Phytochemical Diversity and Antioxidant Potential of Natural Populations of Nelumbo nucifera Gaertn. throughout the Floristic Regions in Thailand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Plant Populations and Botanical Description
2.2. Phytochemical Characterization
2.3. Antioxidant Activity
2.4. Correlation Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials
3.3. Extraction
3.4. Determination of Total Phenolic Content (TPC)
3.5. Determination of Total Flavonoid Content (TFC)
3.6. Determination of Total Anthocyanin Content (TAC)
3.7. High-Performance Liquid Chromatography (HPLC) Analysis
3.8. In Vitro Cell Free Antioxidant Assays
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dezhi, F.; Wiersema, J.H. Nelumbo nucifera. In Flora of China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2001; p. 1. [Google Scholar]
- Chayamarit, K.; Balslav, H.; Esser, H.J. Flora of Thailand; 14/4; Chayamarit, K., Balslav, H., Eds.; The Forest Herbarium, Royal Forest Department: Bangkok, Thailand, 2020; ISBN 9786163165923. [Google Scholar]
- Shen-Miller, J.; Mudgett, M.B.; Schopf, J.W.; Clarke, S.; Berger, R. Exceptional Seed Longevity and Robust Growth: Ancient Sacred Lotus from China. Am. J. Bot. 1995, 82, 1367–1380. [Google Scholar] [CrossRef]
- Sikarwar, R.L.S. Angiosperm diversity assessment of Chitrakootthe legendary place of Vindhyan range. India J. Econ. Taxon. Bot. 2014, 38, 563–619. [Google Scholar]
- Tungmunnithum, D.; Pinthong, D.; Hano, C. Flavonoids from Nelumbo nucifera Gaertn., a Medicinal Plant: Uses in Traditional Medicine, Phytochemistry and Pharmacological Activities. Medicines 2018, 5, 127. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Renouard, S.; Drouet, S.; Blondeau, J.-P.; Hano, C. A Critical Cross-Species Comparison of Pollen from Nelumbo nucifera Gaertn. vs. Nymphaea lotus L. for Authentication of Thai Medicinal Herbal Tea. Plants 2020, 9, 921. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef]
- Lin, H.Y.; Kuo, Y.H.; Lin, Y.L.; Chiang, W. Antioxidative effect and active components from leaves of lotus (Nelumbo nucifera). J. Agric. Food Chem. 2009, 57, 6623–6629. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, S.A. Ethno-medicinal uses and pharmacological activities of lotus (Nelumbo nucifera). J. Med. Plants Stud. 2014, 2, 42–46. [Google Scholar]
- Lee, J.S.; Shukla, S.; Kim, J.A.; Kim, M. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential. PLoS ONE 2015, 10, e0118552. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Wu, W.; Jiao, L.L.; Yang, P.F.; Guo, M.Q. Analysis of flavonoids in lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules 2015, 20, 10553–10565. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.A.; Kim, J.E.; Chung, H.Y.; Choi, J.S. Antioxidant principles of Nelumbo nucifera stamens. Arch. Pharm. Res. 2003, 26, 1. [Google Scholar] [CrossRef]
