1H-NMR and LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Fly Ash Treated Acid Mine Drainage
Abstract
:1. Introduction
1.1. Shortfalls of Some Methods of Ameliorating Acid Mine Drainage Water
1.2. The Case for Use of AMD and Fly Ash for Crop Production: Importance of Utilizing Fly Ash (FA)
2. Materials and Methods
2.1. Potato (Solanum tuberosum L.) Tuber Samples and Experimental Design
2.2. Sample Preparation for NMR Analysis
2.3. LC-MS Experiments
2.4. Data Pre-Processing and Multivariate Analysis
3. Results
1H-NMR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Dill, S.; James, A. The Assessment of the Impacts on Groundwater Quality Associated with the Backfilling of Dolomitic Cavities with Gold Mine Tailings; Report No. 3, final; Unpublished; Water Research Commission (WRC): Pretoria, South Africa, 2003. [Google Scholar]
- Duruibe, J.; Ogwuegbu, M.; Egwurugwu, J. Heavy metal pollution, and human bio toxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Vadapalli, V.; Klink, M.; Etchebers, O.; Petrik, L.; Gitari, W.; White, R.; Key, D.; Iwuoha, E. Neutralization of acid mine drainage using fly ash, and strength development of the resulting solid residues. S. Afr. J. Sci. 2008, 104, 317–322. [Google Scholar]
- Vadapalli, V.R.; Gitari, M.W.; Petrik, L.F.; Etchebers, O.; Ellendt, A. Integrated acid mine drainage management using fly ash. J. Environ. Sci. Health 2012, 47, 60–69. [Google Scholar] [CrossRef]
- Edmeston, M. Implications of Environmental Risk in a Divided Society: The Case of Acid Mine Drainage on the West Rand, South Africa, as an Example of a Risk Society; Faculty of Humanities, University of Witwatersrand: Johannesburg, South Africa, 2010. [Google Scholar]
- Oelofse, S.H.H. Mine water pollution Acid mine decant, effluent and treatment: A consideration of key emerging issues that may impact the State of the Environment. In Mining: Environment and Health Concerns; CRC Press: Boca Raton, FL, USA, 2008; pp. 83–91. [Google Scholar]
- Zalidis, G.; Stamatiadis, S.; Takavakoglou, V.; Eskridge, K.; Misopolinos, N. Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric. Ecosyst. Environ. 2002, 88, 137–146. [Google Scholar] [CrossRef]
- Skousen, J.G.; Ziemkiewicz, P.F. Acid Mine Drainage Control and Treatment; West Virginia University and the National Mine Land Reclamation Centre: Morgantown, WV, USA, 1996. [Google Scholar]
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. Acid mine drainage formation, control, and treatment: Approaches and strategies. Extr. Ind. Soc. 2019, 6, 241–249. [Google Scholar] [CrossRef]
- Kastyuchik, A.; Karam, A.; Aïder, M. Effectiveness of alkaline amendments in acid mine drainage remediation. Environ. Technol. Innov. 2016, 6, 49–59. [Google Scholar] [CrossRef]
- Musyoka, N.M.; Petrik, L.F.; Fatoba, O.O.; Hums, E. Synthesis of zeolites from coal fly ash using mine waters. Miner. Eng. 2013, 53, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Nandy, M.; Bhattacharya, S. Energy Issues in India and South Africa. J. Infrastruct. 2009, 7, 69–90. [Google Scholar]
- Spiegel, S.J. Socioeconomic dimensions of mercury pollution abatement: Engaging artisanal mining communities in Sub-Saharan Africa. Ecol. Econ. 2009, 68, 3072–3083. [Google Scholar] [CrossRef]
- Spiegel, S.; Keane, S.; Metcalf, S.; Veiga, M. Implications of the Minamata Convention on Mercury for informal gold mining in Sub-Saharan Africa: From global policy debates to grassroots implementation? Environ. Dev. Sustain. 2015, 17, 765–785. [Google Scholar] [CrossRef] [Green Version]
