Automation and Standardization—A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis
Abstract
:1. Introduction
2. Results
2.1. Robot-Based Station for the Automated Preparation of Nanomaterial Suspensions
2.2. Automated Exposure of Cell Cultures at Air–Liquid Interface with the Possibility of Accompanied Physicochemical Investigations
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Stanley, R. Automation in Analytical Chemistry—From Rule of Thumb to Fully Automated Methods. Some Philosophies and Social Consequences. J. Automat. Chem. 1984, 6, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Kimmig, J.; Zechel, S.; Schubert, U.S. Digital Transformation in Materials Science: A Paradigm Change in Material’s Development. Adv. Mater. 2021, 31, 2004940. [Google Scholar] [CrossRef] [PubMed]
- Rivallan, M.; Seguin, E.; Thomas, S.; Lepage, M.; Takagi, N.; Hirata, H.; Thibault-Starzyk, F. Platinum Sintering on H-ZSM-5 Followed by Chemometrics of CO Adsorption and 2D Pressure-Jump IR Spectroscopy of Adsorbed Species. Angew. Chem. Int. Ed. 2010, 49, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Rühle, B.; Krumrey, J.F.; Hodoroaba, V.-D. Workflows Towards Automated Segmentation of Agglomerated, Non-spherical Particles from Electron Microscopy Images using Artificial Neural Networks. Sci. Rep. 2021, 11, 4942. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalsbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocco, M.C.; Mirkin, C.A.; Hersam, M.C. Nanotechnology Research Direction for Social Needs in 2020: Summary of International Study. J. Nanopart. Res. 2011, 13, 897–919. [Google Scholar] [CrossRef] [Green Version]
- Noorlander, C.W.; Kooi, M.W.; Oomen, A.G.; Park, M.V.; Vandebriel, R.J.; Geertsma, R.E. Horizon Scan of Nanomedical Products. Nanonmedicine 2015, 10, 1599–1608. [Google Scholar] [CrossRef]
- Fraceto, L.F.; Grillo, R.; de Medeiros, G.A.; Scognamiglio, V.; Rea, G.; Bartolucci, C. Nanotechnology in Agriculture: Which Innovation Potential Does It Have? Front. Environ. Sci. 2016, 4, 20. [Google Scholar] [CrossRef]
- Peters, R.J.B.; Bouwmeester, H.; Gottardo, S.; Amenta, V.; Arena, M.; Brandhoff, P.; Marvin, H.J.; Mech, A.; Moniz, F.B.; Pesudo, L.Q.; et al. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Technol. 2016, 54, 155–164. [Google Scholar] [CrossRef]
- Izak-Nau, E.; Huk, A.; Reidy, B.; Uggerud, H.; Vadsewt, M.; Eiden, S.; Voetz, M.; Duschi, A.; Dusinska, M.; Lynch, I. Impact of Storage Conditions and Storage Time on Silver Nanoparticles’ Physicochemical Properties and Implications for their Biological Effects. RSC Adv. 2015, 5, 84172–84185. [Google Scholar] [CrossRef] [Green Version]
- Baer, D.R.; Cant, D.J.H.; Castner, D.G.; Ceccone, G.; Engelhard, M.H.; Karakoti, A.S.; Müller, A. Preparation of Nanoparticles for Surface Analysis. In Characterization of Nanoparticles: Measurement Processes for Nanoparticles, 1st ed.; Hodoroaba, V.-D., Unger, W.E.S., Shard, A.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–347. [Google Scholar]