- Le, B.; Anh, P.T.; Yang, S.H. Polysaccharide Derived from Nelumbo nucifera Lotus Plumule Shows Potential Prebiotic Activity and Ameliorates Insulin Resistance in HepG2 Cells. Polymers 2021, 13, 1780. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, K.; Chen, Y.; Ouyang, Y.; Feng, Y.; Li, S.; Zhang, L.; Feng, N. Effect of lotus seedpod oligomeric procyanidins on AGEs formation in simulated gastrointestinal tract and cytotoxicity in Caco-2 cells. Food Funct. 2021, 12, 3527–3538. [Google Scholar] [CrossRef]
- Chen, H.; Sun, K.; Yang, Z.; Guo, X.; Wei, S. Identification of Antioxidant and Anti- α -amylase Components in Lotus (Nelumbo nucifera, Gaertn.) Seed Epicarp. Appl. Biochem. Biotechnol. 2018, 187, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liu, T.; Zhang, C.; Guo, M. Flavonoids of Lotus (Nelumbo nucifera) Seed Embryos and Their Antioxidant Potential. J. Food Sci. 2017, 82, 1834–1841. [Google Scholar] [CrossRef]
- Tan, S.-J.; Lee, C.-K.; Gan, C.-Y.; Olalere, O.A. Statistical Optimization of Flavonoid and Antioxidant Recovery from Macerated Chinese and Malaysian Lotus Root (Nelumbo nucifera) Using Response Surface Methodology. Molecules 2021, 26, 2014. [Google Scholar] [CrossRef]
- Rai, S.; Wahile, A.; Mukherjee, K.; Saha, B.P.; Mukherjee, P.K. Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. J. Ethnopharmacol. 2006, 104, 322–327. [Google Scholar] [CrossRef]
- Jiang, X.L.; Wang, L.; Wang, E.J.; Zhang, G.L.; Chen, B.; Wang, M.K.; Li, F. Flavonoid glycosides and alkaloids from the embryos of Nelumbo nucifera seeds and their antioxidant activity. Fitoterapia 2018, 125, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Kim, E.S.; Lee, C.; Kim, S.; Cho, S.H.; Hwang, B.Y.; Lee, M.K. Chemical constituents from Nelumbo nucifera leaves and their anti-obesity effects. Bioorg. Med. Chem. Lett. 2013, 23, 3604–3608. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Sun, X.Y.; Li, X.W.; Yang, T.; Qi, L.W. Enrichment and separation of quercetin-3-O-β-D-glucuronide from lotus leaves (Nelumbo nucifera gaertn.) and evaluation of its anti-inflammatory effect. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1040, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Deng, J.; Liu, D.; Tuo, X.; Yu, Y.; Yang, H.; Wang, N. Nuciferine Inhibits Proinflammatory Cytokines via the PPARs in LPS-Induced RAW264.7 Cells. Molecules 2018, 23, 2723. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Hong, K.-B.; Jo, K.; Suh, H.J. Quercetin-3-O-glucuronide in the Ethanol Extract of Lotus Leaf (Nelumbo nucifera) Enhances Sleep Quantity and Quality in a Rodent Model via a GABAergic Mechanism. Molecules 2021, 26, 3023. [Google Scholar] [CrossRef]
- Park, S.H.; Oh, J.; Jo, M.; Kim, J.K.; Kim, D.S.; Kim, H.G.; Yoon, K.; Yang, Y.; Geum, J.-H.; Kim, J.-E.; et al. Water Extract of Lotus Leaf Alleviates Dexamethasone-Induced Muscle Atrophy via Regulating Protein Metabolism-Related Pathways in Mice. Molecules 2020, 25, 4592. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Zhu, L.; Liu, S.; Li, D.; Chen, Y.; Ma, B.; Wang, Y. In vitro and in vivo evaluation of inhibition activity of lotus (Nelumbo nucifera Gaertn.) leaves against ultraviolet B-induced phototoxicity. J. Photochem. Photobiol. B Biol. 2013, 121, 1–5. [Google Scholar] [CrossRef]
