Qualitative and Quantitative Analysis of Secondary Metabolites in Morphological Parts of Paulownia Clon In Vitro 112® and Their Anticoagulant Properties in Whole Human Blood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Extraction and Isolation of Compounds
2.4. NMR Spectroscopy
2.5. Analytical Method UHPLC-ESI-MS/MS
2.6. Preparation of Stock Solutions (Extract and Four Fractions (A–D) from Leaves) for Bioassay—T-TAS
2.7. The Samples of Blood
2.8. Total Thrombus-Formation Analysis System (T-TAS)
2.9. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhu, Z.H.; Chao, C.J.; Lu, X.-Y.; Xiong, Y.G. Paulownia in China: Cultivation and Utilization. Asian Network for Biological Science and International Development Research Centre, Chinese Academy of Forestry, Beijing. Available online: http://idl-bnc.idrc.ca/dspace/bitstream/10625/8226/1/71235.pdf.1986 (accessed on 14 December 2021).
- Zhang, D.L.; Li, X.Q. Studies on the chemical constituents from the leave of Paulownia tomentosa. Zhong Yao Cai 2011, 34, 232–234. [Google Scholar]
- Zhao, J.; Ding, H.X.; Wang, C.M. Isolation, modification and cytotoxic evaluation of flavonoids from Rhododendron hainanense. J. Pharm. Pharmacol. 2012, 1, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Si, C.; Deng, X.; Liu, Z. Structure and activity relationship of antioxidant flavonoids from leaves of Paulownia tomentosa var. tomentosa. In Proceedings of the 2nd International Papermaking and Environment Conference, Tianjin University of Science and Technology, Tianjin, China, 14–16 May 2008; pp. 263–266. [Google Scholar]
- Wollenweber, E.; Wehde, R.; Christ, M.; Dörr, M. Surface flavonoids in Catalpa ovata, Greyia sutherlandii and Paulownia tomentosa. Nat. Prod. Commun. 2008, 3, 1285–1287. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Asai, T.; Fujimoto, Y.; Kohshima, S. Anti-herbivore structures of Paulownia tomentosa: Morphology, distribution, chemical constituents and changes during shoot and leaf development. Ann. Bot. 2008, 101, 1035–1047. [Google Scholar] [CrossRef] [Green Version]
- Schilling, G.; Hügel, M.; Mayer, W. Verbascoside and isoverbascoside from Paulownia tomentosa Steud. Zeit. Naturforsch. 1982, 37, 1633–1635. [Google Scholar] [CrossRef] [Green Version]
- Adriani, C.; Bonini, C.; Iavarone, C.; Trogolo, C. Isolation and characterization of paulownioside, a new highly oxygenated iridoid glucoside from Paulownia tomentosa. J. Nat. Prod. 1981, 44, 739–744. [Google Scholar] [CrossRef]
- Ota, M.; Azuma, T.; Onodera, S.; Taneda, K. The chemistry of color changes in kiri wood (Paulownia tomentosa Steud.) III. A new caffeic acid sugar ester from Kiri wood. Mozukai Gakkaishi 1993, 39, 479–485. [Google Scholar]
- Si, C.-L.; Lu, Y.-Y.; Qin, P.-P.; Ni, Y.-H.; Sun, R.-C. Phenolic extractives with chemotaxonomic significance from the bark of Paulownia tomentosa var. tomentosa. BioResources 2011, 6, 5086–5098. [Google Scholar]
- Si, C.; Deng, X.; Xu, Q.; Liu, Z. Characterization of phenolic acids and antioxidant activities of Paulownia tomentosa var. tomentosa leaves. In Proceedings of the International Conference on Pulping, Papermaking and Biotechnology, Nanjing, China, 4–6 November 2008; pp. 31–33. [Google Scholar]
