Mineral Montmorillonite Valorization by Developing Ni and Mo–Ni Catalysts for Third-Generation Green Diesel Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. Texture
2.1.2. Phase Identification
2.1.3. Morphology and Mapping at Nanoscale and Microscale
2.2. Catalyst Evaluation
3. Materials and Methods
3.1. Feedstock
3.2. Catalyst Preparation
3.2.1. Acid Treatment of Mineral Montmorillonite
3.2.2. Synthesis of the Catalysts
3.2.3. Activation of the Catalysts
3.3. Catalyst Characterization
3.3.1. N2 Adsorption—Desorption Isotherms
3.3.2. X-ray Diffraction
3.3.3. Scanning and Transmission Electron Microscopy
3.3.4. Hydrogen Temperature Programmed Reduction
3.3.5. Ammonia Temperature Programmed Desorption
3.3.6. X-ray Photoelectron Spectroscopy
3.4. Catalyst Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Maity, S.K. Opportunities, Recent Trends and Challenges of Integrated Biorefinery: Part I. Renew. Sustain. Energy Rev. 2015, 43, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Lycourghiotis, A.; Kordulis, C.; Lycourghiotis, S. Beyond Fossil Fuels: The Return Journey to Renewable Energy; Crete University Press: Herakleion, Greece, 2017. [Google Scholar]
- Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Isikgor, F.H.; Remzi Becer, C. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Kumar, A. Production of Renewable Diesel through the Hydroprocessing of Lignocellulosic Biomass-Derived Bio-Oil: A Review. Renew. Sustain. Energy Rev. 2016, 58, 1293–1307. [Google Scholar] [CrossRef]
- Bolonio, D.; García-Martínez, M.-J.; Ortega, M.F.; Lapuerta, M.; Rodríguez-Fernández, J.; Canoira, L. Fatty Acid Ethyl Esters (FAEEs) Obtained from Grapeseed Oil: A Fully Renewable Biofuel. Renew. Energy 2019, 132, 278–283. [Google Scholar] [CrossRef]
- Ambursa, M.M.; Juan, J.C.; Yahaya, Y.; Taufiq-Yap, Y.H.; Lin, Y.-C.; Lee, H.V. A Review on Catalytic Hydrodeoxygenation of Lignin to Transportation Fuels by Using Nickel-Based Catalysts. Renew. Sustain. Energy Rev. 2021, 138, 110667. [Google Scholar] [CrossRef]
- Kubičková, I.; Kubička, D. Utilization of Triglycerides and Related Feedstocks for Production of Clean Hydrocarbon Fuels and Petrochemicals: A Review. Waste Biomass Valorization 2010, 1, 293–308. [Google Scholar] [CrossRef]
- Zhao, C.; Brück, T.; Lercher, J.A. Catalytic Deoxygenation of Microalgae Oil to Green Hydrocarbons. Green Chem. 2013, 15, 1720–1739. [Google Scholar] [CrossRef]
- Douvartzides, S.L.; Charisiou, N.D.; Papageridis, K.N.; Goula, M.A. Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines. Energies 2019, 12, 809. [Google Scholar] [CrossRef] [Green Version]
- Kordulis, C.; Bourikas, K.; Gousi, M.; Kordouli, E.; Lycourghiotis, A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Appl. Catal. B Environ. 2016, 181, 156–196. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Kumari, D. Chemical Compositions, Properties, and Standards for Different Generation Biodiesels: A Review. Fuel 2019, 253, 60–71. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Zhou, G.; Shen, S.; Rong, L. Hydrotreatment of Jatropha Oil over NiMoLa/Al2O3 Catalyst. Green Chem. 2012, 14, 2499–2505. [Google Scholar] [CrossRef]
- Liu, J.; Fan, K.; Tian, W.; Liu, C.; Rong, L. Hydroprocessing of Jatropha Oil over NiMoCe/Al2O3 Catalyst. Int. J. Hydrogen Energy 2012, 37, 17731–17737. [Google Scholar] [CrossRef]