- Clifford, C.A.; Stinz, M.; Hodoroaba, V.-D.; Unger, W.E.S.; Fujimoto, T. International Standards in Nanotechnologies. In Characterization of Nanoparticles: Measurement Processes for Nanoparticles, 1st ed.; Hodoroaba, V.-D., Unger, W.E.S., Shard, A.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 511–526. [Google Scholar]
- Tripathi, A.M.; Su, W.-N.; Hwan, B.J. In Situ Analytical Techniques for Battery Interface Analysis. Chem. Soc. Rev. 2018, 47, 736–851. [Google Scholar] [CrossRef] [PubMed]
- Burger, B.; Maffettone, P.M.; Gusev, V.V.; Aitchison, C.M.; Bai, Y.; Wang, X.; Li, X.; Alston, B.M.; Li, B.; Clowes, R.; et al. A mobile robotic chemist. Nature 2020, 583, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Baer, D.R.; Karakoti, A.S.; Clifford, C.A.; Minelli, C.; Unger, W.E.S. Importance of Sample Preparation on Reliable Surface Characterization of Nano-Objects: ISO Standard 20579-4. Surf. Interface Anal. 2018, 50, 902–906. [Google Scholar] [CrossRef]
- Schaepe, K.; Kokesch-Himmelreich, J.; Rohnke, M.; Wagner, A.-S.; Schaaf, T.; Wenisch, S.; Janek, J. Assessment of Different Sample Preparation Routes for Mass Spectrometric Monitoring and Imaging of Lipids in Bone Cells via ToF-SIMS. Biointerphases 2015, 10, 019016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennet, F.; Burr, L.; Schmid, D.; Hodoroaoba, V.-D. Towards a Method for Quantitative Evaluation of Nanoparticle from Suspensions via Microarray Printing and SEM Analysis. J. Phys. Conf. Ser. 2021, 1953, 012002. [Google Scholar] [CrossRef]
- Mugica, I.; Fito, C.; Domat, M.; Dohányosová, P.; Gutierrez-Cañas, C.; López-Vidal, S. Novel techniques for detection and characterization of nanomaterials based on aerosol science supporting environmental applications. Sci. Total Environ. 2017, 609, 348–359. [Google Scholar] [CrossRef]
- Mielke, J.; Dohányosová, P.; Müller, P.; López-Vidal, S.; Hodoroaba, V.-D. Evaluation of Electrospray as a Sample Preparation Tool for Electron Microscopic Investigations: Toward Quantitative Evaluation of Nanoparticles. Microsc. Microanal. 2017, 2017, 163–172. [Google Scholar] [CrossRef]
- Theissmann, R.; Kluwig, M.; Koch, T. A Reproducible Number-based Sizing Method for Pigment-Grade Titanium Dioxide. Beilstein J. Nanotechnol. 2014, 5, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- ISO 19749:2021; Nanotechnologies—Measurements of Particle Size and Shape Distribution by Scanning Electron Microscopy. ISO: Geneva, Switzerland, 2021.
- Kumagai, K.; Kurokawa, A. Specimen Preparation Method for Size Distribution Measurements of Nanomaterials by Scanning Electron Microscopy—Fixing of Nano-particles on a Substrate with Adhesive Coating. Microsc. Microanal. 2015, 21, 1709–1710. [Google Scholar] [CrossRef] [Green Version]
- Clifford, C.A.; Ferreira, E.H.M.; Fujimoto, T.; Herrmann, J.; Walker, A.R.H.; Koltsov, D.; Punckt, C.; Ren, L.; Smallwood, G.J.; Pollard, A.J. The importance of international standards for the graphene community. Nat. Rev. Phys. 2021, 3, 233–235. [Google Scholar] [CrossRef]
- Sample Preparation Protocols. Available online: https://www.nist.gov/mml/sample-preparation-protocols (accessed on 17 June 2021).
