0.02 ± 0.009 | 0.46 ± 0.097 | 0.03 ± 0.0002 |
Day | EME | COC | COET | BEG | NCOC | COD | MOR | 6-MAM | |
---|---|---|---|---|---|---|---|---|---|
Without preservative | 1 | 0.16 | 0.23 | 0.29 | 0.31 | 0.09 | 0.02 | 0.35 | 0.03 |
7 | 0.22 | 0.14 | 0.24 | 0.24 | 0.05 | 0.02 | 0.47 | 0.03 | |
With preservative | 1 | 0.54 | 0.35 | 0.34 | 1.23 | 0.13 | 0.04 | 0.88 | 0.04 |
7 | 0.32 | 0.28 | 0.27 | 1.14 | 0.10 | 0.01 | 0.77 | 0.03 |
Analyte | Day | Concentration (ng/mL) * | CV (%) | Variation from Day 1 (%) |
---|---|---|---|---|
EME | 1 | 105.38 ± 0.028 | 5.10 | |
3 | 94.73 ± 0.084 | 17.1 | −10.1 | |
7 | 60.52 ± 0.013 | 4.3 | −42.6 | |
14 | 18.45 ± 0.009 | 9.5 | −82.5 | |
21 | 6.67 ± 0.008 | 20.0 | −93.7 | |
28 | 2.22 ± 0.001 | 10.5 | −97.9 | |
44 | 1.20 ± 0.0007 | 10.7 | −98.9 | |
112 | 0.91 ± 0.0006 | 12.3 | −99.1 | |
121 | 0.29 ± 0.0001 | 9.6 | −99.7 | |
136 | 0.58 ± 0.0002 | 8.1 | −99.4 | |
COC | 1 | 86.28 ± 0.056 | 15.8 | |
3 | 88.25 ± 0.054 | 15.1 | 2.3 | |
7 | 72.27 ± 0.035 | 11.9 | −16.2 | |
14 | 38.90 ± 0.032 | 20.5 | −54.9 | |
21 | 36.01 ± 0.024 | 16.6 | −58.3 | |
28 | 28.48 ± 0.013 | 11.6 | −67.0 | |
44 | 10.93 ± 0.005 | 10.4 | −87.3 | |
112 | 8.72 ± 0.002 | 4.8 | −89.9 | |
121 | 11.00 ± 0.007 | 15.1 | −87.3 | |
136 | 7.67 ± 0.004 | 14.0 | −91.2 | |
COET | 1 | 86.05 ± 0.053 | 16.3 | |
3 | 75.45 ± 0.035 | 12.4 | −12.3 | |
7 | 71.67 ± 0.042 | 15.3 | −16.7 | |
14 | 27.82 ± 0.022 | 20.5 | −67.7 | |
21 | 32.42 ± 0.022 | 17.9 | −62.3 | |
28 | 30.96 ± 0.011 | 9.70 | −64.0 | |
44 | 14.21 ± 0.010 | 17.8 | −83.5 | |
112 | 7.76 ± 0.004 | 13.7 | −91.0 | |
121 | 7.95 ± 0.006 | 19.0 | −90.8 | |
136 | 2.15 ± 0.0008 | 10.2 | −97.5 | |
BEG | 1 | 95.83 ± 0.230 | 18.9 | |
3 | 92.24 ± 0.070 | 6.0 | −3.7 | |
7 | 88.55 ± 0.183 | 16.3 | −7.6 | |
14 | 81.23 ± 0.124 | 12.1 | −15.2 | |
21 | 82.41 ± 0.135 | 13.0 | −14.0 | |
28 | 85.95± 0.174 | 15.9 | −10.3 | |
44 | 77.30 ± 0.034 | 3.5 | −19.3 | |
112 | 78.40 ± 0.072 | 7.2 | −18.2 | |
121 | 79.06 ± 0.055 | 5.4 | −17.5 | |
136 | 82.85 ± 0.145 | 13.8 | −13.5 | |
NCOC | 1 | 117.04 ± 0.018 | 14.8 | |
3 | 98.46 ± 0.019 | 18.1 | −15.9 | |
7 | 98.44 ± 0.013 | 12.4 | −15.9 | |
14 | 73.27 ± 0.014 | 18.6 | −37.4 | |
21 | 58.82 ± 0.010 | 16.8 | −49.7 | |
28 | 49.66 ± 0.004 | 7.9 | −57.6 | |
44 | 29.92 ± 0.003 | 8.8 | −74.4 | |
112 | 13.15 ± 0.002 | 16.2 | −88.8 | |
121 | 18.33 ± 0.003 | 15.2 | −84.3 | |
136 | 6.16 ± 0.0005 | 8.4 | −94.7 | |
COD | 1 | 83.53 ± 0.006 | 15.8 | |
3 | 22.54 ± 0.001 | 13.1 | −73.9 | |
7 | 30.79 ± 0.001 | 11.0 | −64.4 | |
14 | 26.52± 0.002 | 13.8 | −69.3 | |
21 | 27.94 ± 0.002 | 18.1 | −67.7 | |
28 | 27.85 ± 0.002 | 18.4 | −67.8 | |
44 | 29.01 ± 0.002 | 12.3 | −66.5 | |
112 | 24.14 ± 0.0002 | 2.0 | −72.1 | |