- Cho, S.; Cho, H.W.; Woo, K.W.; Jeong, J.; Lim, J.; Park, S.; Seo, M.; Lim, S. Nelumbo nucifera Receptaculum Extract Suppresses Angiotensin II-Induced Cardiomyocyte Hypertrophy. Molecules 2019, 24, 1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temviriyanukul, P.; Sritalahareuthai, V.; Promyos, N.; Thangsiri, S.; Pruesapan, K.; Srinuanchai, W.; Nuchuchua, O.; Siriwan, D.; On-nom, N.; Suttisansanee, U. The Effect of Sacred Lotus (Nelumbo nucifera) and Its Mixtures on Phenolic Profiles, Antioxidant Activities, and Inhibitions of the Key Enzymes Relevant to Alzheimer’s Disease. Molecules 2020, 25, 3713. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Drouet, S.; Garros, L.; Hano, C.; Tungmunnithum, D.; Renouard, S.; Hagège, D.; Maunit, B.; Lainé, É. A Critical View of Different Botanical, Molecular, and Chemical Techniques Used in Authentication of Plant Materials for Cosmetic Applications. Cosmetics 2018, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-S.; Wu, J.; Chen, L.-G.; Du, H.; Xu, Y.-J.; Wang, L.-J.; Zhang, H.-J.; Zheng, X.-C.; Wang, L.-S. Biogenesis of C-glycosyl flavones and profiling of flavonoid glycosides in lotus (Nelumbo nucifera). PLoS ONE 2014, 9, e108860. [Google Scholar] [CrossRef]
- Shim, S.-Y.; Park, J.-R.; Byun, D.-S. Kaempferol isolated from Nelumbo nucifera stamens inhibits phosphorylation of ERK 1/2, Syk, and Lyn in FcεRI-mediated allergic reaction. Food Sci. Biotechnol. 2015, 24, 1475–1480. [Google Scholar] [CrossRef]
- Jitsaeng, K.; Sungthong, B. Antioxidant Activity and Total Phenolic Contents of Various Parts from Two Cultivars of Nelumbo nucifera Gaertn. J. Sci. Technol. 2017, 36, 154–160. [Google Scholar]
- Tungmunnithum, D.; Drouet, S.; Kabra, A.; Hano, C. Enrichment in Antioxidant Flavonoids of Stamen Extracts from Nymphaea lotus L. Using Ultrasonic-Assisted Extraction and Macroporous Resin Adsorption. Antioxidants 2020, 9, 576. [Google Scholar] [CrossRef]
- Chen, S.; Fang, L.; Xi, H.; Guan, L.; Fang, J.; Liu, Y.; Wu, B.; Li, S. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry. Anal. Chim. Acta 2012, 724, 127–135. [Google Scholar] [CrossRef]
- Deng, J.; Fu, Z.; Chen, S.; Damaris, R.N.; Wang, K.; Li, T.; Yang, P. Proteomic and Epigenetic Analyses of Lotus (Nelumbo nucifera) Petals Between Red and White cultivars. Plant Cell Physiol. 2015, 56, 1546–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouet, S.; Abbasi, B.H.; Falguières, A.; Ahmad, W.S.; Ferroud, C.; Doussot, J.; Vanier, J.R.; Lainé, E.; Hano, C. Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Silymarin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.). Molecules 2018, 23, 904. [Google Scholar] [CrossRef] [Green Version]