- Zhou, G.; Hou, Y.; Liu, L.; Liu, H.; Liu, C.; Liu, J.; Qiao, H.; Liu, W.; Fan, Y.; Shen, S.; et al. Preparation and Characterization of NiW–nHA Composite Catalyst for Hydrocracking. Nanoscale 2012, 4, 7698–7703. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Zhou, G.; Tian, W.; Rong, L. Transformation of Jatropha Oil into Green Diesel over a New Heteropolyacid Catalyst. Environ. Prog. Sustain. Energy 2013, 32, 1240–1246. [Google Scholar] [CrossRef]
- Fan, K.; Liu, J.; Yang, X.; Rong, L. Hydrocracking of Jatropha Oil over Ni-H3PW12O40/Nano-Hydroxyapatite Catalyst. Int. J. Hydrogen Energy 2014, 39, 3690–3697. [Google Scholar] [CrossRef]
- Yang, R.; Du, X.; Zhang, X.; Xin, H.; Zhou, K.; Li, D.; Hu, C. Transformation of Jatropha Oil into High-Quality Biofuel over Ni–W Bimetallic Catalysts. ACS Omega 2019, 4, 10580–10592. [Google Scholar] [CrossRef]
- Silva, G.C.R.; Qian, D.; Pace, R.; Heintz, O.; Caboche, G.; Santillan-Jimenez, E.; Crocker, M. Promotional Effect of Cu, Fe and Pt on the Performance of Ni/Al2O3 in the Deoxygenation of Used Cooking Oil to Fuel-Like Hydrocarbons. Catalysts 2020, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Kordouli, E.; Sygellou, L.; Kordulis, C.; Bourikas, K.; Lycourghiotis, A. Probing the synergistic ratio of the NiMo/-Al2O3 reduced catalysts for the transformation of natural triglycerides into green diesel. Appl. Catal. B Environ. 2017, 209, 12–22. [Google Scholar] [CrossRef]
- Kordouli, E.; Pawelec, B.; Bourikas, K.; Kordulis, C.; Fierro, J.L.G.; Lycourghiotis, A. Mo promoted Ni-Al2O3 co-precipitated catalysts for green diesel production. Appl. Catal. B Environ. 2018, 229, 139–154. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Kordouli, E.; Sygellou, L.; Bourikas, K.; Kordulis, C.; Lycourghiotis, A. W Promoted Ni-Al2O3 Co-Precipitated Catalysts for Green Diesel Production. Fuel Process. Technol. 2021, 217, 106820. [Google Scholar] [CrossRef]
- Loe, R.; Santillan-Jimenez, E.; Morgan, T.; Sewell, L.; Ji, Y.; Jones, S.; Isaacs, M.A.; Lee, A.F.; Crocker, M. Effect of Cu and Sn promotion on the catalytic deoxygenation of model and algal lipids to fuel-like hydrocarbons over supported Ni catalysts. Appl. Catal. B Environ. 2016, 191, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Loe, R.; Lavoignat, Y.; Maier, M.; Abdallah, M.; Morgan, T.; Qian, D.; Pace, R.; Santillan-Jimenez, E.; Crocker, M. Continuous Catalytic Deoxygenation of Waste Free Fatty Acid-Based Feeds to Fuel-Like Hydrocarbons Over a Supported Ni-Cu Catalyst. Catalysts 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Kantama, A.; Narataruksa, P.; Hunpinyo, P.; Prapainainar, C. Techno-Economic Assessment of a Heat-Integrated Process for Hydrogenated Renewable Diesel Production from Palm Fatty Acid Distillate. Biomass Bioenergy 2015, 83, 448–459. [Google Scholar] [CrossRef]
- Boonyasuwat, S.; Tscheikuna, J. Co-Processing of Palm Fatty Acid Distillate and Light Gas Oil in Pilot-Scale Hydrodesulfurization Unit over Commercial CoMo/Al2O3. Fuel 2017, 199, 115–124. [Google Scholar] [CrossRef]
- Simasatitkul, L.; Arpornwichanop, A. Feasibility Study of Using Waste Cooking Oil and Byproduct from Palm Oil Refinery for Green Diesel Production. Chem. Eng. Trans. 2019, 74, 1–6. [Google Scholar] [CrossRef]
