Contribution to the Evaluation of Physicochemical Properties, Total Phenolic Content, Antioxidant Potential, and Antimicrobial Activity of Vinegar Commercialized in Morocco
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Analysis
2.2. Determination of Total Phenolic, Total Flavonoids, and Condensed Tannins Content
2.3. In Vitro Antioxidant Activity
2.4. Antimicrobial Analysis
2.4.1. Disk Diffusion Assay
2.4.2. Determination of the Minimum Inhibitory Concentration (MIC)
2.4.3. Principal Component Analysis of Various Studied Parameters
3. Materials and Methods
3.1. Raw Material
3.2. Physicochemical Analysis
3.3. Determination of Total Phenolic Content (TPC)
3.4. Determination of Total Flavonoids Content (TFC)
3.5. Determination of Flavones/Flavonols Content
3.6. Determination of Condensed Tannins Content (CTC)
3.7. The 2,2-Diphenyl-1-picryl Hydrazyl Radical Scavenging Activity of Vinegar
3.8. Ferric Reducing Antioxidant Power of Vinegar
3.9. Phosphomolybdenum Reduction Assay of Vinegar
3.10. Antimicrobial Analysis
3.10.1. Microbial Strains and Inoculums Standardization
3.10.2. Disk Diffusion Assay
3.10.3. Determination of the Minimum Inhibitory Concentration
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bouderbala, H.; Kaddouri, H.; Kheroua, O.; Saidi, D. Effet Anti-Obésogène Du Vinaigre de Cidre de Pomme Chez Le Rat Soumis à Un Régime Hyperlipidique. Ann. Cardiol. D’angéiol. 2016, 65, 208–213. [Google Scholar] [CrossRef] [PubMed]
- del Campo, G.; Berregi, I.; Santos, J.I.; Dueñas, M.; Irastorza, A. Development of Alcoholic and Malolactic Fermentations in Highly Acidic and Phenolic Apple Musts. Bioresour. Technol. 2008, 99, 2857–2863. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.S.; Gaas, C.A. Vinegar: Medicinal Uses and Antiglycemic Effect. Med. Gen. Med. 2006, 8, 61. [Google Scholar]
- Petsiou, E.I.; Mitrou, P.I.; Raptis, S.A.; Dimitriadis, G.D. Effect and Mechanisms of Action of Vinegar on Glucose Metabolism, Lipid Profile, and Body Weight. Nutr. Rev. 2014, 72, 651–661. [Google Scholar] [CrossRef]
- Junior, M.M.S.; Silva, L.O.B.; Leão, D.J.; Ferreira, S.L.C. Analytical Strategies for Determination of Cadmium in Brazilian Vinegar Samples Using ET AAS. Food Chem. 2014, 160, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, Antimicrobial, Mineral, Volatile, Physicochemical and Microbiological Characteristics of Traditional Home-Made Turkish Vinegars. LWT Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef]
- Budak, H.N.; Guzel-Seydim, Z.B. Antioxidant Activity and Phenolic Content of Wine Vinegars Produced by Two Different Techniques. J. Sci. Food Agric. 2010, 90, 2021–2026. [Google Scholar] [CrossRef]
- Kim, E.-J.; Cho, K.-M.; Kwon, S.J.; Seo, S.-H.; Park, S.-E.; Son, H.-S. Factors Affecting Vinegar Metabolites during Two-Stage Fermentation through Metabolomics Study. LWT 2021, 135, 110081. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, K.; Zheng, B.; Zhao, L.; Shen, P.; Ji, J.; Wei, Z.; Li, L.; Zhou, J.; Xiao, Y. High Prevalence of ESBL-Producing Klebsiella Pneumoniae Causing Community-Onset Infections in China. Front. Microbiol. 2016, 7, 1830. [Google Scholar] [CrossRef]
