Design, Synthesis and Molecular Docking Study of Novel 3-Phenyl-β-Alanine-Based Oxadiazole Analogues as Potent Carbonic Anhydrase II Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Carbonic Anhydrase-II Enzyme Inhibition and Structural-Activity Relationship
2.3. Molecular Docking Results
3. Material and Methods
3.1. General Instrumentation
3.2. General Procedure for the Synthesis 3-phenyl-β-alanine-1,3,4-Oxadiazoles Derivatives
3.2.1. Tert-Butyl (S)-(1-phenyl-2-(5-(pyridin-2-yl)-1,3,4-oxadiazol-2-yl) ethyl) carbamate (4a)
3.2.2. Tert-Butyl (S)-(2-(5-(2-hydroxyphenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4b)
3.2.3. Tert-Butyl(S)-(1-phenyl-2-(5-phenyl-1,3,4-oxadiazol-2-yl)ethyl) carbamate (4c)
3.2.4. Tert-Butyl(S)-(2-(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4d)
3.2.5. Tert-Butyl(S)-(2-(5-(4-hydroxy-3-methoxyphenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4e)
3.2.6. Tert-Butyl(S)-(2-(5-(2-hydroxy-3-methoxyphenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4f)
3.2.7. Tert-Butyl(S)-(2-(5-(2-nitrophenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4g)
3.2.8. Tert-Butyl(S)-(2-(5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4h)
3.2.9. Tert-Butyl (S)-(2-(5-(4-hydroxyphenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4i)
3.2.10. Tert-Butyl (S)-(2-(5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4j)
3.2.11. Tert-Butyl (S)-(2-(5-(2,5-dimethoxyphenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4k)
3.2.12. Tert-Butyl (S)-(2-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)-1-phenylethyl) carbamate (4l)
3.3. Carbonic Anhydrase II Inhibition Assay
3.4. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Payaz, D.Ü.; Küçükbay, F.Z.; Küçükbay, H.; Angeli, A.; Supuran, C.T. Synthesis carbonic anhydrase enzyme inhibition and antioxidant activity of novel benzothiazole derivatives incorporating glycine, methionine, alanine, and phenylalanine moieties. J. Enzym. Inhib. Med. Chem. 2019, 1, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akocak, S.; Lolak, N.; Nocentini, A.; Karakoc, G.; Tufan, A.; Supuran, C.T. Synthesis and biological evaluation of novel aromatic and heterocyclic bis-sulfonamide Schiff bases as carbonic anhydrase I, II, VII and IX inhibitors. Bioorganic Med. Chem. 2017, 12, 3093–3097. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzio, M.; Guglielmi, P.; Carradori, S.; Secci, D.; Florio, R.; Mollica, A.; Ceruso, M.; Akdemir, A.; Sobolev, A.P.; Supuran, C.T. Open saccharin-based secondary sulfonamides as potent and selective inhibitors of cancer-related carbonic anhydrase IX and XII isoforms. J. Enzym. Inhib. Med. Chem. 2017, 1, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokcen, T.; Gulcin, I.; Ozturk, T.; Goren, A.C. A class of sulfonamides as carbonic anhydrase I and II inhibitors. J. Enzym. Inhib. Med. Chem. 2016, 2, 180–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, H.I.; Mete, E.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Synthesis, carbonic anhydrase I and II inhibition studies of the 1,3,5-trisubstituted-pyrazolines. J. Enzym. Inhib. Med. Chem. 2017, 1, 189–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, D.A.; Lasheen, D.S.; Zaky, M.Y.; Ibrahim, A.W.; Vullo, D.; Ceruso, M.; Supuran, C.T.; Abou El Ella, D.A. Design and synthesis of benzothiazole-6-sulfonamides acting as highly potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII. Bioorganic Med. Chem. 2015, 15, 4989–4999. [Google Scholar] [CrossRef] [PubMed]