- Si, C.L.; Liu, Z.; Kim, J.K.; Bae, Y.-S. Structure elucidation of phenylethanoid glycosides from Paulownia tomentosa Steud. var. tomentosa wood. Holzforschung 2008, 62, 197–200. [Google Scholar] [CrossRef]
- Sticher, O.; Lahloub, M.F. Phenolic glycosides of Paulownia tomentosa bark. Planta Med. 1982, 46, 145–148. [Google Scholar] [CrossRef]
- Kang, K.H.; Jang, S.J.; Kim, B.K.; Park, M.K. Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud. Arch. Pharm. Res. 1994, 17, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Plouvier, V. The heterosides of Catalpa bignonioides Walt. (Bignoniaceae). Comp. Rend. Acad. Sci. 1971, 272, 1443–1446. [Google Scholar]
- Šmejkal, K.; Babula, P.; Šlapetová, T.; Brognara, E.; Dall’acqua, S.; Zemlicka, M.; Innocenti, G.; Cvacka, J. Cytotoxic activity of C-geranyl compounds from Paulownia tomentosa fruits. Planta Med. 2008, 74, 1488–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asai, T.; Hara, N.; Kobayashi, S.; Kohshima, S.; Fujimoto, Y. Geranylated flavanones from the secretion on the surface of the immature fruits of Paulownia tomentosa. Phytochemistry 2008, 69, 1234–1241. [Google Scholar] [CrossRef]
- Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem. 2013, 21, 3051–3057. [Google Scholar] [CrossRef] [PubMed]
- Schneiderová, K.; Šlapetová, T.; Hrabal, R.; Dvořáková, H.; Procházková, P.; Novotná, J.; Urbanová, M.; Cvačka, J.; Smejkal, K. Tomentomimulol and mimulone B: Two new C-geranylated flavonoids from Paulownia tomentosa fruits. Nat. Prod. Res. 2013, 27, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Navrátilová, A.; Schneiderová, K.; Veselá, D.; Hanáková, Z.; Fontana, A.; Dall’Acqua, S.; Cvačka, J.; Innocenti, G.; Novotná, J.; Urbanová, M.; et al. Minor C-geranylated flavanones from Paulownia tomentosa fruits with MRSA antibacterial activity. Phytochemistry 2013, 89, 104–113. [Google Scholar] [CrossRef]
- Jiang, T.-F.; Du, X.; Shi, Y.-P. Determination of flavonoids from Paulownia tomentosa (Thunb) Steud. by micellar electrokinetic capillary electrophoresis. Chromatographia 2004, 59, 255–258. [Google Scholar]
- Kim, S.J.; Kwon, D.Y.; Kim, Y.S.; Kim, Y.C. Peroxyl radical scavenging capacity of extracts and isolated component from selected medicinal plants. Arch. Pharm. Res. 2010, 33, 867–873. [Google Scholar] [CrossRef]
- Kim, S.K.; Cho, S.B.; Moon, H.I. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud against glutamate-induced neurotoxicity in primary cultured rat cortical cells. Phytother. Res. 2010, 24, 1898–1900. [Google Scholar] [CrossRef]
- Yuan, Z.L.; Luo, L.; Zang, A.M.; Meng, Z.L. Isolation and bioassay of herbicidal active ingredient from Paulownia tomentosa. Chin. J. Pestic. Sci. 2009, 2, 239–243. [Google Scholar]
- Bulzomi, P.; Bolli, A.; Galluzzo, P.; Acconcia, F.; Ascenzi, P.; Marino, M. The naringenininduced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life 2012, 64, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, Z.; Xu, F.; Zhu, C.; Fang, F.; Shu, S.; Li, M.; Ling, C. Radio-protective effect of catalpol in cultured cells and mice. J. Radiat. Res. 2013, 54, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.Y.; Li, Y.H.; Xiao, X.W.; Li, X.B. Inhibitory effects of luteolin on human gastric carcinoma xenografts in nude mice and its mechanism. Zhonghua Yi Xue Za Zhi 2013, 93, 142–146. [Google Scholar]