- Rasool, M.H.; Siddique, A.B.; Saqalein, M.; Asghar, M.J.; Zahoor, M.A.; Aslam, B.; Shafiq, H.B.; Nisar, M.A. Occurrence and Antibacterial Susceptibility Pattern of Bacterial Pathogens Isolated from Diarrheal Patients in Pakistan. Saudi Med. J. 2016, 37, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Bakir, S.; Devecioglu, D.; Kayacan, S.; Toydemir, G.; Karbancioglu-Guler, F.; Capanoglu, E. Investigating the Antioxidant and Antimicrobial Activities of Different Vinegars. Eur. Food Res. Technol. 2017, 243, 2083–2094. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Olaimat, A.N.; Osaili, T.M.; Shaker, R.R.; Elabedeen, N.Z.; Jaradat, Z.W.; Abushelaibi, A.; Holley, R.A. Use of Acetic and Citric Acids to Control Salmonella Typhimurium in Tahini (Sesame Paste). Food Microbiol. 2014, 42, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Sengun, I.Y.; Kilic, G.; Ozturk, B. Screening Physicochemical, Microbiological and Bioactive Properties of Fruit Vinegars Produced from Various Raw Materials. Food Sci. Biotechnol. 2020, 29, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Latgé, J.-P. Aspergillus Fumigatus and Aspergillosis. Clin. Microbiol. Rev. 1999, 12, 310–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagnik, D.; Serafin, V.; Shah, A.J. Antimicrobial Activity of Apple Cider Vinegar against Escherichia Coli, Staphylococcus Aureus and Candida Albicans; Downregulating Cytokine and Microbial Protein Expression. Sci. Rep. 2018, 8, 1732. [Google Scholar] [CrossRef] [PubMed]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional Properties of Vinegar. J. Food Sci. 2014, 79, R757–R764. [Google Scholar] [CrossRef]
- Fatima, S.; Haider, N.; Alam, M.A.; Gani, M.A.; Ahmad, R.; Taha, M. Herbal Approach for the Management of C0VID-19: An Overview. Drug Metab. Pers. Ther. 2021, 36, 1–8. [Google Scholar] [CrossRef]
- Pianta, L.; Vinciguerra, A.; Bertazzoni, G.; Morello, R.; Mangiatordi, F.; Lund, V.J.; Trimarchi, M. Acetic Acid Disinfection as a Potential Adjunctive Therapy for Non-Severe COVID-19. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 2921–2924. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, A.; Ke, Y.; Huo, S.; Ma, Y.; Zhang, Y.; Ren, Z.; Li, Z.; Liu, K. Dietary Behaviors in the Post-Lockdown Period and Its Effects on Dietary Diversity: The Second Stage of a Nutrition Survey in a Longitudinal Chinese Study in the COVID-19 Era. Nutrients 2020, 12, 3269. [Google Scholar] [CrossRef]
- Gerhauser, C. Cancer Chemopreventive Potential of Apples, Apple Juice, and Apple Components. Planta Med. 2008, 74, 1608–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czyżowska, A.; Wilkowska, A.; Staszczak, A.; Nowak, A. Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MSn) and Their Antioxidant and Antimicrobial Activity. Foods 2020, 9, 1783. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Kara, M.; Assouguem, A.; Zerhouni, A.R.; Bahhou, J. Phytochemical Content and Antioxidant Activity of Vinegar Prepared from Four Apple Varieties by Different Methods. TJNPR 2021, 5, 1578–1585. [Google Scholar] [CrossRef]
- Akbaș, M.; Cabaroğlu, T. An research on the determination of compositions of grape vinegars produced in Turkey and their conformity to food legislation. GIDA J. Food 2010, 35, 183–188. [Google Scholar]