- Taurozzi, J.S.; Hackley, V.A.; Wiesner, M.R. Preparation of Nanoparticle Dispersions from Powdered Material Using Ultrasonic Disruption. NIST Spec. Publ. 2012, 1200, 1200-2. [Google Scholar] [CrossRef]
- Bennet, F.; Müller, A.; Radnik, J.; Hachenberger, Y.; Jungnickel, H.; Laux, P.; Luch, A.; Tentschert, J. Preparation of Nanoparticles for ToF-SIMS and XPS. J. Vis. Exp. 2020, 163, e61758. [Google Scholar] [CrossRef]
- Radnik, J.; Kersting, R.; Hagenhoff, B.; Bennet, F.; Ciornii, D.; Nymark, P.; Grafström, R.; Hodoroaba, V.-D. Reliable Surface Analysis Data of Nanomaterials in Support of Risk Assessment Based on Minimum Information Requirements. Nanomaterials 2021, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- May, M. Automated Sample Preparation. Science 2016, 351, 300–302. [Google Scholar] [CrossRef] [Green Version]
- Nickel, C.; Angelstorf, J.; Bienert, R.; Burkart, C.; Gabsch, S.; Giebner, S.; Haase, A.; Hellack, B.; Hollert, H.; Hund-Rinke, K.; et al. Dynamic Light-Scattering Measurement comparability of Nanomateral Suspensions. J. Nanopart. Res. 2014, 16, 2260. [Google Scholar] [CrossRef]
- Marin, R.R.R.; Babick, F.; Lindner, G.-G.; Wiemann, M.; Stintz, M. Effects of Sample Preparation on Particle Size Distributions of Different Types of Silica in Suspensions. Nanomaterials 2018, 8, 454. [Google Scholar] [CrossRef] [Green Version]
- Calzolai, L.; Gilliland, D.; Garcia, C.P.; Rossi, F. Separation and characterization of gold nanoparticles mixtures by flow-field-fractionation. J. Chrom. A 2011, 1218, 4234–4239. [Google Scholar] [CrossRef]
- Aurelia, F.; D’Amato, M.; Raggi, A.; Cubadda, F. Quantitative Characterization of Silica Nanoparticles by Asymmetric Flow Field Flow Fractionation Coupled with Online Multiangle Light Scattering and ICP-MS/MS Detection. J. Anal. At. Spectrom. 2015, 30, 1266. [Google Scholar] [CrossRef]
- Alasonati, E.; Caebergs, T.; Pétry, J.; Sebaihi, N.; Fisicaro, P.; Feltin, N. Size Measurement of Silica Nanoparticles by Asymmetric Flow Field-Flow Fractionation Coupled to Multi-Angle Light Scattering: A Comparison Exercise between two Metrological Institutes. J. Chrom. A 2021, 1638, 461859. [Google Scholar] [CrossRef]
- Lacroix, G.; Koch, W.; Ritter, D.; Gutleb, A.C.; Larsen, S.T.; Loret, T.; Zanetti, F.; Constant, S.; Chortarea, S.; Rothen-Rutishauser, B.; et al. Air-Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations. Appl. Vitr. Toxicol. 2018, 4, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Mülhopt, S.; Dilger, M.; Diabaté, S.; Schlager, C.; Krebs, T.; Zimmermann, R.; Buters, J.; Oeder, S.; Wäscher, T.; Weiss, C.; et al. Toxicity testing of combustion aerosols at the air–liquid interface with a self-contained and easy-to-use exposure system. J. Aerosol Sci. 2016, 96, 38–55. [Google Scholar] [CrossRef] [Green Version]
- Oeder, S.; Kanashova, T.; Sippula, O.; Sapcariu, S.C.; Streibel, T.; Arteaga-Salas, J.M.; Passig, J. Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions. PLoS ONE 2015, 10, e0126536. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, H.M.; Braakhuis, H.M.; He, R.; Vandebriel, R.J.; Gremmer, E.R.; Zwart, E.; Vermeulen, J.P.; Fokkens, P.; Boere, J.; Gosens, I.; et al. An Air-liquid Interface Bronchial Epithelial Model for Realistic, Repeated Inhalation Exposure to Airborne Particles for Toxicity Testing. J. Vis. Exp. 2020, 159, e61210. [Google Scholar] [CrossRef] [PubMed]
- Diabaté, S.; Armand, L.; Murugadoss, S.; Dilger, M.; Fritsch-Decker, S.; Schlager, C.; Béal, D.; Arnal, M.-E.; Biola-Clier, M.; Ambrose, S.; et al. Air–Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects. Nanomaterials 2021, 11, 65. [Google Scholar] [CrossRef]
- Mülhopt, S.; Schlager, C.; Berger, M.; Murugadoss, S.; Hoet, P.; Krebs, T.; Paur, H.-R.; Stapf, D. A novel TEM grid sampler for airborne particles to measure the cell culture surface dose. Sci. Rep. 2020, 10, 8401. [Google Scholar] [CrossRef]
- Guggenheim, E.J.; Rappoport, J.Z.; Lynch, I. Mechanims for Cellular Uptake of Nanosized Clinical MRI Contrast Agents. Nanotoxicology 2020, 14, 504–532. [Google Scholar] [CrossRef] [Green Version]
- Petersen, E.J.; Hirsch, C.; Elliott, J.T.; Krug, H.F.; Aengenheister, L.; Arif, A.T.; Bogni, A.; Kinsner-Ovaskainen, A.; May, S.; Walser, T.; et al. Cause-and-Effect Analysis as a Tool to Improve the Reproducibility of Nanobioassays: Four Case Studies. Chem. Res. Toxicol. 2020, 33, 1039–1054. [Google Scholar] [CrossRef]
- Petersen, E.J.; Sharma, M.; Clippinger, A.J.; Gordon, J.; Katz, A.; Laux, P.; Leibrock, L.B.; Luch, A.; Matheson, J.; Stucki, A.O.; et al. Use of Cause-and-Effect Analysis to Optimize the Reliability of In Vitro Inhalation Toxicity Measurements Using an Air–Liquid Interface. Chem. Res. Toxicol. 2021, 34, 1370–1385. [Google Scholar] [CrossRef]
- Surface Analysis of Oxide Nanoparticles. Available online: https://www.vamas.org/twa2/documents/2020_vamas_twa2_30.pdf (accessed on 15 December 2021).
