In Vitro Assessment of the Cytotoxic and Antiproliferative Profile of Natural Preparations Containing Bergamot, Orange and Clove Essential Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Composition of EOS
2.2. The Impact of EOs Emulsions on the Viability of Healthy Human Cells Andimmortalized Keratinocytes Morphology—HaCaT
2.3. The Impact of the First Compounds on Human Primary Gingival Fibroblasts HGF Viability and Morphology
2.4. The Impact of the First Compounds on Human Melanoma Cells—A375 Viability and Morphology
2.5. The Impact of the First Compounds on Human Squamous Tongue Carcinoma Cells—SCC-4 Viability and Morphology
2.6. Skin Evaluation
3. Materials and Methods
3.1. GC-MS Characterization of EOs
3.2. Preparation Procedure for Natural Emulsions Based on Essential Oils
3.3. Cell Lines
3.4. Cell Culture
3.5. Cell Viability Assessment
growth control]} × 100
3.6. Cell Morphology
3.7. The Skin Evaluation
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EOs | essential oils |
BEO | bergamot essential oil |
CEO | clove essential oil |
OEO | orange essential oil |
EBEO | bergamot essential oil emulsion |
ECEO | clove essential oil emulsion |
EOEO | orange essential oil emulsion |
E(BEO/OEO) | emulsion containing BEO and OEO |
E(CEO/OEO) | emulsion containing CEO and OEO |
E(BEO/CEO/OEO) | emulsion containing BEO, CEO and OEO |
GC-MS | gas-chromatography coupled with mass-spectrometry |
HGF | human primary gingival fibroblasts |
SCC-4 | human squamous cell carcinoma cell line |
HaCaT | immortalized human keratinocytes |
A375 | human melanoma cells |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Borges Dias, R.; De Faro Valverde, L.; Araujo Gurgel Rocha, C.; Pereira Bezerra, D. Principle of Cancer Pathogenesis and Therapies: A Brief Overview. In Bioactive Essential Oils and Cancer; de Sousa, D.P., Ed.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer Properties of Essential Oils and Other Natural Products. Evid. Based Complement. Altern. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Mohammadhosseini, M.; Venditti, A.; Frezza, C.; Serafini, M.; Bianco, A.; Mahdavi, B. The Genus Haplophyllum Juss: Phytochemistry and Bioactivities—A Review. Molecules 2021, 26, 4664. [Google Scholar] [CrossRef] [PubMed]
- Oloyedei, G.K.; Ibok, M.G.; Ojo, T.K. Chemical constituents, antimicrobial and antioxidant activities of Leptoderris brachyptera (Benth.) Dunn and Leptoderris micrantha Dunn essential oils. Trends Phytochem. Res. 2021, 5, 13–23. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Akbarzadeh, A.; Hashemi-Moghaddam, H.; Nafchi, M.A.; Mashayekhi, H.A.; Aryanpour, A. Chemical composition of the essential oils from the aerial parts of Artemisia sieberi by using conventional hydrodistillation and microwave assisted hydrodIt is ok in this formistillation: A comparative study. J. Essent. Oil Bear. Plants 2016, 19, 32–45. [Google Scholar] [CrossRef]
- Mohammadhosseini, M. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind. Crops Prod. 2017, 105, 164–192. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Akbarzadeh, A.; Flamini, G. Profiling of compositions of essential oils and volatiles of Salvia limbata using traditional and advanced techniques and evaluation for biological activities of their extracts. Chem. Biodiv. 2017, 14, e1600361. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Venditti, A.; Mahdavi, B. Characterization of essential oils and volatiles from the aerial parts of Mentha pulegium L. (Lamiaceae) using microwave-assisted hydrodistillation (MAHD) and headspace solid phase microextraction (HS-SPME) in combination with GC-MS. Nat. Prod. Res. 2021, 1–5. [Google Scholar] [CrossRef]