- Gerbi, V.; Zeppa, G.; Beltramo, R.; Carnacini, A.; Antonelli, A. Characterisation of White Vinegars of Different Sources with Artificial Neural Networks. J. Sci. Food Agric. 1998, 78, 417–422. [Google Scholar] [CrossRef]
- Jang, Y.K.; Lee, M.Y.; Kim, H.Y.; Lee, S.; Yeo, S.H.; Baek, S.Y.; Lee, C.H. Comparison of Traditional and Commercial Vinegars Based on Metabolite Profiling and Antioxidant Activity. J. Microbiol. Biotechnol. 2015, 25, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Cho, H.-K.; Shin, H.-S. Physicochemical Properties and Antioxidant Activities of Commercial Vinegar Drinks in Korea. Food Sci. Biotechnol. 2012, 21, 1729–1734. [Google Scholar] [CrossRef]
- Duan, W.; Xia, T.; Zhang, B.; Li, S.; Zhang, C.; Zhao, C.; Song, J.; Wang, M. Changes of Physicochemical, Bioactive Compounds and Antioxidant Capacity during the Brewing Process of Zhenjiang Aromatic Vinegar. Molecules 2019, 24, 3935. [Google Scholar] [CrossRef] [Green Version]
- Ousaaid, D.; Imtara, H.; Laaroussi, H.; Lyoussi, B.; Elarabi, I. An Investigation of Moroccan Vinegars: Their Physicochemical Properties and Antioxidant and Antibacterial Activities. J. Food Qual. 2021, 2021, e6618444. [Google Scholar] [CrossRef]
- ONSSA. Royaume du Maroc. Décret N°2-10-385 Du 23 Joumada II 1432 (27 Mai 2011) Portant Réglementation de La Fabrication et Du Commerce Des Vinaigres 2011. Available online: http://www.onssa.gov.ma/fr/reglementation?id=119 (accessed on 23 January 2021).
- Fushimi, T.; Tayama, K.; Fukaya, M.; Kitakoshi, K.; Nakai, N.; Tsukamoto, Y.; Sato, Y. Acetic Acid Feeding Enhances Glycogen Repletion in Liver and Skeletal Muscle of Rats. J. Nutr. 2001, 131, 1973–1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, Production, Composition and Health Benefits of Vinegars: A Review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Wang, X.; Tian, C.; Li, X.; Zhang, B.; Song, X.; Zhang, J. Characterization of Organic Acids and Phenolic Compounds of Cereal Vinegars and Fruit Vinegars in China. J. Food Processing Preserv. 2017, 41, e12937. [Google Scholar] [CrossRef]
- Yun, J.-H.; Kim, Y.-J.; Koh, K.-H. Investigation into Factors Influencing Antioxidant Capacity of Vinegars. Appl. Biol. Chem. 2016, 59, 495–509. [Google Scholar] [CrossRef]
- Guyot, S.; Le Bourvellec, C.; Marnet, N.; Drilleau, J.F. Procyanidins Are the Most Abundant Polyphenols in Dessert Apples at Maturity. LWT Food Sci. Technol. 2002, 35, 289–291. [Google Scholar] [CrossRef]
- Medina, E.; ROMERO, C.; BRENES, M.; de CASTRO, A. Antimicrobial Activity of Olive Oil, Vinegar, and Various Beverages against Foodborne Pathogens. J. Food Prot. 2007, 70, 1194–1199. [Google Scholar] [CrossRef]
- Hindi, D.N.K. In Vitro Antibacterial Activity of Aquatic Garlic Extract, Apple Vinegar and Apple Vinegar—Garlic Extract Combination. Am. J. Phytomed. Clin. Ther. 2013, 1, 42–51. [Google Scholar]
- Karapinar, M.; Gönül, Ş.A. Effects of Sodium Bicarbonate, Vinegar, Acetic and Citric Acids on Growth and Survival of Yersinia Enterocolitica. Int. J. Food Microbiol. 1992, 16, 343–347. [Google Scholar] [CrossRef]
- Kara, M.; Assouguem, A.; Kamaly, O.M.A.; Benmessaoud, S.; Imtara, H.; Mechchate, H.; Hano, C.; Zerhouni, A.R.; Bahhou, J. The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples. Molecules 2021, 26, 5437. [Google Scholar] [CrossRef]