- Garros, L.; Drouet, S.; Corbin, C.; Decourtil, C.; Fidel, T.; Lebas de Lacour, J.; Leclerc, E.A.; Renouard, S.; Tungmunnithum, D.; Doussot, J.; et al. Insight into the Influence of Cultivar Type, Cultivation Year, and Site on the Lignans and Related Phenolic Profiles, and the Health-Promoting Antioxidant Potential of Flax (Linum usitatissimum L.) Seeds. Molecules 2018, 23, 2636. [Google Scholar] [CrossRef] [Green Version]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, B.H.; Siddiquah, A.; Tungmunnithum, D.; Bose, S.; Younas, M.; Garros, L.; Drouet, S.; Giglioli-Guivarc’h, N.; Hano, C. Isodon rugosus (Wall. ex Benth.) Codd In Vitro Cultures: Establishment, Phytochemical Characterization and In Vitro Antioxidant and Anti-Aging Activities. Int. J. Mol. Sci. 2019, 20, 452. [Google Scholar] [CrossRef] [Green Version]
- Nazir, M.; Tungmunnithum, D.; Bose, S.; Drouet, S.; Garros, L.; Giglioli-Guivarc’h, N.; Abbasi, B.H.; Hano, C. Differential Production of Phenylpropanoid Metabolites in Callus Cultures of Ocimum basilicum L. with Distinct in Vitro Antioxidant Activities and in Vivo Protective Effects against UV stress. J. Agric. Food Chem. 2019, 67, 1847–1859. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G.; Catherine, A.R.-E.; Nicholas, J.M.; George, P. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Vo, Q.V.; Nam, P.-C.; Thong, N.M.; Trung, N.T.; Phan, C.-T.D.; Mechler, A. Antioxidant Motifs in Flavonoids: O–H versus C–H Bond Dissociation. ACS Omega 2019, 4, 8935–8942. [Google Scholar]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Thiers, B.; Thiers, B.H.; Cokic, B.B.B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff; New York Botanical Garden’s Virtual Herbarium: New York, NY, USA, 2009. [Google Scholar]
- World Health Organization. Quality Control Methods for Medicinal Plant Materials; World Health Organization: Geneva, Switzerland, 1998; ISBN 9241545100. [Google Scholar]
- Tungmunnithum, D.; Elamrani, A.; Abid, M.; Drouet, S.; Kiani, R.; Garros, L.; Kabra, A.; Addi, M.; Hano, C. A Quick, Green and Simple Ultrasound-Assisted Extraction for the Valorization of Antioxidant Phenolic Acids from Moroccan Almond Cold-Pressed Oil Residues. Appl. Sci. 2020, 10, 3313. [Google Scholar] [CrossRef]
- Wrolstad, R.E. Color and pigment analyses in fruit products. Agric. Exp. Stn. 1993, 5, 4–20. [Google Scholar]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
Floristic Regions | Population No. | Collected Locations/Provinces | Collected Months | Collected Season |
---|---|---|---|---|
Northern (N) | 1 | Sukhothai | April | Summer |
2 | Lampang | May | Summer | |
3 | Phitsanulok | August | Rainy | |
4 | Nakhon Sawan | September | Rainy | |
North-Eastern (NE) | 5 | Udon Thani | November | Winter |
6 | Khon Kaen | April | Summer | |
7 | Nong Khai | September | Rainy | |
8 | Roi Et | November | Winter | |
South-Western (SW) | 9 | Kanchanaburi | April | Summer |
10 | Ratchaburi | September | Rainy | |
Central (E) | 11 | Suphan Buri | November | Winter |
12 | Angthong | Decemember | Winter | |
Eastern (E) | 13 | Phra NakhonSi Ayuthaya | May | Summer |
14 | Pathum Thani | October | Rainy | |