- Sánchez-Tena, S.; Alcarraz-Vizán, G.; Marín, S.; Torres, J.L.; Cascante, M. Epicatechin gallate impairs colon cancer cell metabolic productivity. J. Agric. Food Chem. 2013, 61, 4310–4317. [Google Scholar] [CrossRef]
- Zhang, S.M.; Coultas, K.A. Identification of plumbagin and sanquinarine as effective chemotherapeutic agents for treatment of schistosomiasis. Int. J. Parasitol. Drugs Resist. 2013, 3, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Panneerselvam, M.; Kawaraguchi, Y.; Horikawa, Y.T.; Saldana, M.; Patel, P.M.; Roth, D.M.; Patel, H.H. Effect of epicatechin and naloxone on cardioprotective phenotype. FASEB J. 2010, 24, 1029.8. [Google Scholar] [CrossRef]
- Psotova’, J.; Chlopcíková, S.; Miketová, P.; Hrbác, J.; Simánek, V. Chemoprotective effect of plant phenolics against anthracyclineinduced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempferol, luteolin and quercetin. Phytother. Res. 2004, 18, 516–521. [Google Scholar] [CrossRef]
- Losi, G.; Puia, G.; Garzon, G.; de Vuono, M.C.; Baraldi, M. Apigenin modulates GABAergic and glutamatergic transmission in cultured cortical neurons. Eur. J. Pharmacol. 2004, 502, 41–46. [Google Scholar] [CrossRef]
- Betts, J.W.; Wareham, D.W.; Haswell, S.J.; Kelly, S.M. Antifungal synergy of theaflavin and epicatechin combinations against Candida albicans. J. Microbiol. Biotechnol. 2013, 23, 1322–1326. [Google Scholar] [CrossRef] [Green Version]
- Mankovskaia, A.; Lévesque, C.M.; Prakki, A. Catechinincorporated dental copolymers inhibit growth of Streptococcus mutants. J. Appl. Oral Sci. 2013, 21, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Khachatoorian, R.; Arumugaswami, V.; Raychaudhuri, S.; Yeh, G.K.; Maloney, E.M.; Wang, J.; Dasgupta, A.; French, S.W. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology 2012, 433, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Li, D.Q.; Duan, Y.L.; Bao, Y.M.; Liu, C.P.; Liu, Y.; An, L.J. Neuroprotection of catalpol in transient global ischemia in gerbils. Neurosci. Res. 2004, 50, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Shieh, J.P.; Cheng, K.C.; Chung, H.H.; Kerh, Y.F.; Yeh, C.H.; Cheng, J.T. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. J. Agric. Food Chem. 2011, 59, 3747–3753. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S. Aucubin, a naturally occurring iridoid glycoside inhibits TNF-a-induced inflammatory responses through suppression of NF-jB activation in 3T3-L1 adipocytes. Cytokine 2013, 62, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, K.; Boyd, J.D.; Glicksman, M.; Moore, K.J.; El Khoury, J. A high-content drug screen identifies ursolic acid as an inhibitor of amyloid-b interactions with its receptor CD36. J. Biol. Chem. 2011, 286, 34914–34922. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.Z.; Xuan, Y.Y.; Ruan, S.Q.; Sun, M. Proliferation-inhibiting and apoptosis-inducing effects of ursolic acid and oleanolic acid on multi-drug resistance cancer cells in vitro. Chin. J. Integr. Med. 2011, 17, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Deepak, M.; Handa, S.S. Antiinflammatory activity and chemical composition of extracts of Verbena officinalis. Phytother. Res. 2000, 14, 463–465. [Google Scholar] [CrossRef]