- Sağlık, B.N.; Cevik, U.A.; Osmaniye, D.; Levent, S.; Çavuşoğlu, B.K.; Demir, Y.; Ilgın, S.; Özkay, Y.; Koparal, A.S.; Beydemir, Ş. Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorganic Chem. 2019, 91, 103153. [Google Scholar] [CrossRef]
- Angeli, A.; Ferraroni, M.; Supuran, C.T. Famotidine, an antiulcer agent, strongly inhibits Helicobacter pylori and human carbonic anhydrases. ACS Med. Chem. Lett. 2018, 10, 1035–1038. [Google Scholar] [CrossRef]
- Khloya, P.; Celik, G.; Vullo, D.; Supuran, C.T.; Sharma, P.K. 4-Functionalized 1,3-diarylpyrazoles bearing benzenesulfonamide moiety as selective potent inhibitors of the tumor associated carbonic anhydrase isoforms IX and XII. Eur. J. Med. Chem. 2014, 76, 284–290. [Google Scholar] [CrossRef]
- Aggarwal, M.; Boone, C.D.; Kondeti, B.; McKenna, R. Structural annotation of human carbonic anhydrases. J. Enzym. Inhib. Med. Chem. 2013, 2, 267–277. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic anhydrases-an overview. Curr. Pharm. Des. 2008, 7, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.; Tannock, I.F. Heterogeneity of intracellular pH and of mechanisms that regulate intracellular pH in populations of cultured cells. Cancer Res. 1998, 9, 1901–1908. [Google Scholar]
- Montcourrier, P.; Silver, I.; Farnoud, R.; Bird, I.; Rochefort, H. Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin. Exp. Metastasis 1997, 4, 382–392. [Google Scholar] [CrossRef]
- Webb, S.; Sherratt, J.; Fish, R. Mathematical modelling of tumor acidity: Regulation of intracellular pH. J. Theor. Biol. 1999, 2, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Frazier, M.L.; Lilly, B.J.; Wu, E.F.; Ota, T.; Hewett-Emmett, D. Carbonic anhydrase II gene expression in cell lines from human pancreatic adenocarcinoma. Pancreas 1990, 5, 507–514. [Google Scholar] [CrossRef]
- Parkkila, A.-K.; Herva, R.; Parkkila, S.; Rajaniemi, H. Immunohistochemical demonstration of human carbonic anhydrase isoenzyme II in brain tumours. Histochem. J. 1995, 12, 974–982. [Google Scholar] [CrossRef]
- Parkkila, S.; Rajaniemi, H.; Parkkila, A.-K.; Kivelä, J.; Waheed, A.; Pastoreková, S.; Pastorek, J.; Sly, W.S. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc. Natl. Acad. Sci. USA 2000, 5, 2220–2224. [Google Scholar] [CrossRef] [Green Version]
- Achal, V.; Pan, X. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 2011, 3, 894–902. [Google Scholar] [CrossRef]
- Şentürk, M.; Gülçin, İ.; Beydemir, Ş.; Küfrevioğlu, Ö.İ.; Supuran, C.T. In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem. Biol. Drug Des. 2011, 6, 494–499. [Google Scholar] [CrossRef]
- Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J. 2016, 14, 2023–2032. [Google Scholar] [CrossRef]
- Desai, N.; Dodiya, A.M.; Rajpara, K.M.; Rupala, Y.M. Synthesis and antimicrobial screening of 1,3,4-oxadiazole and clubbed thiophene derivatives. J. Saudi Chem. Soc. 2014, 3, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Wani, M.Y.; Ahmad, A.; Shiekh, R.A.; Al-Ghamdi, K.J.; Sobral, A.J. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorganic Med. Chem. 2015, 15, 4172–4180. [Google Scholar] [CrossRef] [PubMed]