15 | Nakhon Pathom | April | Summer | |
16 | Nakhon Ratchasima | September | Rainy | |
South-Eastern (SE) | 17 | Chachoengsao | April | Summer |
Peninsular (PEN) | 18 | Phatthalung | September | Rainy |
Sample | TPC (mg/100 g DW) | TFC (mg/100 g DW) | MAC (mg/100 g DW) |
---|---|---|---|
S#1 | 621.6 ± 1.5 b | 1474.3 ± 35.2 c | 2.47 ± 0.14 ab |
S#2 | 548.7 ± 4.0 de | 1019.5 ± 69.3 d | 2.59 ± 0.11 a |
S#3 | 553.8 ± 4.5 de | 712.3 ± 35.9 f | 1.69 ± 0.10 c |
S#4 | 542.5 ± 16.4 de | 570.6 ± 1.7 g | 1.69 ± 0.02 c |
S#5 | 492.1 ± 19.1 f | 688.5 ± 74.1 f | 1.63 ± 0.02 c |
S#6 | 544.7 ± 4.3 e | 575.4 ± 3.1 g | 1.56 ± 0.08 cd |
S#7 | 580.7 ± 5.5 c | 1075.7 ± 0.7 d | 1.59 ± 0.04 c |
S#8 | 529.4 ± 7.8 e | 1119.5 ± 78.3 d | 1.45 ± 0.04 de |
S#9 | 559.4 ± 1.3 d | 736.4 ± 60.7 f | 1.51 ± 0.01 d |
S#10 | 538.6 ± 24.5 def | 887.4 ± 24.1 e | 1.42 ± 0.01 e |
S#11 | 537.7 ± 6.4 d | 909.9 ± 78.3 e | 1.45 ± 0.04 d |
S#12 | 543.2 ± 33.6 cdef | 897.8 ± 4.1 e | 1.37 ± 0.04 e |
S#13 | 551.9 ± 1.1 e | 904.7 ± 81.4 ef | 1.56 ± 0.01 c |
S#14 | 667.5 ± 21.5 a | 1684.3 ± 34.8 a | 2.14 ± 0.06 b |
S#15 | 663.9 ± 14.2 a | 1673.3 ± 3.8 a | 2.11 ± 0.18 b |
S#16 | 670.7 ± 24.9 a | 1671.9 ± 7.2 a | 2.40 ± 0.08 a |
S#17 | 669.4 ± 30.6 a | 1590.9 ± 4.1 b | 2.57 ± 0.08 a |
S#18 | 664.0 ± 18.8 a | 1620.6 ± 40.7 ab | 2.25 ± 0.06 b |
P#1 | 187.6 ± 7.3 a | 315.7 ± 4.1 a | 9.06 ± 0.34 a |
P#2 | 189.2 ± 1.3 a | 305.2 ± 2.6 b | 5.90 ± 0.71 d |
P#3 | 108.1 ± 24.0 de | 162.6 ± 15.2 e | 4.88 ± 0.46 de |
P#4 | 166.7 ± 19.8 abc | 182.3 ± 1.7 d | 4.97 ± 0.61 de |
P#5 | 152.8 ± 4.9 c | 187.4 ± 6.2 d | 5.67 ± 0.10 d |
P#6 | 112.0 ± 38.5 cd | 176.8 ± 11.4 de | 4.32 ± 0.22 e |
P#7 | 120.9 ± 4.3 d | 168.5 ± 1.0 e | 8.33 ± 0.93 ab |
P#8 | 143.5 ± 2.3 c | 148.8 ± 6.2 e | 8.45 ± 2.57 abcd |
P#9 | 111.1 ± 1.9 d | 138.8 ± 9.3 ef | 4.21 ± 0.97 de |
P#10 | 95.2 ± 0.9 e | 131.2 ± 7.9 f | 4.66 ± 0.42 de |
P#11 | 86.7 ± 33.8 de | 138.1 ± 2.4 f | 7.08 ± 0.12 c |
P#12 | 101.2 ± 24.9 de | 128.1 ± 5.5 f | 7.96 ± 2.32 abcd |
P#13 | 100.3 ± 6.2 de | 148.5 ± 2.4 e | 4.42 ± 0.40 e |
P#14 | 171.2 ± 6.4 b | 233.3 ± 0.3 c | 8.71 ± 0.28 ab |
P#15 | 152.1 ± 3.8 c | 234.3 ± 6.9 c | 8.73 ± 0.16 a |
P#16 | 214.4 ± 42.8 ab | 311.9 ± 1.0 ab | 8.41 ± 0.14 b |
P#17 | 201.7 ± 14.1 a | 310.2 ± 2.8 ab | 8.61 ± 0.14 ab |
P#18 | 233.9 ± 57.3 ab | 285.4 ± 17.2 ab | 8.89 ± 1.01 ab |
Sample | ABTS (µmol TEAC) | DPPH (µmol TEAC) | FRAP (µmol TEAC) |
---|---|---|---|
S#1 | 54.2 ± 2.4 bc | 185.0 ± 7.9 b | 291.5 ± 2.6 b |
S#2 | 43.2 ± 1.2 d | 148.6 ± 4.0 c | 265.8 ± 2.5 d |
S#3 | 33.1 ± 0.4 gh | 115.1 ± 1.3 ef | 227.7 ± 5.5 g |
S#4 | 33.6 ± 1.2 gh | 116.9 ± 4.0 ef | 213.0 ± 0.7 h |
S#5 | 29.9 ± 1.6 ij | 104.8 ± 5.3 gh | 235.4 ± 5.4 g |
S#6 | 27.4 ± 0.4 j | 96.4 ± 1.3 h | 210.0 ± 2.3 h |
S#7 | 53.7 ± 10.4 abcd | 183.1 ± 34.3 abc | 281.0 ± 5.8 bc |
S#8 | 59.0 ± 2.8 ab | 182.1 ± 50.1 abcd | 281.6 ± 4.3 c |
S#9 | 31.6 ± 1.8 hi | 110.4 ± 5.8 fg | 229.4 ± 5.6 g |
S#10 | 35.6 ± 1.6 fg | 123.5 ± 5.7 e | 249.8 ± 3.8 ef |
S#11 | 42.4 ± 1.5 de | 145.8 ± 5.3 cd | 246.6 ± 0.3 f |