- Rombolà, L.; Tridico, L.; Scuteri, D.; Sakurada, T.; Sakurada, S.; Mizoguchi, H.; Avato, P.; Corasaniti, M.T.; Bagetta, G.; Morrone, L.A. Bergamot Essential Oil Attenuates Anxiety-Like Behaviour in Rats. Molecules 2017, 22, 614. [Google Scholar] [CrossRef]
- Laird, K.; Armitage, D.; Phillips, C. Reduction of surface contamination and biofilms of Enterococcus sp. and Staphylococcus aureus using a citrus-based vapour. J. Hosp. Infect. 2012, 80, 61–66. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Posteraro, B.; Romano, L.; Battaglia, F.; Lopizzo, T.; De Carolis, E.; Fadda, G. In vitro activity of Citrus bergamia (bergamot) oil against clinical isolates of dermatophytes. J. Antimicrob. Chemother. 2007, 59, 305–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosentino, M.; Luini, A.; Bombelli, R.; Corasaniti, M.T.; Bagetta, G.; Marino, F. The essential oil of bergamot stimulates reactive oxygen species production in human polymorphonuclear leukocytes. Phytother. Res. 2014, 28, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Navarra, M.; Ferlazzoa, M.; Cirmia, S.; Lombardo, E.; Minciullo, P.L.; Calapaia Gangemi, S. New insights into the mechanisms of bergamot essential oil and its extractive fractions on SH-SY5Y human neuroblastoma cell growth. Eur. J. Cancer 2015, 51 (Suppl. 2), e21. [Google Scholar] [CrossRef]
- Visalli, G.; Ferlazzo, N.; Cirmi, S.; Campiglia, P.; Gangemi, S.; Di Pietro, A.; Calapai, G.; Navarra, M. Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells. Anti-cancer Agents Med. Chem. 2014, 14, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Beaumont, C.; Stevens, N. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells. Biochim. Open 2017, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Deng, W.; Hu, W.; Cao, S.; Zhong, B.; Chun, J. Extraction of ‘Gannanzao’ Orange Peel Essential Oil by Response Surface Methodology and its Effect on Cancer Cell Proliferation and Migration. Molecules 2019, 24, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Chen, H.; Chen, H.; Zhong, B.; Luo, X.; Chun, J. Antioxidant and Anticancer Activities of Essential Oil from Gannan Navel Orange Peel. Molecules 2017, 22, 1391. [Google Scholar] [CrossRef] [PubMed]
- Barboza, J.N.; Da Silva Maia Bezerra Filho, C.; Silva, R.O.; Medeiros, J.V.R.; de Sousa, D.P. An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol. Oxidative Med. Cell. Longev. 2018, 2018, 3957262. [Google Scholar] [CrossRef]
- Gülçin, I. Antioxidant Activity of Eugenol: A Structure—Activity Relationship Study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef]
- Mohd Said, S.; Abdul Majid, F.A.; Wan Mustapha, W.A.; Jantan, I. Anti-Inflammatory Activity of Selected Edible Herbs and Spices on Cultured Human Gingival Fibroblasts. Open Conf. Proc. J. 2013, 4, 33–37. [Google Scholar] [CrossRef]
- Koh, T.; Murakami, Y.; Tanaka, S.; Machino, M.; Sakagami, H. Re-evaluation of anti-inflammatory potential of eugenol in IL-1β-stimulated gingival fibroblast and pulp cells. In Vivo 2013, 27, 269–273. [Google Scholar] [PubMed]