- Dewangan, D.; Verma, V.S.; Nakhate, K.T.; Tripathi, D.K.; Kashyap, P.; Dhongade, H. Synthesis, characterization, and screening for analgesic and anti-inflammatory activities of new 1,3,4-oxadiazole derivatives linked to quinazolin-4-one ring. Med. Chem. Res. 2016, 10, 2143–2154. [Google Scholar] [CrossRef]
- Singh, A.K.; Lohani, M.; Parthsarthy, R. Synthesis, characterization and anti-inflammatory activity of some 1,3,4-oxadiazole derivatives. Iran. J. Pharm. Res. IJPR 2013, 2, 319. [Google Scholar]
- Gan, X.; Hu, D.; Chen, Z.; Wang, Y.; Song, B. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates. Bioorganic Med. Chem. Lett. 2017, 18, 4298–4301. [Google Scholar] [CrossRef] [PubMed]
- Abdo, N.Y.M.; Kamel, M.M. Synthesis and anticancer evaluation of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,2,4-triazoles and Mannich bases. Chem. Pharm. Bull. 2015, 5, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Schlecker, R.; Thieme, P.C. The synthesis of antihypertensive 3-(1,3,4-oxadiazol-2-yl) phenoxypropanolahines. Tetrahedron 1988, 11, 3289–3294. [Google Scholar] [CrossRef]
- Tabatabai, S.A.; Lashkari, S.B.; Zarrindast, M.R.; Gholibeikian, M.; Shafiee, A. Design, synthesis and anticonvulsant activity of 2-(2-phenoxy) phenyl-1,3,4-oxadiazole derivatives. Iran. J. Pharm. Res. IJPR 2013, 12, 105. [Google Scholar]
- Shyma, P.; Balakrishna, K.; Peethambar, K.; Vijesh, M. Synthesis, characterization, antidiabetic and antioxidant activity of 1,3,4-oxadiazole derivatives bearing 6-methyl pyridine moiety. Der Pharma. Chem. 2015, 12, 137–145. [Google Scholar]
- Musmade, D.; Pattan, S.; Manjunath, S.Y. Oxadiazole a nucleus with versatile biological behavior. Int. J. Pharm. Chem. 2015, 1, 11–20. [Google Scholar]
- Sengupta, P.; Mal, M.; Mandal, S.; Singh, J.; Maity, T.K. Evaluation of antibacterial and antifungal activity of some 1,3,4 oxadiazoles. Iran. J. Pharmacol. Ther. 2008, 2, 165–167. [Google Scholar]
- Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1,3,4-oxadiazole. Molecules 2018, 12, 3361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd-Ellah, H.S.; Abdel-Aziz, M.; Shoman, M.E.; Beshr, E.A.; Kaoud, T.; Ahmed, A.-S.F. New 1,3,4-oxadiazole/oxime hybrids: Design, synthesis, anti-inflammatory, COX inhibitory activities and ulcerogenic liability. Bioorganic Chem. 2017, 74, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Tantray, M.A.; Khan, I.; Hamid, H.; Alam, M.S.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-linked-1,3,4-oxadiazole carboxamides as GSK-3β inhibitors with in vivo antidepressant activity. Bioorganic Chem. 2018, 77, 393–401. [Google Scholar] [CrossRef]
- Yadagiri, B.; Gurrala, S.; Bantu, R.; Nagarapu, L.; Polepalli, S.; Srujana, G.; Jain, N. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents. Bioorganic Med. Chem. Lett. 2015, 10, 2220–2224. [Google Scholar] [CrossRef]
- Manjunatha, K.; Poojary, B.; Lobo, P.L.; Fernandes, J.; Kumari, N.S. Synthesis and biological evaluation of some 1,3,4-oxadiazole derivatives. Eur. J. Med. Chem. 2010, 11, 5225–5233. [Google Scholar] [CrossRef]
- Hajimahdi, Z.; Zarghi, A.; Zabihollahi, R.; Aghasadeghi, M. Synthesis, biological evaluation, and molecular modeling studies of new 1,3,4-oxadiazole-and 1,3,4-thiadiazole-substituted 4-oxo-4 H-pyrido [1, 2-a] pyrimidines as anti-HIV-1 agents. Med. Chem. Res. 2013, 5, 2467–2475. [Google Scholar] [CrossRef]