- Hilson, G.; McQuilken, J. Four decades of support for artisanal and small-scale mining in sub-Saharan Africa: A critical review. Extr. Ind. Soc. 2014, 1, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Ashton, P.; Love, D.; Mahachi, H.; Dirks, P. An Overview of the Impact of Mining and Mineral Processing Operations on Water Resources and Water Quality in the Zambezi, Limpopo, and Olifants Catchments in Southern Africa; Report to minerals, Mining, and Sustainable Development Project; CSIR-Environmentek, South Africa and Geology Department, University of Zimbabwe: Harare, Zimbabwe, 2001; p. 338. [Google Scholar]
- Ashton, O.B.; Wong, M.; McGhie, T.K.; Vather, R.; Wang, Y.; Requejo-Jackman, C.; Woolf, A.B. Pigments in avocado tissue and oil. J. Agric. Food Chem. 2006, 54, 10151–10158. [Google Scholar] [CrossRef] [PubMed]
- Showers, K.B. Water scarcity and urban Africa: An overview of urban-rural water linkages. World Dev. 2002, 30, 621–648. [Google Scholar] [CrossRef]
- Gibert, O.; De Pablo, J.; Luis Cortina, J.; Ayora, C. Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment. J. Chem. Technol. Biotechnol. 2003, 78, 489–496. [Google Scholar] [CrossRef]
- Sheoran, A.S.; Sheoran, V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner. Eng. 2006, 19, 105–116. [Google Scholar] [CrossRef]
- Ziemkiewicz, P.F.; Meek, F.A. Long-term behavior of forming acid-forming rock: Results of 11-year field studies. In Proceedings of the International Land Reclamation and Mine Drainage Conference, Pittsburgh, PA, USA, 24–30 April 1994; Volume 24, pp. 49–56. [Google Scholar]
- Santos, E.S.; Abreu, M.M.; Macías, F. Rehabilitation of mining areas through integrated biotechnological approach: Technosols derived from organic/inorganic wastes and autochthonous plant development. Chemosphere 2019, 224, 765–775. [Google Scholar] [CrossRef]
- Wang, S.; Boyjoo, Y.; Choueib, A. A comparative study of dye removal using fly ash treated by different methods. Chemosphere 2005, 60, 1401–1407. [Google Scholar] [CrossRef]
- Yunusa, I.A.M.; Erasmus, D.; DeSilva, D.L.; Murray, B.R.; Burchett, M.D.; Skilbeck, G.C.; Heidrich, C. Fly-ash: An exploitable resource for management of Australian agricultural soils. Fuel 2006, 85, 2337–2344. [Google Scholar] [CrossRef]
- Maher, C.A.; Sullivan, L.A.; Ward, N.J. Sample pre-treatment and the determination of some chemical properties of acid sulfate soil materials. Soil Res. 2004, 42, 667–670. [Google Scholar] [CrossRef]
- Rios, C.A.; Williams, C.D.; Roberts, C.L. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker, and synthetic zeolites. J. Hazard. Mater. 2008, 156, 23–35. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Hooda, P.S.; Tsadilas, C.D. Opportunities and challenges in the use of coal fly ash for soil improvements. A review. J. Environ. Manag. 2014, 145, 249–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, V.C.; Singh, N. Impact of fly ash incorporation in soil systems. Agric. Ecosyst. Environ. 2010, 136, 16–27. [Google Scholar] [CrossRef]
- Hamel, B.L.; Stewart, B.W.; Kim, A.G. Tracing the interaction of acid mine drainage with coal utilization byproducts in a grouted mine: Strontium isotope study of the inactive Omega Coal Mine, West Virginia (USA). Appl. Geochem. 2010, 25, 212–223. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Bouazza, M. The use of coal combustion fly’s ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon). Fuel 2013, 109, 400–408. [Google Scholar] [CrossRef]