- Han, X.; Parker, T.L. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharm. Biol. 2017, 55, 1619–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prashar, A.; Locke, I.C.; Evans, C.S. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif. 2006, 39, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Arung, E.T.; Matsubara, E.; Kusuma, I.W.; Sukaton, E.; Shimizu, K.; Kondo, R. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Fitoterapia 2011, 82, 198–202. [Google Scholar] [CrossRef]
- Liu, H.; Schmitz, J.C.; Wei, J.; Cao, S.; Beumer, J.H.; Strychor, S.; Cheng, L.; Liu, M.; Wang, C.; Wu, N.; et al. Clove Extract Inhibits Tumor Growth and Promotes Cell Cycle Arrest and Apoptosis. Oncol. Res. 2014, 21, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Alexa, V.T.; Galuscan, A.; Popescu, I.; Tirziu, E.; Obistioiu, D.; Floare, A.D.; Perdiou, A.; Jumanca, D. Synergistic/Antagonistic Potential of Natural Preparations Based on Essential Oils Against Streptococcus mutans from the Oral Cavity. Molecules 2019, 24, 4043. [Google Scholar] [CrossRef] [Green Version]
- Mohagheghniapour, A.; Mohammad, J.S.; Mohammad, T.G. Variations in chemical compositions of essential oil from sour orange (Citrus aurantium L.) blossoms by different isolation methods. Sustain. Chem. Pharm. 2018, 10, 118–124. [Google Scholar] [CrossRef]
- Verzera, A.; Trozzi, G.; Dugo, G. Biological lemon and sweet orange essential oil composition. Flavour Fragr. J. 2004, 19, 544–548. [Google Scholar] [CrossRef]
- Moufida, S.; Marzouk, B. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry 2003, 62, 1283–1289. [Google Scholar] [CrossRef]
- Azar, A.P.; Nekoei, M.; Larijani, K.; Bahraminasab, S. Chemical composition of the essential oils of Citrus sinensis cv. valencia and a quantitative structureretention relationship study for the prediction of retention indices by multiple linear regression. J. Serb. Chem. Soc. 2011, 76, 1627–1637. [Google Scholar] [CrossRef]
- Tao, N.G.; Liu, Y.J.; Zhang, M.L. Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). Int. J. Food Sci. Technol. 2009, 44, 1281–1285. [Google Scholar] [CrossRef]
- Njoroge, S.M.; Phi, N.T.L.; Sawamura, M. Chemical composition of peel essential oils of sweet oranges (Citrus sinensis) from Uganda and Rwanda. J. Essent. Oil Bear. Plants 2009, 12, 26–33. [Google Scholar] [CrossRef]
- Verma Sajendra, K.; Prakash, G.; Ram, S. Chemical composition and antimicrobial activity of bergamot-mint (Mentha citrata Ehrh.) essential oils isolated from the herbage and aqueous distillate using different methods. Ind. Crops Prod. 2016, 91, 152–160. [Google Scholar] [CrossRef]
- Satou, G.; Maji, D.; Isamoto, T.; Oike, Y.; Endo, M. UV-B-activated B16 melanoma cells or HaCaT keratinocytes accelerate signaling pathways associated with melanogenesis via ANGPTL 2 induction, an activity antagonized by Chrysanthemum extract. Exp. Dermatol. 2019, 28, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, N.; Bhardwaj, A.; Srivastava, S.K.; Arora, S.; Marimuthu, S.; Deshmukh, S.K.; Singh, A.P.; Carter, J.E.; Singh, S. Development and characterization of a novel in vitro progression model for UVB-induced skin carcinogenesis. Sci. Rep. 2015, 5, 13894. [Google Scholar] [CrossRef] [Green Version]
- Vincent, K.M.; Postovit, L.M. Investigating the utility of human melanoma cell lines as tumour models. Oncotarget 2017, 8, 10498–10509. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Jiang, Q.; Zhu, X.; Ma, M.; Duan, J.; Dong, J.; Chen, J.; Cai, H. Cytotoxicity and penetration enhancement activity of essential oils from warming the interior medicinals with hot or warm property in terms of Traditional Chinese Medicine. J. Tradit. Chin. Med. 2018, 38, 257–265. [Google Scholar]