- Xu, W.-M.; Li, S.-Z.; He, M.; Yang, S.; Li, X.-Y.; Li, P. Synthesis and bioactivities of novel thioether/sulfone derivatives containing 1,2,3-thiadiazole and 1,3,4-oxadiazole/thiadiazole moiety. Bioorganic Med. Chem. Lett. 2013, 21, 5821–5824. [Google Scholar] [CrossRef]
- Vats, L.; Sharma, V.; Angeli, A.; Kumar, R.; Supuran, C.T.; Sharma, P.K. Synthesis of novel 4-functionalized 1,5-diaryl-1,2,3-triazoles containing benzenesulfonamide moiety as carbonic anhydrase I, II, IV and IX inhibitors. Eur. J. Med. Chem. 2018, 150, 678–686. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, R.; Bua, S.; Supuran, C.T.; Sharma, P.K. Synthesis of novel benzenesulfonamide bearing 1,2,3-triazole linked hydroxy-trifluoromethylpyrazolines and hydrazones as selective carbonic anhydrase isoforms IX and XII inhibitors. Bioorganic Chem. 2019, 85, 198–208. [Google Scholar] [CrossRef]
- Kumar, R.; Vats, L.; Bua, S.; Supuran, C.T.; Sharma, P.K. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur. J. Med. Chem. 2018, 155, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, V.; Bua, S.; Supuran, C.T.; Sharma, P.K. Synthesis and biological evaluation of benzenesulphonamide-bearing 1,4,5-trisubstituted-1,2,3-triazoles possessing human carbonic anhydrase I, II, IV, and IX inhibitory activity. J. Enzym. Inhib. Med. Chem. 2017, 1, 1187–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianco, G.; Meleddu, R.; Distinto, S.; Cottiglia, F.; Gaspari, M.; Melis, C.; Corona, A.; Angius, R.; Angeli, A.; Taverna, D. N-Acylbenzenesulfonamide dihydro-1,3,4-oxadiazole hybrids: Seeking selectivity toward carbonic anhydrase isoforms. ACS Med. Chem. Lett. 2017, 8, 792–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.; Kumar, R.; Angeli, A.; Supuran, C.T.; Sharma, P.K. Tail approach synthesis of novel benzenesulfonamides incorporating 1,3,4-oxadiazole hybrids as potent inhibitor of carbonic anhydrase I, II, IX, and XII isoenzymes. Eur. J. Med. Chem. 2020, 193, 112219. [Google Scholar] [CrossRef]
- Swain, B.; Singh, P.; Angeli, A.; Aashritha, K.; Nagesh, N.; Supuran, C.T.; Arifuddin, M. 3-Functionalised benzenesulphonamide based 1,3,4-oxadiazoles as selective carbonic anhydrase XIII inhibitors: Design, synthesis and biological evaluation. Bioorganic Med. Chem. Lett. 2021, 37, 127856. [Google Scholar] [CrossRef]
- Avula, S.K.; Rehman, N.U.; Khan, M.; Halim, S.A.; Khan, A.; Rafiq, K.; Csuk, R.; Das, B.; Al-Harrasi, A. New synthetic 1H-1,2,3-triazole derivatives of 3-O-acetyl-β-boswellic acid and 3-O-acetyl-11-keto-β-boswellic acid from Boswellia sacra inhibit carbonic anhydrase II in vitro. Med. Chem. Res. 2021, 6, 1185–1198. [Google Scholar] [CrossRef]
- Avula, S.K.; Khan, M.; Halim, S.A.; Khan, A.; Al-Riyami, S.A.; Csuk, R.; Das, B.; Al-Harrasi, A. Synthesis of new 1H-1,2,3-triazole analogs in aqueous medium via “click” chemistry: A novel class of potential carbonic anhydrase-II inhibitors. Front. Chem. 2021, 9, 642614. [Google Scholar] [CrossRef]
- von Neubeck, B.; Gondi, G.; Riganti, C.; Pan, C.; Parra Damas, A.; Scherb, H.; Ertürk, A.; Zeidler, R. An inhibitory antibody targeting carbonic anhydrase XII abrogates chemoresistance and significantly reduces lung metastases in an orthotopic breast cancer model in vivo. Int. J. Cancer 2018, 8, 2065–2075. [Google Scholar] [CrossRef] [Green Version]