- Walling, D.E.; Teed, A. A simple pumping sampler for research into suspended sediment transport in small catchments. J. Hydrol. 1971, 13, 325–337. [Google Scholar] [CrossRef]
- Shi, Y.L.; Yang, W.; Ren, M.E. Hydrological characteristics of the Changing and its relation to sediment transport to the sea. Cont. Shelf Res. 1985, 4, 5–15. [Google Scholar]
- Nemutanzhela, M.V.; Modise, D.M.; Siyoko, K.J.; Kanu, S.A. Assessment of Growth, Tuber Elemental Composition, Stomatal Conductance, and Chlorophyll Content of Two Potato Cultivars Under Irrigation with Fly Ash-Treated Acid Mine Drainage. Am. J. Potato Res. 2017, 94, 1–12. [Google Scholar] [CrossRef]
- Chatterjee, C.; Gopal, R.; Dube, B.K. Impact of iron stress on biomass, yield, metabolism, and quality of potato (Solanum tuberosum L.). Sci. Hortic. 2006, 108, 1–6. [Google Scholar] [CrossRef]
- Farooq, M.; Anwar, F.; Rashid, U. Appraisal of heavy metal contents in different vegetables grown in the vicinity of an industrial area. Pak. J. Bot. 2008, 40, 2099–2106. [Google Scholar]
- Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn, and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for sustainable global food security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato. A review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Lerna, A. Influence of harvest date on nitrate contents of three potato varieties for off-season production. J. Food Compos. Anal. 2009, 22, 551–555. [Google Scholar]
- Li, X.; Gao, P.; Gjetvaj, B.; Westcott, N.; Gruber, M.Y. Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Sci. J. 2009, 177, 68–80. [Google Scholar] [CrossRef]
- Lutaladio, N.; Castaldi, L. Potato: The hidden treasure. J. Food Compos. Anal. 2009, 22, 491–493. [Google Scholar] [CrossRef]
- Ward, J.L.; Harris, C.; Lewis, J.; Beale, M.H. Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 2003, 62, 949–957. [Google Scholar] [CrossRef]
- Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 2003, 62, 817–836. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M. Analysis of biologically active compounds in potatoes (Solanum tuberosum L.), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. 2004, 1054, 143–155. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E. Glycoalkaloids and calystegine alkaloids in potatoes. Adv. Potato Chem. Technol. 2016, 2, 167–194. [Google Scholar]
- Friedman, M.; Roitman, J.N.; Kozukue, N. Glycoalkaloid and calystegine contents of eight potato cultivars. J. Agric. Food Chem. 2003, 51, 2964–2973. [Google Scholar] [CrossRef]
- Farag, M.A.; Porzel, A.; Wessjohann, L.A. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC-MS, and 1D NMR techniques. Phytochemistry 2012, 76, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Beltran, A.; Suarez, M.; Rodríguez, M.A.; Vinaixa, M.; Samino, S.; Arola, L.; Correig, X.; Yanes, O. Assessment of compatibility between extraction methods for NMR-and LC/MS-based metabolomics. Anal. Chem. 2012, 84, 5838–5844. [Google Scholar] [CrossRef] [PubMed]
- Defernez, M.; Gunning, Y.M.; Parr, A.J.; Shepherd, L.V.; Davies, H.V.; Colquhoun, I.J. NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. J. Agric. Food Chem. 2004, 52, 6075–6085. [Google Scholar] [CrossRef]