- Quinto, E.J.; Caro, I.; Villalobos-Delgado, L.H.; Mateo, J.; De-Mateo-Silleras, B.; Redondo-Del-Río, M.P. Food Safety through Natural Antimicrobials. Antibiotics 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Kelebek, H.; Kadiroğlu, P.; Demircan, N.B.; Selli, S. Screening of Bioactive Components in Grape and Apple Vinegars: Antioxidant and Antimicrobial Potential. J. Inst. Brew. 2017, 123, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Gálvez, M.C.; Barroso, C.G.; Pérez-Bustamante, J.A. Analysis of Polyphenolic Compounds of Different Vinegar Samples. Z. Für. Lebensm. Unters. Und Forsch. 1994, 199, 29–31. [Google Scholar] [CrossRef]
- Atik, D.; Atik, C.; Karatepe, C. The Effect of External Apple Vinegar Application on Varicosity Symptoms, Pain, and Social Appearance Anxiety: A Randomized Controlled Trial. Evid.-Based Complementary Altern. Med. 2016, 2016, e6473678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheflati, A.; Bashiri, R.; Ghadiri-Anari, A.; Reza, J.Z.; Kord, M.T.; Nadjarzadeh, A. The Effect of Apple Vinegar Consumption on Glycemic Indices, Blood Pressure, Oxidative Stress, and Homocysteine in Patients with Type 2 Diabetes and Dyslipidemia: A Randomized Controlled Clinical Trial. Clin. Nutr. ESPEN 2019, 33, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Hlebowicz, J.; Darwiche, G.; Björgell, O.; Almér, L.-O. Effect of Apple Cider Vinegar on Delayed Gastric Emptying in Patients with Type 1 Diabetes Mellitus: A Pilot Study. BMC Gastroenterol. 2007, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khezri, S.S.; Saidpour, A.; Hosseinzadeh, N.; Amiri, Z. Beneficial Effects of Apple Cider Vinegar on Weight Management, Visceral Adiposity Index and Lipid Profile in Overweight or Obese Subjects Receiving Restricted Calorie Diet: A Randomized Clinical Trial. J. Funct. Foods 2018, 43, 95–102. [Google Scholar] [CrossRef]
- Samad, A.; Azlan, A.; Ismail, A. Therapeutic Effects of Vinegar: A Review. Curr. Opin. Food Sci. 2016, 8, 56–61. [Google Scholar] [CrossRef]
- Vinayagam, R.; Xu, B. Antidiabetic Properties of Dietary Flavonoids: A Cellular Mechanism Review. Nutr. Metab. 2015, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.S. Standard Solutions and Titratable Acidity. In Food Analysis Laboratory Manual; Springer: Cham, Switzerland, 2010; pp. 95–102. [Google Scholar] [CrossRef]
- Albornoz, C.E.H. Microbiological Analysis and Control of the Fruit Vinegar Production Process. Ph.D. Thesis, Universitat Rovira i Virgili, Catalonia, Spain, 2012. Available online: http://purl.org/dc/dcmitype/Text. (accessed on 12 June 2021).
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Tsai, T.-H.; Tsai, T.-H.; Chien, Y.-C.; Lee, C.-W.; Tsai, P.-J. In Vitro Antimicrobial Activities against Cariogenic Streptococci and Their Antioxidant Capacities: A Comparative Study of Green Tea versus Different Herbs. Food Chem. 2008, 110, 859–864. [Google Scholar] [CrossRef]
- Yang, J.-F.; Yang, C.-H.; Wu, C.-C.; Chuang, L.-Y. Antioxidant and Antimicrobial Activities of the Extracts from Sophora Flavescens. J. Pharmacogn. Phytochem. 2015, 3, 6. [Google Scholar]
- Ivan, K.; Marina, B.; Stjepan, P.; Sanda, V.-K. Quantitative Analysis of the Flavonoids in Raw Propolis From Northern Croatia. Available online: https://pubmed.ncbi.nlm.nih.gov/15050046/ (accessed on 10 September 2020).