- Schinella, G.; Aquila, S.; Dade, M.; Giner, R.; Recio Mdel, C.; Spegazzini, E.; de Buschiazzo, P.; Tournier, H.; Ríos, J.L. Anti-inflammatory and apoptotic activities of pomolic acid isolated from Cecropia pachystachya. Planta Med. 2008, 74, 215–220. [Google Scholar] [CrossRef]
- Moneriz, G.; Mestres, J.; Bautista, J.M.; Diez, A.; Puyet, A. Multi-targeted activity of maslinic acid as an antimalarial natural compound. FEBS J. 2011, 278, 2951–2961. [Google Scholar] [CrossRef]
- Sivakumar, G.; Vail, D.R.; Nair, V.; Medina-Bolivar, F.; Lay, J.O., Jr. Plant-based corosolic acid: Future anti-diabetic drug? Biotechnol. J. 2009, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Guan, T.; Qian, Q.; Tang, X.; Huang, M.; Huang, L.; Li, Y.; Sun, H. Maslinic acid, a natural inhibitor of glycogen phosphorylase, reduces cerebral ischemic injury in hyperglycaemic rats by GLT-1 up-regulation. J. Neurosci. Res. 2011, 89, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Adach, W.; Żuchowski, J.; Moniuszko-Szajwaj, B.; Szumacher-Strabel, M.; Stochmal, A.; Olas, B.; Cieślak, A. Comparative phytochemical, antioxidant, and hemostatic studies of extract and four fractions from Paulownia Clone in Vitro 112 leaves in human plasma. Molecules 2020, 25, 4371. [Google Scholar] [CrossRef] [PubMed]
- Adach, W.; Żuchowski, J.; Moniuszko-Szajwaj, B.; Szumacher-Strabel, M.; Stochmal, A.; Olas, B.; Cieślak, A. In vitro antiplatelet activity of extract and its fractions of Paulownia Clone in Vitro 112 leaves. Biomed. Pharmacother. 2020, 137, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jedrejek, D.; Pawelec, S.; Piwowarczyk, R.; Pecio, Ł.; Stochmal, A. Identification and occurrence of phenylethanoid and iridoid glycosides in six Polish broomrapes (Orobanche spp. and Phelipanche spp., Orobanchaceae). Phytochemistry 2020, 170, 112189. [Google Scholar] [CrossRef]
- Pecio, Ł.; Alilou, M.; Kozachok, S.; Erdogan Orhan, I.; Eren, G.; Senol Deniz, F.S.; Stuppner, H.; Oleszek, W. Yuccalechins A–C from the Yucca schidigera Roezl ex Ortgies bark: Elucidation of the relative and absolute configurations of three new spirobiflavonoids and their cholinesterase inhibitory activities. Molecules 2019, 24, 4162. [Google Scholar] [CrossRef] [Green Version]
- Krzyżanowska-Kowalczyk, J.; Pecio, Ł.; Mołdoch, J.; Ludwiczuk, A.; Kowalczyk, M. Novel phenolic constituents of Pulmonaria officinalis L. LC-MS/MS comparison of spring and autumn metabolite profiles. Molecules 2018, 23, 2277. [Google Scholar] [CrossRef] [Green Version]
- Żuchowski, J.; Skalski, B.; Juszczak, M.; Woźniak, K.; Stochmal, A.; Olas, B. LC/MS analysis of saponin fraction from the leaves of Elaeagnus rhamnoides (L.) A. Nelson and its biological properties in different in vitro models. Molecules 2020, 25, 3004. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Ohnishi, T.; Kondo, T.; Fukasawa, M.; Koide, T.; Maruyama, I.; Tanaka, K.A. A novel automated microchip flow-chamber system to quantitatively evaluate thrombus formation and antithrombotic agents under blood flow conditions. J. Thromb. Haemost. 2011, 9, 1029–1037. [Google Scholar] [CrossRef]
