Simultaneous Analysis for Quality Control of Traditional Herbal Medicine, Gungha-Tang, Using Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of LC–MS/MS MRM Conditions
2.2. Identification of Each Marker Analyte for LC–MS/MS MRM Analysis
2.3. Method Validation of the Developed Analytical Method
2.4. Simultaneous Determination of the Nine Marker Analytes in GHT Samples Using the Developed LC–MS/MS MRM Assay
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Preparation of GHT Water Sample
3.4. Preparation of Samples and Standard Solutions for LC–MS/MS Quantification of the Nine Marker Analytes in GHT Samples
3.5. LC–MS/MS Instrumentation and Experimental Conditions for Simultaneous Determination of the Nine Marker Analytes in GHT Samples
3.6. Method Validation of the Developed LC–MS/MS MRM Assay
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mao, Q.; Xu, J.; Kong, M.; Shen, H.; Zhu, H.; Zhou, S.; Li, S. LC-MS-based metabolomics in traditional Chinese medicines research: Personal experiences. Chin. Herb. Med. 2017, 9, 14–21. [Google Scholar] [CrossRef]
- Li, S.L.; Song, J.Z.; Qiao, C.F.; Zhou, Y.; Xu, H.X. UPLC-PDA-TOFMS based chemical profiling approach to rapidly evaluate chemical consistency between traditional and dispensing granule decoctions of traditional medicine combinatorial formulae. J. Pharm. Biomed. Anal. 2010, 52, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Y.; Chang, F.R.; Liou, J.R.; Lo, I.W.; Chung, T.C.; Lee, L.Y.; Chi, C.C.; Du, Y.C.; Wong, M.H.; Juo, S.H.H.; et al. Rapid HPLC quantification approach for detection of active constituents in modern combinatorial formula, San-Huang-Xie-Xin-Tang (SHXXT). Front. Pharmacol. 2016, 7, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, S.H.; Shin, H.R.; Park, K.; Lee, Y.S.; Kim, J.; Yeom, S.R.; Kwon, Y.D.; Cho, H.Y. Safety of Gunghatang tablet after single oral administration in healthy male volunteers, single center study. J. Korean Med. Rehabil. 2019, 29, 101–108. [Google Scholar]
- Heo, J. Donguibogam; Namsandang: Seoul, Korea, 2007; p. 134. [Google Scholar]
- Kim, H.G.; Oh, S.M.; Kim, N.W.; Shim, J.H.; Nam, Y.H.; Nguyen, T.N.; Lee, M.H.; Lee, D.Y.; Kang, D.H.; Baek, N.I. Three new phthalide glycosides from the rhizomes of Cnidium officinale and their recovery effect on damaged otic hair cells in zebrafish. Molecules 2021, 26, 7034. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Chen, J.; Wang, S. A polysaccharide from Pinellia ternate inhibits cell proliferation and metastasis in human cholangiocarcinoma cells by targeting of Cdc42 and 67 kDa laminin receptor (LR). Int. J. Biol. Macromol. 2016, 93 Pt A, 520–525. [Google Scholar] [CrossRef]
- Tu, Y.; Luo, X.; Liu, D.; Li, H.; Xia, H.; Ma, C.; Zhang, D.; Yang, Y.; Pan, X.; Wang, T.; et al. Extracts of Poria cocos improve functional dyspepsia via regulating brain–gut peptides, immunity and repairing of gastrointestinal mucosa. Phytomedicine 2021, 95, 153875. [Google Scholar] [CrossRef]
- Jang, A.; Choi, G.E.; Kim, Y.J.; Lee, G.H.; Hyun, K.Y. Neuroprotective properties of ethanolic extract of Citrus unshiu Markovich peel through NADPH oxidase 2 inhibition in chemotherapy-induced neuropathic pain animal model. Phytother. Res. 2021, 35, 6918–6931. [Google Scholar] [CrossRef]
- Ahn, T.S.; Hwang, D.S.; Lee, J.M.; Jang, J.B.; Lee, C.H. Anti-inflammatory effect and mechanism of Citri Reticulatae Viride Pericarpium water extract. J. Korean Obstet. Gynecol. 2021, 34, 34–47. [Google Scholar]
- Okada, N.; Murakami, A.; Urushizaki, S.; Matsuda, M.; Kawazoe, K.; Ishizawa, K. Extracts of immature orange (Aurantii fructus immaturus) and Citrus Unshiu peel (Citri unshiu pericarpium) induced p-glucoprotein and cytochrome P450 3A4 expression via upregulation of pregnane X receptor. Front. Pharmacol. 2017, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Eun, S.Y.; Cheon, Y.H.; Park, K.D.; Chung, C.H.; Lee, C.H.; Kim, J.Y.; Lee, M.S. Anti-osteoporosis effects of the Eleutherococcus senticosus, Achyranthes japonica, and Atractylodes japonica mixed extract fermented with nuruk. Nutrients 2021, 13, 3904. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cui, J.; Zhang, L.; Chang, G.; Wang, W. Screening of anti-chronic nonbacterial prostatitis activity of different extractions of the aerial part of Glycyrrhiza uralensis, and network pharmacology research. Biomed. Rep. 2021, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.N. Ginger (Zingiber officinale (L.) Rosc) improves oxidative stress and trace elements status in patients with alopecia areata. Niger. J. Clin. Pract. 2020, 23, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.E.; Seong, G.U.; Lee, Y.J.; Won, J.H. Quantitative analysis for the quality evaluation of active ingredients in Cnidium Rhizome. Yakhak Hoeji 2016, 60, 227–234. [Google Scholar] [CrossRef]