S#12 | 39.0 ± 2.4 ef | 134.6 ± 7.9 de | 253.9 ± 3.2 e |
S#13 | 52.0 ± 2.9 c | 177.5 ± 7.9 b | 251.4 ± 6.7 ef |
S#14 | 60.2 ± 0.4 a | 195.9 ± 11.5 ab | 317.3 ± 14.0 a |
S#15 | 60.5 ± 0.8 a | 202.0 ± 8.9 ab | 319.6 ± 13.1 a |
S#16 | 58.8 ± 1.6 ab | 183.7 ± 4.8 b | 319.5 ± 18.9 a |
S#17 | 59.3 ± 0.8 a | 192.8 ± 18.3 ab | 317.1 ± 21.1 ab |
S#18 | 60.2 ± 0.4 a | 204.5 ± 1.3 a | 316.3 ± 18.6 ab |
P#1 | 25.1 ± 0.6 g | 89.0 ± 1.7 f | 158.4 ± 5.7 a |
P#2 | 27.1 ± 0.8 e | 95.5 ± 2.6 g | 162.7 ± 7.5 a |
P#3 | 31.4 ± 2.0 cd | 109.5 ± 6.6 cd | 70.2 ± 7.3 ef |
P#4 | 27.7 ± 1.8 def | 97.4 ± 5.3 e | 91.6 ± 16.9 ef |
P#5 | 27.1 ± 1.6 defg | 95.5 ± 5.8 ef | 86.8 ± 1.8 f |
P#6 | 28.5 ± 2.0 de | 100.2 ± 6.6 de | 77.1 ± 4.8 e |
P#7 | 32.8 ± 1.6 c | 114.1 ± 5.3 c | 64.6 ± 6.1 gh |
P#8 | 33.3 ± 0.8 c | 116.0 ± 2.6 c | 62.9 ± 2.1 g |
P#9 | 36.7 ± 3.2 abc | 127.2 ± 10.5 abc | 55.1 ± 1.5 hi |
P#10 | 40.4 ± 0.4 a | 139.3 ± 1.3 a | 50.5 ± 2.6 i |
P#11 | 33.1 ± 0.7 c | 115.1 ± 1.5 c | 57.2 ± 2.3 hi |
P#12 | 37.0 ± 1.2 b | 128.1 ± 4.0 b | 49.3 ± 2.1 i |
P#13 | 39.8 ± 2.8 ab | 137.4 ± 9.2 ab | 50.6 ± 3.1 i |
P#14 | 25.4 ± 0.8 fe | 89.9 ± 2.6 f | 119.4 ± 4.6 d |
P#15 | 25.1 ± 0.4 g | 89.0 ± 1.3 f | 118.8 ± 3.5 d |
P#16 | 25.4 ± 0.8 hg | 89.9 ± 2.6 f | 157.2 ± 4.4 a |
P#17 | 24.6 ± 0.4 g | 87.1 ± 1.1 f | 144.0 ± 3.2 b |
P#18 | 24.0 ± 0.3 g | 85.3 ± 1.7 f | 138.3 ± 0.9 c |
Compound | ABTS | DPPH | FRAP |
---|---|---|---|
TPC | 0.699 *** | 0.698 *** | 0.969 *** |
TFC | 0.860 *** | 0.853 *** | 0.941 *** |
MAC | −0.609 *** | −0.616 *** | −0.710 *** |
Myr-3-O-Glc | 0.719 *** | 0.719 *** | 0.950 *** |
Rutin | 0.666 *** | 0.668 *** | 0.957 *** |
Quer-3-O-GlcA | 0.704 *** | 0.705 *** | 0.946 *** |
Kae-3-O-Rob | 0.338 * | 0.310 ns | 0.753 *** |
Kae-3-O-Glc | 0.453 ** | 0.442 ** | 0.873 *** |
Kae-3-O-GlcA | 0.681 *** | 0.678 *** | 0.977 *** |
Iso-3-O-Glc | 0.716 *** | 0.716 *** | 0.955 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tungmunnithum, D.; Drouet, S.; Hano, C. Phytochemical Diversity and Antioxidant Potential of Natural Populations of Nelumbo nucifera Gaertn. throughout the Floristic Regions in Thailand. Molecules 2022, 27, 681. https://doi.org/10.3390/molecules27030681
Tungmunnithum D, Drouet S, Hano C. Phytochemical Diversity and Antioxidant Potential of Natural Populations of Nelumbo nucifera Gaertn. throughout the Floristic Regions in Thailand. Molecules. 2022; 27(3):681. https://doi.org/10.3390/molecules27030681
Chicago/Turabian StyleTungmunnithum, Duangjai, Samantha Drouet, and Christophe Hano. 2022. "Phytochemical Diversity and Antioxidant Potential of Natural Populations of Nelumbo nucifera Gaertn. throughout the Floristic Regions in Thailand" Molecules 27, no. 3: 681. https://doi.org/10.3390/molecules27030681
APA StyleTungmunnithum, D., Drouet, S., & Hano, C. (2022). Phytochemical Diversity and Antioxidant Potential of Natural Populations of Nelumbo nucifera Gaertn. throughout the Floristic Regions in Thailand. Molecules, 27(3), 681. https://doi.org/10.3390/molecules27030681