- Smit, C.J.B.; Joslyn, M.A.; Lukton, A. Determination of Tannins and Related Polyphenols in Foods. Anal. Chem. 1955, 27, 1159–1162. [Google Scholar] [CrossRef]
- Tepe, B.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M. Antimicrobial and Antioxidant Activities of the Essential Oil and Various Extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem. 2005, 90, 333–340. [Google Scholar] [CrossRef]
- Shams Moattar, F.; Sariri, R.; Yaghmaee, P.; Giahi, M. Enzymatic and Non-Enzymatic Antioxidants of Calamintha Officinalis Moench Extracts. J. Appl. Biotechnol. Rep. 2016, 3, 489–494. [Google Scholar]
- Maskovic, P.; Manojlovic, N.; Mandic, A.; Misan, A.; Milovanovic, I.; Radojkovic, M.; Cvijovic, M.; Solujic, S. Phytochemical Screening and Biological Activity of Extracts of Plant Species Halacsya sendtneri (Boiss.) Dörfl. Hem. Ind. 2012, 66, 43–51. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; Volume 22, ISBN 978-1-56238-668-9. [Google Scholar]
- Furtado, G.L.; Medeiros, A.A. Single-Disk Diffusion Testing (Kirby-Bauer) of Susceptibility of Proteus Mirabilis to Chloramphenicol: Significance of the Intermediate Category. J. Clin. Microbiol. 1980, 12, 550–553. [Google Scholar] [CrossRef] [Green Version]
- Kiehlbauch, J.A.; Hannett, G.E.; Salfinger, M.; Archinal, W.; Monserrat, C.; Carlyn, C. Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories. J. Clin. Microbiol. 2000, 38, 3341–3348. [Google Scholar] [CrossRef] [Green Version]
Samples ID | Acetic Acid (%) | pH | TSS (°Brix) | Alcohol Content (%) | Conductivity (µS/cm) | TPC µgGAE/mL | TFC µgQE/mL | Flavones et Flavonols µgQE/mL | CTC µgTAE/mL |
---|---|---|---|---|---|---|---|---|---|
V1 | 3.75 b ± 0.14 | 3.33 b ± 0.14 | 5.30 de ± 0.14 | 0.50 bc ± 0.10 | 3.78 b ± 0.25 | 278.40 e ± 21.4 | 131.09 c ± 4.06 | 67.18 d ± 8.84 | 44.12 d ± 0.74 |
V2 | 5.15 a ± 0.20 | 2.60 de ± 0.10 | 4.96 e ± 0.10 | 0.03 d ± 0.02 | 3.41 bc ± 0.16 | 480.67 c ± 16.91 | 21.56d de ± 5.77 | 2.33 e ± 0.58 | 53.91 b ± 1.36 |
V3 | 2.82 c ± 0.11 | 2.70 dce ± 0.11 | 5.23 e ± 0.11 | 1.00 a ± 0.00 | 2.82 cd ± 0.07 | 34.56 gh ± 5.85 | 18.67 de ± 4.56 | 3.67 e ± 3.50 | 27.21 e ± 1.73 |
V4 | 1.90 d ± 0.09 | 2.37 e ± 0.09 | 5.47 de ± 0.09 | 0.93 a ± 0.09 | 2.92 cd ± 0.45 | 299.00 e ± 5.00 | 43.349 d ± 1.550 | 9.810 e ± 4.72 | 84.63 a ± 1.00 |