- Hanafi, S.A.; Elmelawy, M.S.; Shalaby, N.H.; El-Syed, H.A.; Eshaq, G.; Mostafa, M.S. Hydrocracking of Waste Chicken Fat as a Cost Effective Feedstock for Renewable Fuel Production: A Kinetic Study. Egypt. J. Pet. 2016, 25, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Hanafi, S.A.; Elmelawy, M.S.; Eshaq, G.; ElMetwally, A.E. Selective Deoxygenation of Waste Chicken Fat over Sulfided and Reduced Co-Mo-La/γAl2O3 as Catalysts for the Sustainable Production of Renewable Fuel. Biomass Convers. Biorefin. 2019, 9, 625–632. [Google Scholar] [CrossRef]
- Phimsen, S.; Kiatkittipong, W.; Yamada, H.; Tagawa, T.; Kiatkittipong, K.; Laosiripojana, N.; Assabumrungrat, S. Oil Extracted from Spent Coffee Grounds for Bio-Hydrotreated Diesel Production. Energy Convers. Manag. 2016, 126, 1028–1036. [Google Scholar] [CrossRef]
- Döhlert, P.; Weidauer, M.; Enthaler, S. Spent Coffee Ground as Source for Hydrocarbon Fuels. J. Energy Chem. 2016, 25, 146–152. [Google Scholar] [CrossRef]
- Phimsen, S.; Kiatkittipong, W.; Yamada, H.; Tagawa, T.; Kiatkittipong, K.; Laosiripojana, N.; Assabumrungrat, S. Nickel Sulfide, Nickel Phosphide and Nickel Carbide Catalysts for Bio-Hydrotreated Fuel Production. Energy Convers. Manag. 2017, 151, 324–333. [Google Scholar] [CrossRef]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Kamil, M.; Ramadan, K.M.; Olabi, A.G.; Al-Ali, E.I.; Ma, X.; Awad, O.I. Economic, Technical, and Environmental Viability of Biodiesel Blends Derived from Coffee Waste. Renew. Energy 2020, 147, 1880–1894. [Google Scholar] [CrossRef]
- Simakova, I.; Simakova, O.; Mäki-Arvela, P.; Murzin, D.Y. Decarboxylation of Fatty Acids over Pd Supported on Mesoporous Carbon. Catal. Today 2010, 150, 28–31. [Google Scholar] [CrossRef]
- De Sousa, F.P.; Cardoso, C.C.; Pasa, V.M.D. Producing Hydrocarbons for Green Diesel and Jet Fuel Formulation from Palm Kernel Fat over Pd/C. Fuel Process. Technol. 2016, 143, 35–42. [Google Scholar] [CrossRef]
- Yang, L.; Carreon, M.A. Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts. ACS Appl. Mater. Interfaces 2017, 9, 31993–32000. [Google Scholar] [CrossRef]
- Kon, K.; Toyao, T.; Onodera, W.; Siddiki, S.M.A.H.; Shimizu, K. Hydrodeoxygenation of Fatty Acids, Triglycerides, and Ketones to Liquid Alkanes by a Pt–MoOx/TiO2 Catalyst. ChemCatChem 2017, 9, 2822–2827. [Google Scholar] [CrossRef]
- Janampelli, S.; Darbha, S. Metal Oxide-Promoted Hydrodeoxygenation Activity of Platinum in Pt-MOx/Al2O3 Catalysts for Green Diesel Production. Energy Fuels 2018, 32, 12630–12643. [Google Scholar] [CrossRef]
- Coumans, A.E.; Hensen, E.J.M. A Model Compound (Methyl Oleate, Oleic Acid, Triolein) Study of Triglycerides Hydrodeoxygenation over Alumina-Supported NiMo Sulfide. Appl. Catal. B 2017, 201, 290–301. [Google Scholar] [CrossRef]
- Arora, P.; Ojagh, H.; Woo, J.; Lind Grennfelt, E.; Olsson, L.; Creaser, D. Investigating the Effect of Fe as a Poison for Catalytic HDO over Sulfided NiMo Alumina Catalysts. Appl. Catal. B 2018, 227, 240–251. [Google Scholar] [CrossRef]
- Vlasova, E.N.; Bukhtiyarova, G.A.; Deliy, I.V.; Aleksandrov, P.V.; Porsin, A.A.; Panafidin, M.A.; Gerasimov, E.Y.; Bukhtiyarov, V.I. The effect of rapeseed oil and carbon monoxide on SRGO hydrotreating over sulfide CoMo/Al2O3 and NiMo/Al2O3 catalysts. Catal. Today 2020, 357, 526–533. [Google Scholar] [CrossRef]