- Leibrock, L.B.; Jungnickel, H.; Tentschert, J.; Katz, A.; Toman, B.; Petersen, E.J.; Bierkandt, F.S.; Singh, A.V.; Laux, P.; Luch, A. Parametric Optimization of an Air-liquid Interface System for Flow-through Inhalation Exposure to Nanoparticles: Assessing Dosimetry and Intracellular Uptake of CeO2 Nanoparticles. Nanomaterials 2020, 10, 2369. [Google Scholar] [CrossRef]
- Elliott, J.T.; Rösslein, M.; Song, N.W.; Toman, B.; Kinsner-Ovaskainen, A.; Maniratanachote, R.; Salit, M.L.; Petersen, E.J.; Sequeira, F.; Romsos, E.; et al. Toward Achieving Harmonization in a Nanocytotoxicity Assay Measurement through an Interlaboratory Comparison Study. ALTEX 2017, 34, 201–218. [Google Scholar] [CrossRef]
- Rösslein, M.; Elliott, J.T.; Salit, M.; Petersen, E.J.; Hirsch, C.; Krug, H.F.; Wick, P. Use of Cause-and-Effect Analysis to Design a High-Quality Nanocytotoxicology Assay. Chem. Res. Toxicol. 2015, 28, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Hanna, S.K.; Cooksey, G.A.; Dong, S.; Nelson, B.C.; Mao, L.; Elliott, J.T.; Petersen, E.J. Feasibility of Using a Standardized Caenorhabditis Elegans Toxicity Test to Assess Nanomaterial Toxicity. Environ. Sci. Nano 2016, 3, 1080–1089. [Google Scholar] [CrossRef]
- Frey, C.; Pfeil, J.; Neckernuss, T.; Geiger, D.; Weishaupt, K.; Platzman, I.; Marti, O.; Spatz, J.P. Label-free Monitoring and Manipulation of Microfluidic Water-in-Oil Droplets. VIEW 2020, 1, 20200101. [Google Scholar] [CrossRef]
- Samarah, L.Z.; Vertes, A. Mass Spectrometry Imaging Based on Laser Desorption Ionization from Inorganic and Nanophotenic Platforms. VIEW 2020, 1, 20200063. [Google Scholar] [CrossRef]
- Pei, C.; Liu, C.; Wang, Y.; Cheng, D.; Li, R.; Shu, W.; Zhang, C.; Hu, W.; Jin, A.; Yang, Y.; et al. FeOOH@Metal-Organic Framework Core-Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew. Chem. Intl. Ed. 2020, 59, 10831–10835. [Google Scholar] [CrossRef]
- Cao, J.; Shi, X.; Gurav, D.D.; Huang, L.; Su, H.; Li, K.; Niu, J.; Zhang, M.; Wang, Q.; Jiang, M.; et al. Metabolic Fingerprinting on Synthetic Alloys for Medulloblastoma Diagnosis and Radiotherapy Evaluation. Adv. Mater. 2020, 32, 2000906. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Pei, C.; Shu, W.; Zhang, C.; Liu, L.; Zhou, L.; Wan, J. Design of Multi-Shelled Hollow Cr2O3 Spheres for Metabolic Fingerprinting. Angew. Chem. Intl. Ed. 2021, 60, 12504–12512. [Google Scholar] [CrossRef]
- Shu, W.; Wang, Y.; Liu, C.; Li, R.; Pei, C.; Lou, W.; Lin, S.; Di, W.; Wan, J. Construction of a Plasmonic Chip for Metabolic Analysis in Cervical Cancer Screening and Evaluation. Small Methods 2020, 4, 1900469. [Google Scholar] [CrossRef]
- Xu, W.; Lin, J.; Gao, M.; Chen, Y.; Cao, J.; Pu, J.; Huang, L.; Zhao, J.; Quian, K. Rapid Computer-Aided Diagnosis of Stroke by Serum Metabolic Fingerprint Based Multi-Modal Recognition. Adv. Sci. 2020, 7, 2002021. [Google Scholar] [CrossRef]
Preparation | Analytical Method | Properties Measured | Challenges | Advantages |
---|---|---|---|---|
Suspension | FFF (field-flow fractionation) | Particle size following particle fractionation | Prevention of agglomeration/sedimentation, suitable concentration | Easy, in situ or operando analytics possible |