- Angeli, A.; Trallori, E.; Carta, F.; Di Cesare Mannelli, L.; Ghelardini, C.; Supuran, C.T. Heterocoumarins are selective carbonic anhydrase IX and XII inhibitors with cytotoxic effects against cancer cells lines. ACS Med. Chem. Lett. 2018, 9, 947–951. [Google Scholar] [CrossRef] [Green Version]
- Vullo, D.; Innocenti, A.; Nishimori, I.; Pastorek, J.R.; Scozzafava, A.; Pastoreková, S.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of the transmembrane isozyme XII with sulfonamides—a new target for the design of antitumor and antiglaucoma drugs? Bioorganic Med. Chem. Lett. 2005, 4, 963–969. [Google Scholar] [CrossRef]
- Kumar, S.; Rulhania, S.; Jaswal, S.; Monga, V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur. J. Med. Chem. 2021, 209, 112923. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, K.; Khan, M.; Muhammed, N.; Khan, A.; Rehman, N.U.; Al-Yahyaei, B.E.M.; Khiat, M.; Halim, S.A.; Shah, Z.; Csuk, R. New amino acid clubbed Schiff bases inhibit carbonic anhydrase II, α-glucosidase, and urease enzymes: In silico and in vitro. Med. Chem. Res. 2021, 3, 712–728. [Google Scholar] [CrossRef]
- Ur Rehman, N.; Halim, S.A.; Khan, M.; Hussain, H.; Yar Khan, H.; Khan, A.; Abbas, G.; Rafiq, K.; Al-Harrasi, A. Antiproliferative and carbonic anhydrase II inhibitory potential of chemical constituents from Lycium shawii and aloe vera: Evidence from in silico target fishing and in vitro testing. Pharmaceuticals 2020, 5, 94. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.K.; Vera, W.; Mora, H.; Laya, M.S.; Bedoya, L.; Cabrera, E.V. Iodine in organic synthesis. J. Sci. Ind. Res. 2006, 65, 299–308. [Google Scholar] [CrossRef]
- Ren, Y.-M.; Cai, C.; Yang, R.-C. Molecular iodine-catalyzed multicomponent reactions: An efficient catalyst for organic synthesis. RSC Adv. 2013, 20, 7182–7204. [Google Scholar] [CrossRef]
- Gao, W.-C.; Jiang, S.; Wang, R.-L.; Zhang, C. Iodine-mediated intramolecular amination of ketones: The synthesis of 2-acylindoles and 2-acylindolines by tuning N-protecting groups. Chem. Commun. 2013, 43, 4890–4892. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, H.; Li, Z. Iodine-Mediated Synthesis of 3 H-Indoles via Intramolecular Cyclization of Enamines. J. Org. Chem. 2010, 13, 4636–4639. [Google Scholar] [CrossRef]
- Jiang, H.; Huang, H.; Cao, H.; Qi, C. TBHP/I2-mediated domino oxidative cyclization for one-pot synthesis of polysubstituted oxazoles. Org. Lett. 2010, 23, 5561–5563. [Google Scholar] [CrossRef]
- Wan, C.; Gao, L.; Wang, Q.; Zhang, J.; Wang, Z. Simple and efficient preparation of 2,5-disubstituted oxazoles via a metal-free-catalyzed cascade cyclization. Org. Lett. 2010, 17, 3902–3905. [Google Scholar] [CrossRef]
- Wan, C.; Zhang, J.; Wang, S.; Fan, J.; Wang, Z. Facile synthesis of polysubstituted oxazoles via a copper-catalyzed tandem oxidative cyclization. Org. Lett. 2010, 10, 2338–2341. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 1, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sippel, K.H.; Robbins, A.H.; Domsic, J.; Genis, C.; Agbandje-McKenna, M.; McKenna, R. High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2009, 10, 992–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compounds | R | % Inhibition | IC50 ± SEM (µM) |
---|---|---|---|
4a | 2a | 96.2 | 12.1 ± 0.86 |
4b | 2b | 93.5 | 19.1 ± 0.88 |