- Gousi, M.; Kordouli, E.; Bourikas, K.; Symianakis, E.; Ladas, S.; Kordulis, C.; Lycourghiotis, A. Green Diesel Production over Nickel-Alumina Nanostructured Catalysts Promoted by Copper. Energies 2020, 13, 3707. [Google Scholar] [CrossRef]
- Alvarez-Galvan, M.C.; Campos-Martin, J.M.; Fierro, J.L.G. Transition Metal Phosphides for the Catalytic Hydrodeoxygenation of Waste Oils into Green Diesel. Catalysts 2019, 9, 293. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Camargo, M.; Castagnari Willimann Pimenta, J.L.; de Oliveira Camargo, M.; Arroyo, P.A. Green Diesel Production by Solvent-Free Deoxygenation of Oleic Acid over Nickel Phosphide Bifunctional Catalysts: Effect of the Support. Fuel 2020, 281, 118719. [Google Scholar] [CrossRef]
- Shi, Y.; Li, M.; Yu, Y.; Zhang, B. Recent Advances in Nanostructured Transition Metal Phosphides: Synthesis and Energy-Related Applications. Energy Environ. Sci. 2020, 13, 4564–4582. [Google Scholar] [CrossRef]
- Nguyen, H.S.; Mäki-Arvela, P.; Akhmetzyanova, U.; Tišler, Z.; Hachemi, I.; Rudnäs, A.; Smeds, A.; Eränen, K.; Aho, A.; Kumar, N.; et al. Direct Hydrodeoxygenation of Algal Lipids Extracted from Chlorella Alga. J. Chem. Technol. Biotechnol. 2017, 92, 741–748. [Google Scholar] [CrossRef]
- Arun, N.; Sharma, R.V.; Dalai, A.K. Green Diesel Synthesis by Hydrodeoxygenation of Bio-Based Feedstocks: Strategies for Catalyst Design and Development. Renew. Sustain. Energy Rev. 2015, 48, 240–255. [Google Scholar] [CrossRef]
- Imai, H.; Kimura, T.; Terasaka, K.; Li, X.; Sakashita, K.; Asaoka, S.; Al-Khattaf, S.S. Hydroconversion of Fatty Acid Derivative over Supported Ni-Mo Catalysts under Low Hydrogen Pressure. Catal. Today 2018, 303, 185–190. [Google Scholar] [CrossRef]
- Kumar, P.; Maity, S.K.; Shee, D. Role of NiMo Alloy and Ni Species in the Performance of NiMo/Alumina Catalysts for Hydrodeoxygenation of Stearic Acid: A Kinetic Study. ACS Omega 2019, 4, 2833–2843. [Google Scholar] [CrossRef] [PubMed]
- Yenumala, S.R.; Kumar, P.; Maity, S.K.; Shee, D. Production of Green Diesel from Karanja Oil (Pongamia Pinnata) Using Mesoporous NiMo-Alumina Composite Catalysts. Bioresour. Technol. Rep. 2019, 7, 100288. [Google Scholar] [CrossRef]
- Imai, H.; Abe, M.; Terasaka, K.; Suzuki, T.; Li, X.; Yokoi, T. Hydroconversion of Methyl Laurate over Silica-Supported Ni–Mo Catalysts with Different Ni Sizes. Fuel Process. Technol. 2018, 180, 166–172. [Google Scholar] [CrossRef]
- Cao, X.; Long, F.; Zhai, Q.; Liu, P.; Xu, J.; Jiang, J. Enhancement of Fatty Acids Hydrodeoxygenation Selectivity to Diesel-Range Alkanes over the Supported Ni-MoOx Catalyst and Elucidation of the Active Phase. Renew. Energy 2020, 162, 2113–2125. [Google Scholar] [CrossRef]
- Lee, C.-W.; Lin, P.-Y.; Chen, B.-H.; Kukushkin, R.G.; Yakovlev, V.A. Hydrodeoxygenation of palmitic acid over zeolite-supported nickel catalysts. Catal. Today 2021, 379, 124–131. [Google Scholar] [CrossRef]
- Malins, K. Synthesis of Renewable Hydrocarbons from Vegetable Oil Feedstock by Hydrotreatment over Selective Sulfur-Free SiO2-Al2O3 Supported Monometallic Pd, Pt, Ru, Ni, Mo and Bimetallic NiMo Catalysts. Fuel 2021, 285, 119129. [Google Scholar] [CrossRef]