V5 | 3.75 b ± 0.15 | 2.77 cd ± 0.15 | 7.87 b ± 0.15 | 0.50 bc ± 0.15 | 3.05 bcd ± 0.08 | 117.33 f ± 8.33 | 37.49 d ± 12.81 | 15.25 e ± 4.09 | 55.68 b ± 0.34 |
V6 | 1.02 e ± 0.18 | 2.63 de ± 0.18 | 1.03 f ± 0.18 | 0.50 bc ± 0.18 | ND | 6.22 h ± 4.81 | ND | ND | 0.69 f ± 0.53 |
V7 | 1.05 e ± 0.03 | 3.07 bc ± 0.03 | 6.03d ± 0.03 | 0.10 d ± 0.03 | 2.47 d ± 0.21 | 577.89 b ± 13.47 | 131.79 c ± 4.01 | 114.72 b ± 11.16 | 46.72 cd± 2.37 |
V8 | 2.15 d ± 0.08 | 4.47 a ± 0.08 | 7.23 bc ± 0.08 | 0.90 a ± 0.08 | 5.67 a ± 0.50 | 395.10 d ± 29.6 | 194.37 b ± 16.78 | 89.81 c ± 2.65 | 45.72 cd ± 1.36 |
V9 | 4.96 a ± 0.50 | 2.70 cde ± 0.20 | 7.07 c ± 0.20 | 0.50 bc ± 0.20 | 6.19 a ± 0.29 | 521.22 c ± 12.73 | 244.53 a ± 11.32 | 225.20 a ± 17.6 | 82.18 c ± 1.49 |
V10 | 1.80 d ± 1.00 | 2.57 de ± 0.30 | 8.67 a ± 0.12 | 0.73 ab ± 0.58 | 2.58 d ± 0.32 | 655.00 a ± 22.2 | 105.07 b ± 21.33 | 47.81 d ± 3.31 | 48.80 c ± 1.20 |
V11 | 0.65 e ± 0.29 | 2.80 cd ± 0.09 | 1.17 f ± 0.20 | 0.27 cd ± 0.29 | ND | 82.00 fg ± 34.67 | ND | ND | 2.85 f ± 0.86 |
Samples ID | E. coli ATCC | E. coli CIP | S. aureus ATCC | K. pneumonia ATCC | C. albicans ATCC | A. niger ATCC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DIZ | MIC | DIZ | MIC | DIZ | MIC | DIZ | MIC | DIZ | MIC | DIZ | MIC | |
V1 | 17.67 bc ± 2.52 | 7.81 | 17.67 b ± 0.58 | 15.62 | 11.67 bcd ± 2.89 | 1.95 | 20.67 cd ± 4.04 | 3.91 | 34.33 a ± 0.58 | 62.5 | Rs | Rs |
V2 | 18.00 b ± 0.00 | 7.81 | 12.67 bc ± 2.52 | 3.91 | 14.33 abc ± 0.58 | 1.95 | 29.67 ab ± 0.58 | 3.91 | 26.67 bc ± 2.89 | 125 | Rs | Rs |
V3 | 18.33 b ± 1.53 | 7.81 | 17.67 b ± 0.58 | 7.81 | 16.00 ab ± 1.73 | 1.95 | 24.67 bc ± 1.53 | 31.25 | 26.67 bc ± 2.89 | 250 | Rs | Rs |
V4 | 7.33 f ± 0.58 | 7.81 | 7.00 cd ± 0.00 | 15.62 | 9.00 d ± 1.73 | 3.91 | 26.00 bc ± 1.00 | 15.63 | 23.33 c ± 2.89 | 62.5 | Rs | Rs |
V5 | 13.00 de ± 1.00 | 7.81 | 16.67 b ± 1.53 | 3.91 | 14.00 abc ± 1.00 | 1.95 | 32.67 a ± 2.52 | 31.25 | 29.67 ab ± 0.58 | 500 | Rs | Rs |
V6 | 6.67 f ± 0.58 | 1.95 | 6.33 d ± 2.08 | 15.62 | 10.00 cd ± 0.00 | 3.91 | 17.67 d ± 2.52 | 15.63 | 23.33 c ± 2.89 | 31.25 | Rs | Rs |
V7 | 8.67 ef ± 2.31 | 7.81 | 7.00 cd ± 0.00 | 62.5 | Rs | Rs | 10.33 e ± 0.58 | 250 | 8.00 e ± 0.00 | 250 | Rs | Rs |
V8 | 13.33 cd ± 2.89 | 3.9 | 12.67 bc ± 6.43 | 15.62 | 12.67 abcd ± 2.31 | 7.81 | 31.67 a ± 1.53 | 7.81 | 15.67 d ± 1.15 | 62.5 | Rs | Rs |