- Han, J.H.; Jo, S.G.; Lee, M.J.; Baek, S.H.; Park, S.H. Contents of homogentisic acid and 3,4-dihydroxybenzaldehyde in the Pinellia ternata by various processing method and its safety estimate. Korean J. Orient. Physiol. Pathol. 2004, 18, 846–853. [Google Scholar]
- Wu, L.F.; Wang, K.F.; Mao, X.; Liang, W.Y.; Chen, W.J.; Li, S.; Qi, Q.; Cui, Y.P.; Zhang, L.Z. Screening and analysis of the potential bioactive components of Poria cocos (Schw.) Wolf by HPLC and HPLC-MSⁿ with the aid of chemometrics. Molecules 2016, 21, 227. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.H.; Zhao, P.; Duan, L.; Zheng, G.D.; Guo, L.; Yang, H.; Li, P. Simultaneous determination of six bioactive flavonoids in Citri Reticulatae Pericarpium by rapid resolution liquid chromatography coupled with triple quadrupole electrospray tandem mass spectrometry. Food Chem. 2013, 141, 3977–3983. [Google Scholar] [CrossRef]
- Kim, H.G.; Kim, G.S.; Lee, J.H.; Park, S.; Jeong, W.Y.; Kim, Y.H.; Kim, J.H.; Kim, S.T.; Cho, Y.A.; Lee, W.S.; et al. Determination of the change of flavonoid components as the defence materials of Citrus unshiu Marc. fruit peel against Penicillium digitatum by liquid chromatography coupled with tandem mass spectrometry. Food Chem. 2011, 128, 49–54. [Google Scholar] [CrossRef]
- Wang, C.; Pan, Y.; Fan, G.; Chai, Y.; Wu, Y. Application of an efficient strategy based on MAE, HPLC-DAD-MS/MS and HSCCC for the rapid extraction, identification, separation and purification of flavonoids from Fructus Aurantii Immaturus. Biomed. Chromatogr. 2010, 24, 235–244. [Google Scholar] [CrossRef]
- Chen, Q.; He, H.; Li, P.; Zhu, J.; Xiong, M. Identification and quantification of atractylenolide I and atractylenolide III in Rhizoma Atractylodes macrocephala by liquid chromatography-ion trap mass spectrometry. Biomed. Chromatogr. 2013, 27, 699–707. [Google Scholar] [CrossRef]
- Wu, Y.P.; Meng, X.S.; Bao, Y.R.; Wang, S.; Kang, T.G. Simultaneous quantitative determination of nine active chemical compositions in traditional Chinese medicine Glycyrrhiza by RP-HPLC with full-time five-wavelength fusion method. Am. J. Chin. Med. 2013, 41, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.; Hawa, Z.E.J.; Ali, B.; Amin, T.M. Formation of 6-, 8-, and 10-shogaol in ginger through application of different methods: Altered antioxidant and antimicrobial activity. Molecules 2018, 23, 1646. [Google Scholar]
- Seo, C.S.; Shin, H.K. Development and validation of a high-performance liquid chromatography method for quality assessment of oriental medicine, Dokhwalgisaeng-tang. Appl. Sci. 2021, 11, 7829. [Google Scholar] [CrossRef]
- Xie, M.; Yu, Y.; Zhy, Z.; Deng, L.; Ren, B.; Zhang, M. Simultaneous determination of six main components in Bushen Huoxue prescription by HPLC-CAD. J. Pharm. Biomed. Anal. 2021, 201, 114087. [Google Scholar] [CrossRef]
- Wen, X.; Luo, K.; Xiao, S.; Ai, N.; Wang, S.; Fan, X. Qualitative analysis of chemical constituents in traditional Chinese medicine analogous formula cheng-Qi decoctions by liquid chromatography–mass spectrometry. Biomed. Chromatogr. 2016, 30, 301–311. [Google Scholar] [CrossRef]
- Wang, L.; Wu, C.; Zhao, L.; Lu, X.; Wang, F.; Yang, J.; Xiong, Z. An ultra-performance liquid chromatography photodiode array detection tandem mass spectrometric method for simultaneous determination of seven major bioactive constituents in Xiaochaihutang and its application to fourteen compatibilities study. J. Chromatogr. Sci. 2015, 53, 1570–1576. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Yang, Z.Y.; Yang, T.B.; Ye, Y.; Nie, J.; Hu, Y.; Yan, P. Chemometrics-enhanced one-dimensional/comprehensive two-dimensional gas chromatographic analysis for bioactive terpenoids and phthalides in Chaihu Shugan San essential oils. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1052, 158–168. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, A.; Yan, G.; Han, Y.; Sun, H. UHPLC-MS for the analytical characterization of traditional Chinese medicines. Trends Anal. Chem. 2014, 63, 180–187. [Google Scholar] [CrossRef]