- Kozics, K.; Bučková, M.; Puškárová, A.; Kalászová, V.; Cabicarová, T.; Pangallo, D. The Effect of Ten Essential Oils on Several Cutaneous Drug-Resistant Microorganisms and Their Cyto/Genotoxic and Antioxidant Properties. Molecules 2019, 24, 4570. [Google Scholar] [CrossRef] [Green Version]
- Avram, S.; Coricovac, D.E.; Pavel, I.Z.; Pinzaru, I.; Ghiulai, R.; Baderca, F.; Soica, C.; Muntean, D.; Branisteanu, D.E.; Spandidos, D.A.; et al. Standardization of A375 human melanoma models on chicken embryo chorioallantoic membrane and Balb/c nude mice. Oncol. Rep. 2017, 38, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Al-Zubairi, A.S.; Al-Mamary, M.; Al-Ghasani, E.; Abdul, A.B.; Mohan, S. Antiproliferative activity of eo extracted from different aromatic plants on different cell lines. MOJ Toxicol. 2017, 3, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Favela-Hernández, J.M.J.; González-Santiago, O.; Ramírez-Cabrera, M.A.; Esquivel-Ferriño, P.C.; Camacho-Corona, M.D.R. Chemistry and Pharmacology of Citrus sinensis. Molecules 2016, 21, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnett, C.L.; Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Citrus-Derived Peel Oils as Used in Cosmetics. Int. J. Toxicol. 2019, 38 (Suppl. S2), 33S–59S. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Biological Activities and Safety of Citrus spp. Essential Oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menichini, F.; Tundis, R.; Loizzo, M.R.; Bonesi, M.; Provenzano, E.; De Cindio, B.; Menichini, F. In vitro photo-induced cytotoxic activity of Citrus bergamia and C. medica L. cv. Diamante peel essential oils and identified active coumarins. Pharm. Biol. 2010, 48, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Alipanah, H.; Farjam, M.; Zarenezhad, E.; Roozitalab, G.; Osanloo, M. Chitosan nanoparticles containing limonene and limonene-rich essential oils: Potential phytotherapy agents for the treatment of melanoma and breast cancers. BMC Complement. Med. Ther. 2021, 21, 186. [Google Scholar] [CrossRef]
- Nirmala, M.J.; Durai, L.; Gopakumar, V.; Nagarajan, R. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. Int. J. Nanomed. 2019, 14, 6439–6450. [Google Scholar] [CrossRef] [Green Version]
- Russo, R.; Cassiano, M.G.V.; Ciociaro, A.; Adornettol, A.; Varanol, G.P.; Chiappini, C.; Berliocchi, L.; Tassorelli, C.; Bagetta, G.; Corasaniti, M.T. Role of D-Limonene in Autophagy Induced by Bergamot Essential Oil in SH-SY5Y Neuroblastoma Cells. PLoS ONE 2014, 9, e113682. [Google Scholar] [CrossRef] [Green Version]
- Russo, R.; Ciociaro, A.; Berliocchi, L.; Cassiano, M.G.V.; Rombola, L.; Ragusa, S.; Bagetta, G.; Blandini, F.; Corasaniti, M.T. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells. Fitoterapia 2013, 89, 48–57. [Google Scholar] [CrossRef]
- Yoon, W.J.; Lee, N.H.; Hyun, C.G. Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J. Oleo Sci. 2010, 59, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Erhan, M.K. The Potential of Orange Peel Oil as a Suppressor of Cell Proliferation in Animal Feed and Human Nutrition: An Experimental Study. Alinteri J. Agric. Sci. 2020, 35, 44–49. [Google Scholar] [CrossRef]
- Shaer, N.A.; Al-Abbas, N.S.; Mohamed, A.A.; Alqriqri, M.A. Cytotoxic effects of some essential oils on Mcf-7, Hfs and Hct116 cell lines. Afr. J. Biotechnol. 2020, 19, 392–399. [Google Scholar] [CrossRef]