- Yan, L.; Liu, X.; Deng, J.; Fu, Y. Molybdenum Modified Nickel Phyllosilicates as a High Performance Bifunctional Catalyst for Deoxygenation of Methyl Palmitate to Alkanes under Mild Conditions. Green Chem. 2017, 19, 4600–4609. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, R.; Fan, J.; Wu, Y.; Xu, S.; Gao, L.; Zhang, J.; Xiao, G. Hydrodeoxygenation of Octanoic Acid over Supported Ni and Mo Catalysts: Effect of Ni/Mo Ratio and Catalyst Recycling. ChemistrySelect 2019, 4, 2229–2236. [Google Scholar] [CrossRef]
- Ding, S.; Li, Z.; Li, F.; Wang, Z.; Li, J.; Zhao, T.; Lin, H.; Chen, C. Catalytic Hydrogenation of Stearic Acid over Reduced NiMo Catalysts: Structure–Activity Relationship and Effect of the Hydrogen-Donor. Appl. Catal. A 2018, 566, 146–154. [Google Scholar] [CrossRef]
- Xing, G.; Liu, S.; Guan, Q.; Li, W. Investigation on Hydroisomerization and Hydrocracking of C15–C18 n-Alkanes Utilizing a Hollow Tubular Ni-Mo/SAPO-11 Catalyst with High Selectivity of Jet Fuel. Catal. Today 2019, 330, 109–116. [Google Scholar] [CrossRef]
- Trisunaryanti, W.; Larasati, S.; Triyono, T.; Paramesti, C.; Santoso, N.R. Selective Production of Green Hydrocarbons from the Hydrotreatment of Waste Coconut Oil over Ni- and NiMo-Supported on Amine-Functionalized Mesoporous Silica. Bull. Chem. React. Eng. Catal. 2020, 15, 415–431. [Google Scholar] [CrossRef]
- Liang, J.; Chen, T.; Liu, J.; Zhang, Q.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Chemoselective Hydrodeoxygenation of Palmitic Acid to Diesel-like Hydrocarbons over Ni/MoO2@Mo2CTx Catalyst with Extraordinary Synergic Effect. Chem. Eng. J. 2020, 391, 123472. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Liu, J.; Rong, L. Ni/Phosphomolybdic Acid Immobilized on Carbon Nanotubes for Catalytic Cracking of Jatropha Oil. Chem. Phys. Lett. 2019, 720, 42–51. [Google Scholar] [CrossRef]
- Ding, S.; Li, F.; Li, Z.; Yu, H.; Song, C.; Xiong, D.; Lin, H. Catalytic Hydrodeoxygenation of Waste Cooking Oil and Stearic Acid over Reduced Nickel-Basded Catalysts. Catal. Commun. 2021, 149, 106235. [Google Scholar] [CrossRef]
- Shen, P.; Wei, R.; Zhu, M.Y.; Pan, D.; Xu, S.; Gao, L.; Xiao, G. Hydrodeoxygenation of Octanoic Acid over the Mo–Doped CeO2-Supported Bimetal Catalysts: The Role of Mo. ChemistrySelect 2018, 3, 4786–4796. [Google Scholar] [CrossRef]
- Fani, K.; Lycourghiotis, S.; Bourikas, K.; Kordouli, E. Biodiesel Upgrading to Renewable Diesel over Nickel Supported on Natural Mordenite Catalysts. Ind. Eng. Chem. Res. 2021, 60, 18695–18706. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Kordouli, E.; Sygellou, L.; Bourikas, K.; Kordulis, C. Nickel Catalysts Supported on Palygorskite for Transformation of Waste Cooking Oils into Green Diesel. Appl. Catal. B 2019, 259, 118059. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Kordouli, E.; Kordulis, C.; Bourikas, K. Transformation of residual fatty raw materials into third generation green diesel over a nickel catalyst supported on mineral palygorskite. Renew. Energy 2021, 180, 773–786. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Handbook of Mineralogy, Volume II: Silica, Silicates; Mineralogical Society of America: Chantilly, VA, USA, 2003; Available online: http://www.handbookofmineralogy.org/ (accessed on 1 December 2021).