V9 | 18.67 b ± 1.15 | 1.95 | 15.00 b ± 0.00 | 1.95 | 16.33 a ± 1.15 | 1.95 | 29.00 ab ± 1.00 | 3.91 | 30.00 ab ± 0.00 | 62.5 | Rs | Rs |
V10 | 24.67 a ± 0.58 | 3.9 | 25.33 a ± 0.58 | 3.9 | 14.00 abc ± 1.00 | 1.95 | 22.67 cd ± 0.58 | 3.91 | Rs | Rs | Rs | Rs |
V11 | 25.67 a ± 0.58 | 3.9 | Rs | Rs | 11.00 cd ± 1.00 | 1.95 | 8.67 e ± 1.15 | 31.25 | Rs | Rs | Rs | Rs |
Voriconazole * | - | - | - | - | - | - | - | - | - | - | 12 | 0.5 |
Fluconazole * | - | - | - | - | - | - | - | - | 21 | 0.4 | - | - |
Ampicilline * | Rs | Rs | Rs | Rs | Rs | Rs | Rs | Rs | - | - | - | - |
Streptomycine * | Rs | 0.25 | Rs | 0.5 | 9 | Rs | Rs | 0.003 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, M.; Assouguem, A.; Fadili, M.E.; Benmessaoud, S.; Alshawwa, S.Z.; Kamaly, O.A.; Saghrouchni, H.; Zerhouni, A.R.; Bahhou, J. Contribution to the Evaluation of Physicochemical Properties, Total Phenolic Content, Antioxidant Potential, and Antimicrobial Activity of Vinegar Commercialized in Morocco. Molecules 2022, 27, 770. https://doi.org/10.3390/molecules27030770
Kara M, Assouguem A, Fadili ME, Benmessaoud S, Alshawwa SZ, Kamaly OA, Saghrouchni H, Zerhouni AR, Bahhou J. Contribution to the Evaluation of Physicochemical Properties, Total Phenolic Content, Antioxidant Potential, and Antimicrobial Activity of Vinegar Commercialized in Morocco. Molecules. 2022; 27(3):770. https://doi.org/10.3390/molecules27030770
Chicago/Turabian StyleKara, Mohammed, Amine Assouguem, Mohamed El Fadili, Safaâ Benmessaoud, Samar Zuhair Alshawwa, Omkulthom Al Kamaly, Hamza Saghrouchni, Abdou Rachid Zerhouni, and Jamila Bahhou. 2022. "Contribution to the Evaluation of Physicochemical Properties, Total Phenolic Content, Antioxidant Potential, and Antimicrobial Activity of Vinegar Commercialized in Morocco" Molecules 27, no. 3: 770. https://doi.org/10.3390/molecules27030770
APA StyleKara, M., Assouguem, A., Fadili, M. E., Benmessaoud, S., Alshawwa, S. Z., Kamaly, O. A., Saghrouchni, H., Zerhouni, A. R., & Bahhou, J. (2022). Contribution to the Evaluation of Physicochemical Properties, Total Phenolic Content, Antioxidant Potential, and Antimicrobial Activity of Vinegar Commercialized in Morocco. Molecules, 27(3), 770. https://doi.org/10.3390/molecules27030770