- Im, S.J.; Kim, J.H.; Kim, M.Y. Evaluation of bioactive components and antioxidant and anticancer properties of citrus wastes generated during bioethanol production. Nat. Prod. Commun. 2014, 9, 483–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouidhi, B.; Zmantar, T.; Bakhrouf, A. Anticariogenic and cytotoxic activity of clove essential oil (Eugenia caryophyllata) against a large number of oral pathogens. Ann. Microbiol. 2010, 60, 599–604. [Google Scholar] [CrossRef]
- Puškárová, A.; Bučková, M.; Kraková, L.; Pangallo, D.; Kozics, K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep. 2017, 7, 8211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cansian, R.L.; Vanin, A.B.; Orlando, T.; Piazza, S.P.; Putona, B.M.S.; Cardoso, R.I.; Goncalvesa, I.; Honaisera, T.C.; Paroula, N.; Oliveira, D. Toxicity of clove essential oil and its ester eugenyl acetate against Artemia salina. Braz. J. Biol. 2017, 77, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Di Martile, M.; Garzoli, S.; Ragno, R.; Del Bufalo, D. Essential Oils and Their Main Chemical Components: The Past 20 Years of Preclinical Studies in Melanoma. Cancers 2020, 12, 2650. [Google Scholar] [CrossRef]
- Pisano, M.; Pagnan, G.; Loi, M.; Mura, M.E.; Tilocca, M.G.; Palmieri, G.; Fabbri, D.; Dettori, M.A.; Delogu, G.; Ponzoni, M.; et al. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol. Cancer 2007, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, R.; Nadiminty, N.; Fitzpatrick, J.E.; Alworth, W.L.; Slaga, T.J.; Kumar, A.P. Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J. Biol. Chem. 2005, 280, 5812–5819. [Google Scholar] [CrossRef] [Green Version]
- Júnior, P.L.; Câmara, D.A.; Costa, A.S.; Ruiz, J.L.; Levy, D.; Azevedo, R.; Pasqualoto, K.F.; de Oliveira, C.F.; de Melo, T.C.; Pessoa, N.D.; et al. Apoptotic effect of eugenol envolves G2/M phase abrogation accompanied by mitochondrial damage and clastogenic effect on cancer cell in vitro. Phytomedicine 2016, 23, 725–735. [Google Scholar] [CrossRef]
- Koh, T.; Machino, M.; Murakami, Y.; Umemura, N.; Sakagami, H. Cytotoxicity of dental compounds towards human oral squamous cell carcinoma and normal oral cells. In Vivo 2013, 27, 85–95. [Google Scholar]
- Koh, T.; Murakami, Y.; Tanaka, S.; Machino, M.; Onuma, H.; Kaneko, M.; Sugimoto, M.; Soga, T.; Tomita, M.; Sakagami, H. Changes of metabolic profiles in an oral squamous cell carcinoma cell line induced by eugenol. In Vivo 2013, 27, 233–243. [Google Scholar] [PubMed]
- Gurita, V.G.; Pavel, I.Z.; Borcan, F.; Moaca, A.; Danciu, C.; Diaconeasa, Z.; Imbrea, I.; Vlad, D.; Dumitrascu, V.; Pop, G. Toxicological Evaluation of Some Essential Oils Obtained from Selected Romania Lamiaceae Species in Complex with Hydroxypropyl-gamma-cyclodextrin. Rev. Chim. 2019, 70, 10. [Google Scholar] [CrossRef]
- Yilmaz, E.; Borchert, H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema—An in vivo study. Int. J. Pharm. 2006, 307, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Alexa, V.T.; Szuhanek, C.; Cozma, A.; Galuscan, A.; Borcan, F.; Obistioiu, D.; Dehelean, C.A.; Jumanca, D. Natural Preparations based on Orange, Bergamot and Clove Essential Oils and their Chemical Compounds as Antimicrobial Agents. Molecules 2020, 25, 5502. [Google Scholar] [CrossRef] [PubMed]