4c | 2c | 95.5 | 13.8 ± 0.64 |
4d | 2d | 29.0 | N/A |
4e | 2e | 97.3 | 26.6 ± 0.80 |
4f | 2f | 93.8 | 25.1 ± 1.04 |
4g | 2g | 79.5 | 21.5 ± 0.99 |
4h | 2h | 94.6 | 20.7 ± 1.13 |
4i | 2i | 58.0 | 18.1 ± 1.31 |
4j | 2j | 96.7 | 26.6 ± 1.47 |
4k | 2k | 87.8 | 22.4 ± 1.43 |
4l | 2l | 67.6 | 53.6 ± 0.96 |
Standard | Acetazolamide | 84.6 | 18.2 ± 1.43 |
Compounds | Score (kcal/mol) | Interactions | |||
---|---|---|---|---|---|
Ligand Atom | Receptor Atom | Bond Type | Distance (Å) | ||
4a | −8.96 | O25 | N-THR199 | HBA | 1.87 |
O25 | N-THR200 | HBA | 2.37 | ||
6-ring | HOH-1247 | π-H | 3.53 | ||
4c | −8.2 | N22 | OG1-THR200 | HBD | 1.97 |
O25 | N-THR200 | HBA | 2.39 | ||
4i | −8.05 | N22 | OG1-THR200 | HBD | 2.95 |
O25 | N-THR200 | HBA | 2.61 | ||
4b | −7.88 | O25 | N-THR200 | HBA | 2.26 |
O25 | OG1-THR 200 | HBA | 1.80 | ||
6-ring | O-HOH1247 | π-H | 3.46 | ||
4h | −7.63 | O25 | OG1-THR200 | HBA | 2.23 |
4g | −7.68 | O26 | N-THR199 | HBA | 1.87 |
4k | −7.80 | O25 | OG1-THR200 | HBA | 2.11 |
4f | −7.10 | O21 | NE2-GLN92 | HBA | 2.97 |
O25 | N-THR200 | HBA | 2.21 | ||
4e | −7.09 | N22 | O-HOH1191 | HBD | 1.99 |
6-ring | 6-ring-PHE131 | π-π | 3.01 | ||
4j | −7.10 | O25 | N-THR199 | HBA | 2.20 |
4l | −6.23 | N22 | OG1-THR200 | HBD | 1.82 |
O25 | N-THR200 | HBA | 2.08 |
Molecule | NRB | HBA | HBD | TPSA | iLOGP | GIA | BBBP | PgpS | Lipinski V | PAINS Alerts |
---|---|---|---|---|---|---|---|---|---|---|
4a | 8 | 6 | 1 | 90.14 | 3 | High | No | Yes | 0 | 0 |
4b | 8 | 6 | 2 | 97.48 | 3.34 | High | No | No | 0 | 0 |
4c | 8 | 5 | 1 | 77.25 | 3.54 | High | No | No | 0 | 0 |
4e | 9 | 7 | 2 | 106.71 | 3.56 | High | No | No | 0 | 0 |
4f | 9 | 7 | 2 | 106.71 | 3.45 | High | No | No | 0 | 0 |
4g | 9 | 7 | 1 | 123.07 | 2.96 | High | No | No | 0 | 0 |
4h | 9 | 7 | 1 | 123.07 | 3.11 | High | No | No | 0 | 0 |
4i | 8 | 6 | 2 | 97.48 | 3.15 | High | No | No | 0 | 0 |
4j | 10 | 7 | 1 | 95.71 | 3.81 | High | No | No | 0 | 0 |
4k | 10 | 7 | 1 | 95.71 | 3.64 | High | No | No | 0 | 0 |
4l | 8 | 5 | 1 | 77.25 | 3.75 | High | No | No | 0 | 0 |
AZM | 3 | 6 | 1 | 178.33 | 0 | Low | No | No | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafiq, K.; Ur Rehman, N.; Halim, S.A.; Khan, M.; Khan, A.; Al-Harrasi, A. Design, Synthesis and Molecular Docking Study of Novel 3-Phenyl-β-Alanine-Based Oxadiazole Analogues as Potent Carbonic Anhydrase II Inhibitors. Molecules 2022, 27, 816. https://doi.org/10.3390/molecules27030816
Rafiq K, Ur Rehman N, Halim SA, Khan M, Khan A, Al-Harrasi A. Design, Synthesis and Molecular Docking Study of Novel 3-Phenyl-β-Alanine-Based Oxadiazole Analogues as Potent Carbonic Anhydrase II Inhibitors. Molecules. 2022; 27(3):816. https://doi.org/10.3390/molecules27030816
Chicago/Turabian StyleRafiq, Kashif, Najeeb Ur Rehman, Sobia Ahsan Halim, Majid Khan, Ajmal Khan, and Ahmed Al-Harrasi. 2022. "Design, Synthesis and Molecular Docking Study of Novel 3-Phenyl-β-Alanine-Based Oxadiazole Analogues as Potent Carbonic Anhydrase II Inhibitors" Molecules 27, no. 3: 816. https://doi.org/10.3390/molecules27030816
APA StyleRafiq, K., Ur Rehman, N., Halim, S. A., Khan, M., Khan, A., & Al-Harrasi, A. (2022). Design, Synthesis and Molecular Docking Study of Novel 3-Phenyl-β-Alanine-Based Oxadiazole Analogues as Potent Carbonic Anhydrase II Inhibitors. Molecules, 27(3), 816. https://doi.org/10.3390/molecules27030816