- Sachs-Barrable, K.; Darlington, J.W.; Wasan, K.M. The Effect of Two Novel Cholesterol-Lowering Agents, Disodium Ascorbyl Phytostanol Phosphate (DAPP) and Nanostructured Aluminosilicate (NSAS) on the Expression and Activity of P-Glycoprotein within Caco-2 Cells. Lipids Health Dis. 2014, 13, 153. [Google Scholar] [CrossRef] [Green Version]
- Pentrák, M.; Bizovská, V.; Madejová, J. Near-IR Study of Water Adsorption on Acid-Treated Montmorillonite. Vib. Spectrosc. 2012, 63, 360–366. [Google Scholar] [CrossRef]
- Pentrák, M.; Czímerová, A.; Madejová, J.; Komadel, P. Changes in Layer Charge of Clay Minerals upon Acid Treatment as Obtained from Their Interactions with Methylene Blue. Appl. Clay Sci. 2012, 55, 100–107. [Google Scholar] [CrossRef]
- Angaji, M.T.; Zinali, A.Z.; Qazvini, N.T. Study of Physical, Chemical and Morphological Alterations of Smectite Clay upon Activation and Functionalization via the Acid Treatment. World J. Nano Sci. Eng. 2013, 3, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Bieseki, L.; Treichel, H.; Araujo, A.S.; Pergher, S.B.C. Porous Materials Obtained by Acid Treatment Processing Followed by Pillaring of Montmorillonite Clays. Appl. Clay Sci. 2013, 85, 46–52. [Google Scholar] [CrossRef]
- Madejová, J.; Pálková, H.; Jankovič, Ľ. Near-Infrared Study of the Interaction of Pyridine with Acid-Treated Montmorillonite. Vib. Spectrosc. 2015, 76, 22–30. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Transformation of Limonene into High Added Value Products over Acid Activated Natural Montmorillonite. Catal. Today 2020, 355, 757–767. [Google Scholar] [CrossRef]
- Makarouni, D.; Lycourghiotis, S.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Transformation of Limonene into P-Cymene over Acid Activated Natural Mordenite Utilizing Atmospheric Oxygen as a Green Oxidant: A Novel Mechanism. Appl. Catal. B. 2018, 224, 740–750. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Activation of Natural Mordenite by Various Acids: Characterization and Evaluation in the Transformation of Limonene into p-Cymene. Mol. Catal. 2018, 450, 95–103. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. The Influence of Calcination on the Physicochemical Properties of Acidactivated Natural Mordenite. Curr. Catal. 2020, 9, 138–147. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Xie, X.; Yin, X.; An, X. Montmorillonite-supported Ni nanoparticles for efficient hydrogen production from ethanol steam reforming. Fuel 2015, 143, 55–62. [Google Scholar] [CrossRef]
- Barama, S.; Dupeyrat-Batiot, C.; Capron, M.; Bordes-Richard, E.; Bakhti-Mohammedi, O. Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catal. Today 2009, 141, 385–392. [Google Scholar] [CrossRef]
- Dutta, D.; Borah, B.J.; Saikia, L.; Pathak, M.G.; Sengupta, P.; Dutta, D.K. Synthesis and catalytic activity of Ni°-acid activated montmorillonite nanoparticles. Appl. Clay Sci. 2011, 53, 650–656. [Google Scholar] [CrossRef]
- Saikia, L.; Dutta, D.; Dutta, D.K. Efficient clay supported Ni° nanoparticles as heterogeneous catalyst for solvent-free synthesis of Hantzsch polyhydroquinoline. Catal. Commun. 2012, 19, 1–4. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, T.; Dong, L.; Su, T.; Li, B.; Luo, X.; Xie, X.; Qin, Z.; Xu, C.; Ji, H. Mn Modified Ni/Bentonite for CO2 Methanation. Catalysts 2018, 8, 646. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Gu, F.; Liu, Q.; Gao, J.; Liu, Y.; Li, H.; Jia, L.; Xu, G.; Zhong, Z.; Su, F. VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation. Fuel Proc. Technol. 2015, 135, 34–46. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X.; Qin, Z.; Ji, H. Preparation of Ni/bentonite catalyst and its applications in the catalytic hydrogenation of nitrobenzene to aniline. Chin. J. Chem. Eng. 2016, 24, 1195–1200. [Google Scholar] [CrossRef]