- Dembitsky, W.M. Astonishing diversity of natural surfactants: 5. Biologically active glycosides of aromatic metabolites. Lipids 2005, 40, 1081–1105. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Yuan, C.; Lin, C. Pharmacological activities and mechanisms of natural phenylpropanoid glycosides. Pharmazie 2003, 58, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Chiou, W.F.; Lin, L.C.; Chen, C.F. The antioxidant and free radical scavenging properties of acteoside. Chin. Pharm. J. 2003, 55, 347–353. [Google Scholar]
- Backhouse, N.; Delporte, C.; Apablaza, C. Antinociceptive activity of Buddleja globosa (matico) in several models of pain. J. Ethnopharmacol. 2008, 119, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Woo, E.R.; Kang, K.W. Inhibition of lipopolisaccharide-inducible nitric oxide synthase expression by acteoside through blocking of AP-1 activation. J. Ethnopharmacol. 2005, 97, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Akbay, P.; Calis, I.; Undeger, U. In vitro immunomodulatory activity of verbascoside from Nepeta ucrainica L. Phytother. Res. 2002, 16, 593–595. [Google Scholar] [CrossRef]
- Abe, F.; Nagao, T.; Okabe, H. Antiproliferative constituents in plants, 7. Leaves of Clerodendron bungei and leaves and bark of C. trichotomum. Biol. Pharm. Bull. 2001, 24, 1338–1341. [Google Scholar]
- Xiong, Q.; Hase, K.; Tezuka, Y. Acteoside inhibits apoptosis in D-galactosamine and lipopolysaccharide-induced liver injury. Life Sci. 1999, 65, 421–430. [Google Scholar] [CrossRef]
- Senatore, F.; Rigano, D.; Formisano, C.; Grassia, A.; Basile, A.; Sorbo, S. Phytogrowth-inhibitory and antibacterial activity of Verbascum sinuatum. Fitoterapia 2007, 78, 144–247. [Google Scholar] [CrossRef]
- Damtoft, S.; Jensen, S.R. Tomentoside and 7-hydroxytomentoside, two iridoid glucosides from Paulownia tomentosa. Phytochemistry 1993, 6, 1636–1638. [Google Scholar] [CrossRef]
- Skalski, B.; Kontek, B.; Olas, B.; Żuchowski, J.; Stochmal, A. Phenolic fraction and nonpolar fraction from sea buckthorn leaves and twigs: Chemical profile and biological activity. Future Med. Chem. 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Babalola, I.T.; Shode, F.O.; Adelakun, E.A.; Opoku, A.R.; Mosa, R.A. Platelet-aggregation inhibitory activity of oleanolic acid, ursolic acid, betulinic acid, and maslinic acid. J. Pharmacogn. Phytochem. 2013, 1, 2278–4136. [Google Scholar]
- Kim, M.; Han, C.H.; Lee, M.Y. Enhancement of platelet aggregation by ursolic acid and oleanolic acid. Biomol. Ther. 2014, 22, 254–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campo, G.; Marchesini, J.; Bristot, L.; Monti, M.; Gambetti, S.; Pavasini, R.; Pollino, A.; Ferrari, R. The in vitro effects of verbascoside on human platelet aggregation. J. Thromb. Thrombolysis 2012, 34, 318–325. [Google Scholar] [CrossRef] [PubMed]
Compound | The Morphological Part of the Plant | Reference | |||
---|---|---|---|---|---|
Leaves | Bark | Fruits | Flowers | ||
matteucinol (syn. 4-O-methylfarrerol) | + | [1] | |||
ursolic acid | + | ||||