HDC (hydrodynamic chromatography) | Particle size following particle fractionation | |||
SP-ICP-MS (single particle ICP-MS) | Mass-based particle size, mass-based size distribution, number concentration, compositional heterogeneity of the particles | |||
SEC (size exclusion chromatography), HPLC (high-performance liquid chromatography) | Particle size (hydrodynamic volume) | |||
HIC (hydrophobic interaction chromatography) | Hydrophobicity | |||
PTA (particle tracking analysis) | Hydrodynamic particle size and distribution, number concentration | |||
SAXS (small angle X-ray scattering) | Particle size distribution | |||
DLS (dynamic light scattering) | Particle size, zeta potential (for instruments with electrophoretic light scattering) | |||
CE (capillary electrophoresis) | Separation NMs of varying size, shapes, surface modifications and composition |
Preparation | Analytical Method | Properties Measured | Challenges | Advantages |
---|---|---|---|---|
Dried suspension (e.g., drop-cast, spin-coated) | XPS (X-ray photoelectron spectroscopy) | Surface chemistry, composition | Prevention of agglomeration, homogeneous and gapless coating, stable fixation, prevention of contamination, sample alteration, loss of materials (spin-coating), dependent on substrate quality | Secure fixation, consistency of results (spin-coat), well established reproducible methods |
SIMS (secondary ion mass spectrometry) | Surface chemistry | |||
TEM (transmission electron microscopy) | Particle primary size and shape | |||
SEM (scanning electron microscopy) | Particle primary size and morphology | |||
EDS (energy-dispersive spectroscopy) | Bulk composition | |||
AES (Auger electron spectroscopy) | Composition of the surface | |||
AFM (atomic force microscopy) | Particle size, morphology | |||
STXM (scanning transmission X-ray microscopy) | Particle primary size, shape composition, and chemistry. chemical heterogeneity of the particles | |||
ATR-FT-IR (attenuation total reflection Fourier-transform infrared) spectroscopy | Surface chemistry, chemical composition |
Preparation | Analytical Method | Properties Measured | Challenges | Advantages |
---|---|---|---|---|
powder | XPS (X-ray photoelectron spectroscopy) | Surface chemistry, composition | Stable fixation, prevention of agglomeration, prevention of contamination | Little sample preparation required, maintains integrity of the sample |
SIMS (secondary ion mass spectrometry) | Surface chemistry, composition | |||
TEM (transmission electron microscopy) | Particle size and shape | |||
SEM (scanning electron microscopy) | Particle size and morphology | |||
EDS (energy-dispersive spectroscopy) | Composition | |||
AES (Auger electron spectroscopy) | Composition of the surface | |||
BET (Brunauer–Emmett–Teller) | Surface Area, porosity, pore distribution | |||
TGA (thermo gravimetry analysis) | Weight loss during thermal decomposition of the sample | |||
STXM (scanning transmission X-ray microscopy) | Particle size, shape, composition, and chemistry | |||
SAXS (small-angle X-ray scattering) | Particle size and distribution |
Preparation | Analytical Method | Properties Measured | Challenges | Advantages |
---|---|---|---|---|