- Venkatathri, N. Characterization and catalytic properties of a naturally occurring clay, Bentonite. Bull. Catal. Soc. India 2006, 5, 61–72. [Google Scholar]
- Kamaruzaman, M.R.; Chin, S.Y.; Pui, E.C.L.; Prasetiawan, H.; Azizan, N. Synthesis of Biobased Polyester Polyol through Esterification of Sorbitol with Azelaic Acid Catalyzed by Tin (II) Oxide: A Kinetic Modeling Study. Ind. Eng. Chem. Res. 2019, 58, 510–516. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Nikolopoulos, N.; Kordouli, E.; Sygellou, L.; Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Developing Nickel–Zirconia Co-Precipitated Catalysts for Production of Green Diesel. Catalysts 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Nikolopoulos, I.; Kogkos, G.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Waste Cooking Oil Transformation into Third Generation Green Diesel Catalyzed by Nickel—Alumina Catalysts. Mol. Catal. 2020, 482, 110697. [Google Scholar] [CrossRef]
Sample | SBET (m2g−1) | Smicro (m2g−1) | SBJH (m2g−1) | SNi0 (m2g−1) 1 | PV (cm3g−1) | MPD (nm) | MCSNi0 (nm) |
---|---|---|---|---|---|---|---|
MM | 62 | 19 | 43 | - | 0.16 | 9.3 | - |
MM(H) | 136 | 22 | 114 | - | 0.22 | 5.6 | - |
0Ni/MM(H) | 48 | 12 | 36 | - | 0.15 | 9.7 | - |
10Ni/MM(H) | 62 | 19 | 43 | 6.7 | 0.14 | 7.4 | 10.0 |
20Ni/MM(H) | 90 | 36 | 54 | 14.8 | 0.15 | 7.5 | 9.1 |
30Ni/MM(H) | 104 | 40 | 64 | 16.3 | 0.15 | 7.9 | 12.4 |
40Ni/MM(H) | 83 | 29 | 54 | 17.2 | 0.14 | 5.8 | 15.7 |
20Ni2Mo/MM(H) | 100 | 15 | 85 | 14.7 | 0.18 | 6.4 | 9.2 |
Sample | XWCO % | Acids (wt.%) | Esters (wt.%) | n-Alkanes (wt.%) | (C15 + C17)/(C16 + C18) |
---|---|---|---|---|---|
10Ni/MM(H) | 73.8 | 27.3 | 41.5 | 5 | 2.2 |
20Ni/MM(H) | 77.9 | 26.7 | 43.0 | 8.2 | 2.2 |
30Ni/MM(H) | 100 | 3.9 | 87.7 | 8.4 | 1.9 |
40Ni/MM(H) | 100 | 3.5 | 87.4 | 9.1 | 1.8 |
20Ni2Mo/MM(H) | 100 | 1 | 78.5 | 20 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lycourghiotis, S.; Kordouli, E.; Zafeiropoulos, J.; Kordulis, C.; Bourikas, K. Mineral Montmorillonite Valorization by Developing Ni and Mo–Ni Catalysts for Third-Generation Green Diesel Production. Molecules 2022, 27, 643. https://doi.org/10.3390/molecules27030643
Lycourghiotis S, Kordouli E, Zafeiropoulos J, Kordulis C, Bourikas K. Mineral Montmorillonite Valorization by Developing Ni and Mo–Ni Catalysts for Third-Generation Green Diesel Production. Molecules. 2022; 27(3):643. https://doi.org/10.3390/molecules27030643
Chicago/Turabian StyleLycourghiotis, Sotiris, Eleana Kordouli, John Zafeiropoulos, Christos Kordulis, and Kyriakos Bourikas. 2022. "Mineral Montmorillonite Valorization by Developing Ni and Mo–Ni Catalysts for Third-Generation Green Diesel Production" Molecules 27, no. 3: 643. https://doi.org/10.3390/molecules27030643
APA StyleLycourghiotis, S., Kordouli, E., Zafeiropoulos, J., Kordulis, C., & Bourikas, K. (2022). Mineral Montmorillonite Valorization by Developing Ni and Mo–Ni Catalysts for Third-Generation Green Diesel Production. Molecules, 27(3), 643. https://doi.org/10.3390/molecules27030643