- Maree, J.E.; Viljoen, A.M. The phytochemical distinction between Pelargonium sidoides and Pelargonium reniforme—A quality control perspective. S. Afr. J. Bot. 2012, 82, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Mediani, A.; Abas, F.; Khatib, A.; Maulidiani, H.; Shaari, K.; Choi, Y.H.; Lajis, N.H. 1H-NMR-based metabolomics approach to understanding the drying effects on the phytochemicals in Cosmos caudatus. Food Res. Int. 2012, 49, 763–770. [Google Scholar] [CrossRef]
- Lai, J.L.; Zhang-Xuan, D.; Xiao-Hui, J.I.; Xue-Gang, L. Absorption and interaction mechanisms of uranium and cadmium in purple sweet potato (Ipomoea batatas L.). J. Hazard. Mater. 2020, 400, 1–13. [Google Scholar] [CrossRef]
- Pacifico, D.; Musmeci, S.; del Pulgar, J.S.; Onofri, C.; Parisi, B.; Sasso, R.; Mandolino, G.; Lombardi-Boccia, G. Caffeic acid and α-chaconine influence the resistance of potato tuber to Phthorimaea operculella (Lepidoptera: Gelechiidae). Am. J. Potato Res. 2019, 96, 403–413. [Google Scholar] [CrossRef]
- Villegas, R.J.A.; Kojima, M. Sweet Potato Root Enzyme Which Catalyses the Formation of Chlorogenic Acid from 1-O-Caffeoyl-d-glucose and D-Quinic Acid. Agric. Biol. Chem. 1985, 49, 263–265. [Google Scholar]
- Meinhart, A.D.; Damin, F.M.; Caldeirao, L.; de Jesus Filho, M.; da Silva, L.C.; da Silva Constant, L.; Teixeira Filho, J.; Wagner, R.; Godoy, H.T. Study of new sources of six chlorogenic acids and caffeic acid. J. Food Compos. Anal. 2019, 82, 103244. [Google Scholar] [CrossRef]
- Martins, I.C.; Sardo, M.; Santos, S.M.; Fernandes, A.; Antunes, A.; Andre, V.; Mafra, L.; Duarte, M.T. Packing interactions and physicochemical properties of novel multicomponent crystal forms of the anti-inflammatory azelaic acid studied by X-ray and solid-state NMR. Cryst. Growth Des. 2016, 16, 154–166. [Google Scholar] [CrossRef]
- Petersson, E.V.; Arif, U.; Schulzova, V.; Krtková, V.; Hajšlová, J.; Meijer, J.; Andersson, H.C.; Jonsson, L.; Sitbon, F. Glycoalkaloid and calystegine levels in table potato cultivars subjected to wounding, light, and heat treatments. J. Agric. Food Chem. 2013, 61, 5893–5902. [Google Scholar] [CrossRef]
- Asano, N.; Kato, A.; Matsui, K.; Watson, A.A.; Nash, R.J.; Molyneux, R.J.; Hackett, L.; Topping, J.; Winchester, B. The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases. Glycobiology 1997, 7, 1085–1088. [Google Scholar] [CrossRef] [Green Version]
- Malmberg, A.G.; Theander, O. Determination of chlorogenic acid in potato tubers. J. Agric. Food Chem. 1985, 33, 549–551. [Google Scholar] [CrossRef]
- Kojima, M.; Villegas, R.J.A. Detection of the enzyme in sweet potato root catalyzes trans-esterification between 1-Op-coumaroyl-d-glucose and d-quinic acid. Agric. Biol. Chem. 1984, 48, 2397–2399. [Google Scholar]
- De Souza, L.A.; Da Silva, H.C.; De Almeida, W.B. Structural determination of antioxidant and anticancer flavonoid rutin in solution through DFT Calculations of 1H NMR chemical shifts. Chem. Open 2018, 7, 902–922. [Google Scholar]
- Duggan, T.; Dawid, C.; Baur, S.; Hofmann, T. Characterization of Bitter and Astringent Off-Taste Compounds in Potato Fibers. J. Agric. Food Chem. 2020, 68, 11524–11534. [Google Scholar] [CrossRef]
- Tomita, S.; Ikeda, S.; Tsuda, S.; Someya, N.; Asano, K.; Kikuchi, J.; Chikayama, E.; Ono, H.; Sekiyama, Y. A survey of metabolic changes in potato leaves by NMR-based metabolic profiling about resistance to late blight disease under field conditions. Magn. Reson. Chem. 2017, 55, 120–127. [Google Scholar] [CrossRef]