121 | 21.67 ± 0.0004 | 4.3 | −75.0 | |
136 | 18.86 ± 0.001 | 15.1 | −78.2 | |
MOR | 1 | 89.11 ± 0.106 | 12.2 | |
3 | 82.63 ± 0.010 | 12.4 | −7.3 | |
7 | 78.45 ± 0.092 | 12.1 | −12.0 | |
14 | 73.28 ± 0.024 | 3.4 | −17.8 | |
21 | 59.83 ± 0.047 | 8.1 | −32.9 | |
28 | 49.25 ± 0.035 | 7.4 | −44.7 | |
44 | 39.75 ± 0.044 | 11.4 | −55.4 | |
112 | 21.63 ± 0.032 | 15.2 | −75.7 | |
121 | 28.19 ± 0.025 | 8.9 | −68.4 | |
136 | 31.34 ± 0.052 | 17.0 | −64.8 | |
6-MAM | 1 | 108.96 ± 0.003 | 8.0 | |
3 | 94.91 ± 0.005 | 17.5 | −12.9 | |
7 | 90.84 ± 0.005 | 16.7 | −16.6 | |
14 | 62.66 ± 0.002 | 9.8 | −42.5 | |
21 | 52.75 ± 0.003 | 19.5 | −51.6 | |
28 | 35.48 ± 0.002 | 16.1 | −67.4 | |
44 | 24.01 ± 0.0005 | 6.8 | −78.0 | |
112 | 10.64 ± 0.0001 | 3.3 | −90.2 | |
121 | 13.38 ± 0.0007 | 16.2 | −87.7 | |
136 | 13.19 ± 0.0007 | 16.0 | −87.9 |
Analyte | Retention Time (min) | Transitions (m/z) | Collision Energy (eV) | Dwell Time (µs) |
---|---|---|---|---|
EME | 8.51 | 271.5–83.1 * 181.3–82.0 | 5 10 | 50 |
EME-d3 | 8.50 | 274.5–86.1 | 10 | 50 |
COC | 11.97 | 182.5–82.2 * 182.5–150.1 | 10 5 | 50 |
COC-d3 | 11.96 | 184.1–85.0 | 10 | 50 |
COET | 12.22 | 196.5–82.0 * 196.5–150.2 | 10 5 | 50 |
BEG | 12.25 | 239.6–82.2 * 239.6–122.2 | 15 15 | 50 |
BEG-d3 | 12.21 | 241.9–85.1 | 15 | 50 |
NCOC | 12.33 | 178.1–105.1 * 178.1–135.1 | 15 10 | 50 |
COD | 13.08 | 369.8–229.2 369.8–354.3 * | 20 20 | 50 |
COD-d3 | 13.08 | 374.0–374.0 | 5 | 50 |
MOR | 13.31 | 235.4–146.1 * 235.4–220.2 | 10 5 | 50 |
6-MAM | 13.66 | 397.9–287.4 * 397.9–340.5 | 20 20 | 50 |
6-MAM-d3 | 13.65 | 402.4–402.4 | 5 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, E.; Soares, S.; Gonçalves, J.; Rosado, T.; Fernández, N.; Rodilla, J.M.; Passarinha, L.A.; Barroso, M.; Gallardo, E. Stability of Cocaine, Opiates, and Metabolites in Dried Saliva Spots. Molecules 2022, 27, 641. https://doi.org/10.3390/molecules27030641
Almeida E, Soares S, Gonçalves J, Rosado T, Fernández N, Rodilla JM, Passarinha LA, Barroso M, Gallardo E. Stability of Cocaine, Opiates, and Metabolites in Dried Saliva Spots. Molecules. 2022; 27(3):641. https://doi.org/10.3390/molecules27030641
Chicago/Turabian StyleAlmeida, Ema, Sofia Soares, Joana Gonçalves, Tiago Rosado, Nicolás Fernández, Jesus M. Rodilla, Luís A. Passarinha, Mário Barroso, and Eugenia Gallardo. 2022. "Stability of Cocaine, Opiates, and Metabolites in Dried Saliva Spots" Molecules 27, no. 3: 641. https://doi.org/10.3390/molecules27030641
APA StyleAlmeida, E., Soares, S., Gonçalves, J., Rosado, T., Fernández, N., Rodilla, J. M., Passarinha, L. A., Barroso, M., & Gallardo, E. (2022). Stability of Cocaine, Opiates, and Metabolites in Dried Saliva Spots. Molecules, 27(3), 641. https://doi.org/10.3390/molecules27030641