Pellet | XPS (X-ray photoelectron spectroscopy) | Surface chemistry, composition | Prevention of contamination, danger to integrity of the sample (both surface and shape) | Secure fixation |
SIMS (secondary ion mass spectrometry) | Surface chemistry | |||
FT-IR (Fourier-transform infrared spectroscopy) | Surface chemistry, chemical composition |
Preparation | Analytical Method | Challenges | Advantages |
---|---|---|---|
Cryo treatment | Cryo fixation for XPS and ToF-SIMS, freeze drying for XPS, TG, SEM, TEM | Prevention of crystallization, experimental experience is required, costs | Integrity of the surrounding (biological media) |
Microprinting | ToF-SIMS, AES, TEM, SEM | Particle density, coffee-ring effects | Easy-to-handle, high automation potential |
Fixation on or embedding in a (polymer) matrix | ToF-SIMS, TEM, SEM | Experimental experience is required, suitable matrix, reduction of sample integrity | Single particle imaging or mapping |
Electrospray deposition | TEM, SEM | Expensive equipment, aqueous solution | Quantitative, useful for depositing magnetic NPs |
Standard | Title |
---|---|
ISO TR 20489:2018 | Nanotechnologies—Sample preparation for the characterization of metal and metal-oxide nano-objects in water samples |
data | |
ISO TR 19716:2016 | Nanotechnologies—Characterization of cellulose nanocrystals |
ISO TS 21346:2021 | Nanotechnologies—Characterization of individualized cellulose nanofibril samples |
ISO TS 21356:2021 | Nanotechnologies—Structural characterization of graphene–part 1: graphene from powders and dispersion |
ISO 20579-4:2018 | Surface chemical analysis—Guidelines to sample handling, preparation and mounting–part 4: reporting information related to the history, preparation, handling and mounting of nano-objects prior to surface analysis |
CEN TS 17273 | Nanotechnologies—Guidance on detection and identification of nano-objects in complex matrices |
Sample Name | Gold Nanoparticles | Polyvinylpyrrolidone-Coated Titania Nanoparticles | Pyrogenic Silica Particles, HDK® D05 |
---|---|---|---|
Abbreviation | AuNP | TiO2-PVP | pyr. SiO2 |
Supplier | BBI Solutions, UK | Promethean Particles, UK | Wacker Chemie, DE |
Size/dispersity | 60 nm/monodisperse | 12 nm primary particle/polydisperse | 174 nm/polydisperse |
Physical state | Suspension | Suspension | Powder |
Initial mass concentration | 5 mg/L, suspended in 0.2% NovaChem * | 500 mg/L, suspended in 0.2% NovaChem * | Not applicable |
Stability of suspension | Stable | Moderate | Not applicable |
Sample Preparation Procedure | AuNP | TiO2-PVP | Pyr. SiO2 |
---|---|---|---|
Suspending | Not applicable | Not applicable | 10 mg powder in 4 mL 0.1 mM aqueous KOH, 2.5 mg/mL |
Diluting | 1:2.5; 1:5; 1:8.3; 1:25 in 0.2% NovaChem (v/v) | 1:6; 1:10; 1:30 in 0.2% NovaChem (v/v) | 1:6; 1:10; 1:30 in 0.1 mM aqueous KOH (v/v) |
Vortexing | 1 min per sample | Not applied | Not applied |
Mixing | Shaking by hand or “Draw&Dispense” function | Shaking by hand or “Draw&Dispense” function | Shaking by hand or “Draw&Dispense” function |
Ultrasonication | Not applied | 3 × 3 min (pulsed: amplitude 100% with 70% power on and 30% power off | 3 × 3 min (pulsed: amplitude 100% with 70% power on and 30% power off |