- Soica, C.; Oprean, C.; Borcan, F.; Danciu, C.; Trandafirescu, C.; Coricovac, D.; Crăiniceanu, Z.; Dehelean, C.A.; Munteanu, M. The synergistic biologic activity of oleanolic and ursolic acids in complex with hydroxypropyl-γ-cyclodextrin. Molecules 2014, 19, 4924–4940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nr. | Compounds | Type | Retention Time | LRI | % of Total | ||
---|---|---|---|---|---|---|---|
BEO/OEO | CEO/OEO | BEO/CEO/OEO | |||||
1. | α-pinene | MH | 6.42 | 1013 | 26.50 | - | 20.15 |
2. | Camphene | MH | 7.54 | 1057 | 0.58 | - | 0.43 |
3. | β-pinene | MH | 8.68 | 1092 | 1.89 | 0.09 | 1.30 |
4. | Thujene | MO | 9.04 | 1116 | 0.38 | 0.08 | 0.22 |
5. | β-myrcene | MH | 10.21 | 1164 | 2.06 | 0.86 | 1.30 |
6. | 4-carene | MH | 10.75 | 1176 | 1.79 | - | 1.24 |
7. | D-limonene | MH | 11.36 | 1189 | 43.32 | 29.82 | 32.69 |
8. | γ-terpinene | MH | 12.65 | 1207 | 3.42 | 2.42 | |
9. | p-cymol | MH | 13.28 | 1212 | 2.43 | 0.04 | 1.70 |
10. | p-mentha-1,4(8)-diene | MH | 13.72 | 1278 | 5.42 | - | 3.96 |
11. | α-terpinene | MH | 13.90 | 1298 | 1.08 | - | 0.75 |
12. | 1-hexanol, 4-methyl, acetate | MH | 16.87 | 1489 | 0.38 | - | 0.23 |
13. | β -linalool | MO | 20.90 | 1532 | 7.82 | 0.14 | 5.15 |
14. | α-caryophyllene | SH | 22.53 | 1598 | 0.12 | 7.58 | 3.26 |
15. | α-terpineol acetate | MO | 24.49 | 1643 | 0.70 | 1.90 | 0.49 |
16. | Benzyl alcohol | 32.18 | 2071 | - | 26.75 | 8.76 | |
17. | p-eugenol | MO | 34.24 | 2192 | 1.95 | 32.71 | 15.85 |
Total of Major Compounds | 99.84 * | 99.97 * | 99.90 * | ||||
Monoterpene hidrocarbonates (MH) | 88.87 | 30.81 | 66.17 | ||||
Monoterpene oxygenate (MO) | 10.85 | 34.83 | 21.71 | ||||
Sesquiterpene hidrocarbonates (SH) | 0.12 | 7.58 | 3.26 | ||||
Sesquiterpene oxygenate (SO) | - | - | - |
Cell Type | CDI | |||||
---|---|---|---|---|---|---|
E(BEO/OEO) | E(CEO/OEO) | E(BEO/CEO/OEO) | ||||
0.250% | 0.625% | 0.250% | 0.625% | 0.250% | 0.625% | |
HaCaT | 0.4 | 3.83 | 0.74 | 0.87 | 2.43 | 1.21 |
A375 | 0.53 | 1.68 | 1.09 | 1.16 | 1.1 | 2.57 |
HGF | 0.72 | 0.84 | - | - | - | - |
SCC4 | 1.02 | 1.05 | 0.82 | 0.93 | 2.83 | 1.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexa, V.T.; Galuscan, A.; Soica, C.M.; Cozma, A.; Coricovac, D.; Borcan, F.; Popescu, I.; Mioc, A.; Szuhanek, C.; Dehelean, C.A.; et al. In Vitro Assessment of the Cytotoxic and Antiproliferative Profile of Natural Preparations Containing Bergamot, Orange and Clove Essential Oils. Molecules 2022, 27, 990. https://doi.org/10.3390/molecules27030990
Alexa VT, Galuscan A, Soica CM, Cozma A, Coricovac D, Borcan F, Popescu I, Mioc A, Szuhanek C, Dehelean CA, et al. In Vitro Assessment of the Cytotoxic and Antiproliferative Profile of Natural Preparations Containing Bergamot, Orange and Clove Essential Oils. Molecules. 2022; 27(3):990. https://doi.org/10.3390/molecules27030990
Chicago/Turabian StyleAlexa, Vlad Tiberiu, Atena Galuscan, Codruța M. Soica, Antoanela Cozma, Dorina Coricovac, Florin Borcan, Iuliana Popescu, Alexandra Mioc, Camelia Szuhanek, Cristina Adriana Dehelean, and et al. 2022. "In Vitro Assessment of the Cytotoxic and Antiproliferative Profile of Natural Preparations Containing Bergamot, Orange and Clove Essential Oils" Molecules 27, no. 3: 990. https://doi.org/10.3390/molecules27030990
APA StyleAlexa, V. T., Galuscan, A., Soica, C. M., Cozma, A., Coricovac, D., Borcan, F., Popescu, I., Mioc, A., Szuhanek, C., Dehelean, C. A., & Jumanca, D. (2022). In Vitro Assessment of the Cytotoxic and Antiproliferative Profile of Natural Preparations Containing Bergamot, Orange and Clove Essential Oils. Molecules, 27(3), 990. https://doi.org/10.3390/molecules27030990