- Da Silva, H.C.; De Souza, L.A.; Dos Santos, H.F.; De Almeida, W.B. (2020). Determination of Anticancer Zn (II)–Rutin Complex Structures in Solution through Density Functional Theory Calculations of 1H NMR and UV–VIS Spectra. Am. Chem. Soc. Omega 2021, 5, 3030–3042. [Google Scholar]
- Kröner, A.; Marnet, N.; Andrivon, D.; Val, F. Nicotiflorin, rutin, and chlorogenic acid: Phenylpropanoids involved differently in quantitative resistance of potato tubers to biotrophic and necrotrophic pathogens. Plant Physiol. Biochem. 2012, 57, 23–31. [Google Scholar] [CrossRef]
- Cui, X.; Lv, Y.; Wang, Z.; Li, J.; Li, C. Regulating inhibitory activity of potato, I-type proteinase inhibitor from buckwheat by rutin and quercetin. J. Food Biochem. 2021, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Miranda, L.; Deusser, H.; Evers, D. The impact of in vitro digestion on bio-accessibility of polyphenols from potatoes and sweet potatoes and their influence on iron absorption by human intestinal cells. Food Funct. 2013, 4, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Bergers, W.W.A. A rapid quantitative assay for solanidine glycoalkaloids in potatoes and industrial potato protein. Potato Res. 1980, 23, 105–110. [Google Scholar] [CrossRef]
- Lawson, D.R.; Green, T.P.; Haynes, L.W.; Miller, A.R. Nuclear magnetic resonance spectroscopy and mass spectrometry of solanidine, leptinidine, and acetylleptinidine. Steroidal alkaloids from Solanum chacoense Bitter. J. Agric. Food Chem. 1997, 45, 4122–4126. [Google Scholar] [CrossRef]
- Gunic, E.; Tabakovic, I.; Gasi, K.M.; Miljkovic, D.; Juranic, I. Products and mechanisms in the anodic oxidation of solanidine-type steroidal alkaloids. J. Org. Chem. 1994, 59, 1264–1269. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, G.; Shi, Y.; Tian, W.S.; Zhuang, C.; Chen, F.E. Asymmetric synthesis of (α)-solanidine and (α)-tomatidenol. Org. Biomol. Chem. 2020, 18, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- Baharu, M.N.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Synthesis and characterization of polyesters derived from glycerol, azelaic acid, and succinic acid. Green Chem. Lett. Rev. 2015, 8, 31–38. [Google Scholar] [CrossRef]
- Charnock, C.; Brudeli, B.; Klaveness, J. Evaluation of the antibacterial efficacy of diesters of azelaic acid. Eur. J. Pharm. Sci. 2004, 21, 589–596. [Google Scholar] [CrossRef]
- Oliveira, B.H.D.; Strapasson, R.A. Biotransformation of the monoterpene, limonene, by Fusarium verticilloides. Braz. Arch. Biol. Technol. 2000, 43, 1–13. [Google Scholar] [CrossRef]
- Sanseverino, A.M.; Silva, F.M.D.; Jones, J., Jr.; Mattos, M. Cohalogenation of limonene, carvomenthene, and related unsaturated monoterpene alcohols. J. Braz. Chem. Soc. 2000, 11, 381–386. [Google Scholar] [CrossRef]
- Maksymiuk, C.S.; Gayahtri, C.; Gil, R.R.; Donahue, N.M. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: Mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy. Phys. Chem. Chem. Phys. 2009, 11, 7810–7818. [Google Scholar] [CrossRef] [PubMed]
- Cravatt, B.F.; Lerner, R.A.; Boger, D.L. Structure determination of an endogenous sleep-inducing lipid, cis-9-octadecenamide (oleamide): A synthetic approach to the chemical analysis of trace quantities of a natural product. J. Am. Chem. Soc. 1996, 118, 580–590. [Google Scholar] [CrossRef]