Linearity of Dilution | AuNP Automated Manual | TiO2-PVP Automated Manual | Pyr. SiO2 Automated Manual | |||
---|---|---|---|---|---|---|
R2 | 0.9998 | 0.9999 | 0.9994 | 0.9998 | 0.9983 | 0.9996 |
SD (%) | <0.1 | <0.1 | <0.1 | <0.1 | <0.5 | <0.1 |
Size | TiO2-PVP Automated Manual | Pyr. SiO2 Automated Manual | ||
---|---|---|---|---|
Dh, z-average (nm) | 116.6 | 118.7 | 378.3 | 310.0 |
SD (%) | 4.7 | 6.3 | 17.9 | 8.9 |
Optimized Sample Preparation Procedure | Pyr. SiO2 |
---|---|
Suspending | 6 mg powder in 1.5 mL 0.2% NovaChem, 4.0 mg/mL |
Mixing | Shaking by hand or “Draw&Dispense” function |
Ultrasonication | 1 × 3 min (pulsed: amplitude 100% with 70% power on and 30% power off) |
Dilution | 1:2 in 0.2% NovaChem, 2.0 mg/mL (v/v) |
Mixing | Shaking by hand or “Draw&Dispense” function |
Ultrasonication | 2 × 3 min (pulsed: amplitude 100% with 70% power on and 30% power off) |
Dilution | 1:20 in 0.2% NovaChem, 100.0 mg/mL (v/v) |
Mixing | Shaking by hand or “Draw&Dispense” function |
Ultrasonication | 3 × 3 min (pulsed: amplitude 100% with 70% power on and 30% power off) |
AF4-MALS Results | Automated Preparation | Manual Preparation | Deviation |
---|---|---|---|
Dg at 90° MALS signal maximum (nm) | 378.5 ± 2.4% | 406.6 ± 1.9% | 6.9% |
Arithmetic mean Dg from 18–32.5 min (nm) | 502.4 ± 2.8% | 529.3 ± 3.7% | 5.1% |
Full width at half maximum, FWHM, 90° MALS signal (min) | 11.6 ± 6.7% | 12.4 ± 3.0% | 6.5% |
Standard Version | Benchtop Version | |||
---|---|---|---|---|
Mean | Deviation | Mean | Deviation | |
Temperature cabinet Set point 37 °C | 36.99 | +/−0.03 | 36.61 | +/−0.03 |
Humidity aerosol reactor Set point 85% r.h. | 84.79 | +/−1.33 | 85.02 | +/−0.13 |
Humidity clean air control Set point 85% r.h. | 84.78 | +/−0.81 | 85.00 | +/−0.12 |
Deposited mass in g−9 cm−2 h−1) | 290.00 | +/−37.50 | 102.37 | +/−5.43 |
Dimensions [height × with × depth in mm] | 2187 × 1124 × 623 | 700 × 1000 × 600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radnik, J.; Hodoroaba, V.-D.; Jungnickel, H.; Tentschert, J.; Luch, A.; Sogne, V.; Meier, F.; Burr, L.; Schmid, D.; Schlager, C.; et al. Automation and Standardization—A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis. Molecules 2022, 27, 985. https://doi.org/10.3390/molecules27030985
Radnik J, Hodoroaba V-D, Jungnickel H, Tentschert J, Luch A, Sogne V, Meier F, Burr L, Schmid D, Schlager C, et al. Automation and Standardization—A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis. Molecules. 2022; 27(3):985. https://doi.org/10.3390/molecules27030985
Chicago/Turabian StyleRadnik, Jörg, Vasile-Dan Hodoroaba, Harald Jungnickel, Jutta Tentschert, Andreas Luch, Vanessa Sogne, Florian Meier, Loïc Burr, David Schmid, Christoph Schlager, and et al. 2022. "Automation and Standardization—A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis" Molecules 27, no. 3: 985. https://doi.org/10.3390/molecules27030985
APA StyleRadnik, J., Hodoroaba, V. -D., Jungnickel, H., Tentschert, J., Luch, A., Sogne, V., Meier, F., Burr, L., Schmid, D., Schlager, C., Yoon, T. H., Peters, R., Briffa, S. M., & Valsami-Jones, E. (2022). Automation and Standardization—A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis. Molecules, 27(3), 985. https://doi.org/10.3390/molecules27030985