homoeriodictyol (syn. hesperetin) | + | [2] | |||
3-epiursolic acid | + | ||||
pomolic acid | + | ||||
corosolic acid | + | ||||
maslinic acid | + | ||||
β-sitosterol | + | ||||
Daucosterol | + | ||||
Apigenin | + | [3] | |||
Luteolin | + | [4] | |||
Quercetin | + | ||||
(+)-catechin | + | ||||
(−)-epicatechin | + | ||||
Naringenin | + | ||||
Taxifolin | + | ||||
7,3′-dimethylquercetin (syn. rhamnazin) | + | [5] | |||
7,3′,4′-trimethylquercetin | + | ||||
7,3′,4′-trimethylmyricetin | + | ||||
7,3′,4′,5′-tetramethylmyricetin | + | + | |||
Diplacol | + | + | [6] | ||
3′-O-methyldiplacone | + | + | |||
3′-O-methyl-5′-hydroxydiplacone (syn. 6-geranyl-4′,5,5′,7-tetrahy-droxy-3′-methoxyflavanone | + | ||||
acteoside (syn. verbascoside) | + | [7] | |||
isoacteoside (syn. isoverbascoside) | + | ||||
7-β-hydroxyharpagide | + | [8] | |||
Paulovnioside | + | ||||
Catalpol | + | ||||
Aucubin | + | ||||
Tomentoside | + | ||||
7-hydroxytomentoside | + | ||||
p-hydroxybenzoic acid | + | [9] | |||
vanillic acid | + | ||||
gallic acid | + | + | |||
cinnamic acid | + | + | |||
p-coumaric acid | + | ||||
caffeic acid | + | ||||
Quercetin | + | [10] | |||
Naringenin | + | ||||
7-caffeoyl-acacetin (syn. 7-caffeoyl-4′-methoxyapigenin) | + | ||||
isoacteoside (syn. isoverbascoside) | + | ||||
isocampneoside II | + | ||||
cistanoside F | + | ||||
ilicifolioside A | + | [11] | |||
campneoside II (syn. β-hydroxyacteoside) | + | ||||
isoilicifolioside A | + | ||||
isocampneoside I | + | [12] | |||
coniferin (syn. abietin) | + | [13] | |||
syringin (syn. eleutherosid B) | + | ||||
acteoside (syn. verbascoside) | + | ||||
β-oxoacteoside (syn. tomentoside A) | + | [14] | |||
Martynoside | + | ||||
campneoside I | + | ||||
Catalpol | + | [15] | |||
Dihydrotricin | + | [16] | |||
6-isopentenyl-3′-O-methyltaxifolin | + | ||||
3′-O-methyl-5′-hydroxydiplacone (syn. 6-geranyl-4′,5,5′,7-tetra-hydroxy-3′-methoxyflavanone) | + | ||||
3′-O-methyl-5′-methoxydiplacol, schizolaenone C | + | ||||
6-geranyl-3′,5,5′,7-tetrahydroxy-4′-methoxyflavanone | + | ||||
tomentodiplacone B | + | ||||
Tomentodiplacone | + | ||||
Tomentodiplacol | + | ||||
acteoside (syn. verbascoside) | + | ||||
isoacteoside (syn. isoverbascoside) | + | ||||
3,4′,5,5′,7-pentahydroxy-3′-methoxy-6-(3-methyl-2-butenyl)flavanone | + | [17] | |||
Diplacol | + | ||||
3′-O-methyldiplacone, 3′-O-methyldiplacol (syn. diplacol 3′-O-methylether) | + | ||||
3′-O-methyl-5′-O-methyldipla-cone (syn. 6-geranyl-4′,5,7-tri-hydroxy-3′,5′-dimethoxyflavanone | + | ||||
6-geranyl-5,7-dihydroxy-3′,4′-dimethoxyflavanone | + | ||||
3,3′,4′,5,7-pentahydroxy-6-[7-hydroxy-3,7-dimethyl-2(E)octenyl]flavanone | + | ||||
Prokinawan | + | ||||
4′,5,5′,7-tetrahydroxy-6-[6-hydroxy-3,7-dimethyl-2(E),7-octadienyl]-3′-methoxyflavanone | + | ||||
3,3′,4′,5,7-pentahydroxy-6-[6-hydroxy-3,7-dimethyl-2(E),7-octadienyl]flavanone | + | ||||
6-geranyl-3′,5,7-trihydroxy-4′-methoxyflavanone (syn. 4′-O-methyldiplacone) | + | [18] | |||
6-geranyl-3,3′,5,7-tetrahydroxy-4′-methoxyflavanone (syn. 4′-O-methyldiplacol) | + | ||||
6-geranyl-3,3′,5,5′,7-pentha-hydroxy-4′-methoxyflavanone | + | ||||
tomentin A, B, C, D, E | + | ||||
tanariflavanone D | + | [19] | |||
Tomentomimulol | + | ||||