- Kwon, J.H.; Hwang, S.E.; Han, J.T.; Kim, C.J.; Rho, J.R.; Shin, J.E. Production of oleamide, a functional lipid, by Streptomyces sp. KK90378. J. Microbiol. Biotechnol. 2001, 11, 1018–1023. [Google Scholar]
- Feng, Z.; Ding, C.; Li, W.; Wang, D.; Cui, D. Applications of metabolomics in the research of soybean plants under abiotic stress. Food Chem. 2020, 310, 1–9. [Google Scholar] [CrossRef]
- Shulaev, V.; Cortes, D.; Miller, G.; Mittler, R. Metabolomics for plant stress response. Physiol. Plant. 2008, 132, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Noctor, G.; Reichheld, J.P.; Foyer, C.H. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 2018, 80, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.A.; Balal, R.M.; Khan, N.; Zotarelli, L.; Liu, G.D.; Sarkhosh, A.; Fernández-Zapata, J.C.; Nicolás, J.J.M.; Garcia-Sanchez, F. Selenium impedes cadmium and arsenic toxicity in potatoes by modulating carbohydrate and nitrogen metabolism. Ecotoxicol. Environ. Saf. 2019, 180, 588–599. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and economics. Front. Plant Sci. 2016, 6, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [Green Version]
- Marcec, M.J.; Gilroy, S.; Poovaiah, B.W.; Tanaka, K. The mutual interplay of Ca2+ and ROS signalling in plant immune response. Plant Sci. 2019, 283, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Zhang, M.; Wei, S.; Zhang, J.; Wang, C.; Liao, W. Roles of nitric oxide in heavy metal stress in plants: Crosstalk with phytohormones and protein S-nitrosylation. Environ. Pollut. 2020, 259, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rodziewicz, P.; Swarcewicz, B.; Chmielewska, K.; Wojakowska, A.; Stobiecki, M. Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol. Plant. 2014, 36, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Schieberle, P.; Maier, W.; Firl, J.; Grosch, W. HRGC separation of hydroperoxides formed during the photosensitized oxidation of (R)—(α)-Limonene. J. High-Resolut. Chromatogr. 1987, 10, 588–593. [Google Scholar] [CrossRef]
- Schutzendubel, A.; Polle, A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Edward, M.; Muntean, N.; Duda, M.; Michalski, R. Heavy Metals’ Uptake from Soil in Potato Tubers: An Ionomics Approach. ProEnviron. Promediu 2019, 12, 1–5. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raletsena, M.V.; Mdlalose, S.; Bodede, O.S.; Assress, H.A.; Woldesemayat, A.A.; Modise, D.M. 1H-NMR and LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Fly Ash Treated Acid Mine Drainage. Molecules 2022, 27, 1187. https://doi.org/10.3390/molecules27041187
Raletsena MV, Mdlalose S, Bodede OS, Assress HA, Woldesemayat AA, Modise DM. 1H-NMR and LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Fly Ash Treated Acid Mine Drainage. Molecules. 2022; 27(4):1187. https://doi.org/10.3390/molecules27041187
Chicago/Turabian StyleRaletsena, Maropeng V., Samukelisiwe Mdlalose, Olusola S. Bodede, Hailemariam A. Assress, Adugna A. Woldesemayat, and David M. Modise. 2022. "1H-NMR and LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Fly Ash Treated Acid Mine Drainage" Molecules 27, no. 4: 1187. https://doi.org/10.3390/molecules27041187
APA StyleRaletsena, M. V., Mdlalose, S., Bodede, O. S., Assress, H. A., Woldesemayat, A. A., & Modise, D. M. (2022). 1H-NMR and LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Fly Ash Treated Acid Mine Drainage. Molecules, 27(4), 1187. https://doi.org/10.3390/molecules27041187