mimulone B | + | ||||
mimulone C, D, E, | + | [20] | |||
tomentodiplacone C, D, E, F, G, H, I | + | ||||
5,7-dihydroxy-6-geranylchromone | + | [16] | |||
Apigenin | + | [21] | |||
Mimulone (syn. 6-geranylnaringenin) | + | ||||
5,4′-dihydroxy-7,3′-dimethoxyflavanone, | + | ||||
diplacone (syn. propolin C) | + | ||||
5-hydroxy-7,3′,4′-trimethoxyflavanone | + | [22,23] | |||
isoatriplicolide tiglate | + | ||||
3′-O-methyldiplacol (syn. diplacol 3′-O-methylether) | + | [6] | |||
Prokinawan | + | ||||
p-ethoxybenzaldehyde | + | [24] |
Compound/Class of Compounds | Concentration [mg/g DM] | |||
---|---|---|---|---|
Leaves | Twigs | Flowers | Fruits | |
catalpol | 0.65 ± 0.06 | 9.96 ± 1.23 | 3.08 ± 0.20 | 7.36 ± 0.02 |
7-hydroxytomentoside | 6.08 ± 0.21 | + | + | + |
cistanoside F | 0.61 ± 0.01 | 2.14 ± 0.17 | 0.26 ± 0.02 | 0.95 ± 0.04 |
cistanoside F isomer | 0.61 ± 0.02 | 2.14 ± 0.15 | 0.28 ± 0.02 | 0.97 ± 0.06 |
luteolin-diglucuronide | 0.79 ± 0.07 | + | + | + |
hydroxyverbascoside I | 2.16 ± 0.25 | + | + | 4.47 ± 0.21 |
hydroxyverbascoside II | 2.88 ± 0.23 | 6.87 ± 0.12 | 0.65 ± 0.08 | 4.78 ± 0.23 |
apigenin-7-O-glucuronopyranosyl (1→2)-glucuronopyranoside | 0.82 ± 0.07 | + | 1.02 ± 0.03 | + |
oxoverbascoside | 0.90 ± 0.11 | + | 1.23 ± 0.05 | 0.11 ± 0.01 |
methoxyverbascoside | 2.62 ± 0.30 | 4.96 ± 0.23 | 0.44 ± 0.09 | 6.14 ± 0.46 |
dimethylverbascoside | 0.90 ± 0.03 | + | + | + |
verbascoside | + | 11.11 ± 1.55 | 0.97 ± 0.17 | 2.41 ± 0.37 |
apigenin glucuronide | + | + | + | + |
Iridoids | 6.73 | 9.96 | 3.08 | 7.36 |
Phenylethanoid glycosides | 10.69 | 27.21 | 2.85 | 19.83 |
Flavonoids | 1.61 | + | 1.99 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stochmal, A.; Moniuszko-Szajwaj, B.; Zuchowski, J.; Pecio, Ł.; Kontek, B.; Szumacher-Strabel, M.; Olas, B.; Cieslak, A. Qualitative and Quantitative Analysis of Secondary Metabolites in Morphological Parts of Paulownia Clon In Vitro 112® and Their Anticoagulant Properties in Whole Human Blood. Molecules 2022, 27, 980. https://doi.org/10.3390/molecules27030980
Stochmal A, Moniuszko-Szajwaj B, Zuchowski J, Pecio Ł, Kontek B, Szumacher-Strabel M, Olas B, Cieslak A. Qualitative and Quantitative Analysis of Secondary Metabolites in Morphological Parts of Paulownia Clon In Vitro 112® and Their Anticoagulant Properties in Whole Human Blood. Molecules. 2022; 27(3):980. https://doi.org/10.3390/molecules27030980
Chicago/Turabian StyleStochmal, Anna, Barbara Moniuszko-Szajwaj, Jerzy Zuchowski, Łukasz Pecio, Bogdan Kontek, Malgorzata Szumacher-Strabel, Beata Olas, and Adam Cieslak. 2022. "Qualitative and Quantitative Analysis of Secondary Metabolites in Morphological Parts of Paulownia Clon In Vitro 112® and Their Anticoagulant Properties in Whole Human Blood" Molecules 27, no. 3: 980. https://doi.org/10.3390/molecules27030980
APA StyleStochmal, A., Moniuszko-Szajwaj, B., Zuchowski, J., Pecio, Ł., Kontek, B., Szumacher-Strabel, M., Olas, B., & Cieslak, A. (2022). Qualitative and Quantitative Analysis of Secondary Metabolites in Morphological Parts of Paulownia Clon In Vitro 112® and Their Anticoagulant Properties in Whole Human Blood. Molecules, 27(3), 980. https://doi.org/10.3390/molecules27030980