- Ying, X.; Liu, M.; Liang, Q.; Jiang, M.; Wang, Y.; Huang, F.; Xie, Y.; Shao, J.; Bai, G.; Luo, G. Identification and analysis of absorbed components and their metabolites in rat plasma and tissues after oral administration of ‘Ershiwuwei Shanhu’ pill extracts by UPLC-DAD/Q-TOF-MS. J. Ethnopharmacol. 2013, 150, 324–338. [Google Scholar] [CrossRef]
- Fu, C.; Xia, Z.; Liu, Y.; Lu, H.; Zhang, Z.; Wang, Y.; Fan, X. Qualitative analysis of major constituents from Xue Fu Zhu Yu Decoction using ultra high performance liquid chromatography with hybrid ion trap time-of-flight mass spectrometry. J. Sep. Sci. 2016, 39, 3457–3468. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; He, Y.Q.; Wang, C.H.; Welbeck, E.W.; Bligh, S.W.; Wang, Z.T. Characterization of fifty-one flavonoids in a Chinese herbal prescription Longdan Xiegan Decoction by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and photodiode array detection. Rapid Commun. Mass Spectrom. 2008, 22, 1767–1778. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.D.; Zhou, P.; Yang, H.; Li, Y.; Li, P.; Liu, E.H. Rapid resolution liquid chromatography–electrspray ionization tandem mass spectrometry method for identification of chemical constituents in Citri Reticulatae Pericarpium. Food Chem. 2013, 136, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Zhu, Z.; Jing, J.; Lv, L.; Lio, Z.; Zhang, G.; Chai, Y. Characterization of constituents in Sini decoction and rat plasma by high-performance liquid chromatography with diode array detection coupled to time-of-flight mass spectrometry. Biomed. Chromatogr. 2011, 25, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Li, W.; Liang, W.; Van Breemen, R.B. Identification and quantification of gingerols and related compounds in ginger dietary supplements using high performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2009, 57, 10014–10021. [Google Scholar] [CrossRef]
- Stafiński, M.; Wieczorek, M.; Janicki, P.; Kościelniak. Theoretical and experimental examination of recovery in the context of trueness of analytical results. Talanta 2012, 96, 39–43. [Google Scholar] [CrossRef]
- Stafiński, M.; Wieczorek, M.; Janicki, P.; Kościelniak. Influence of the species effect on trueness of analytical results estimated by the recovery test when determining selenium by HG-AFS. Talanta 2013, 117, 64–69. [Google Scholar] [CrossRef]
- Seo, C.S.; Lee, M.Y. Simultaneous quantification of eight marker components in traditional herbal formula, Haepyoyijin-tang using HPLC–PDA. Appl. Sci. 2020, 10, 3888. [Google Scholar] [CrossRef]
- Seo, C.S.; Shin, H.K. Quality assessment of traditional herbal formula, Hyeonggaeyeongyo-tang through simultaneous determination of twenty marker components by HPLC–PDA and LC–MS/MS. Saudi Pharm. J. 2020, 28, 427–439. [Google Scholar] [CrossRef]
- Seo, C.S.; Shin, H.K. Liquid chromatography tandem mass spectrometry for the simultaneous quantification of eleven phytochemical constituents in traditional Korean medicine, Sogunjung decoction. Processes 2021, 9, 153. [Google Scholar] [CrossRef]
Compound | Ion Mode | Molecular Weight | Precursor Ion (Q1) | Product Ion (Q3) | Cone Voltage (V) | Collision Energy (eV) | Retention Time (min) |
---|---|---|---|---|---|---|---|
Liqiritin apioside | − | 550.2 | 549.3 | 255.0 | 45 | 30 | 1.57 |
Neoeriocitrin | − | 596.2 | 595.5 | 151.0 | 30 | 40 | 1.58 |
Narirutin | + | 580.2 | 581.0 | 273.0 | 15 | 15 | 1.86 |
Naringin | − | 580.2 | 579.3. | 271.0 | 45 | 30 | 1.99 |
Hesperidin | + | 610.2 | 611.5 | 303.2 | 20 | 15 | 2.13 |
Neohesperidin | + | 610.2 | 611.0 | 303.0 | 15 | 20 | 2.27 |
Liquiritigenin | + | 256.1 | 257.2 | 137.0 | 35 | 35 | 3.05 |
Glycyrrhizin | − | 822.4 | 821.9 | 351.2 | 45 | 40 | 4.95 |
6-Shogaol | + | 276.2 | 277.2 | 137.1 | 25 | 15 | 8.50 |
Analyte | Linear Range (ng/mL) | Regression Equation a | r2 | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|
Liqiritin apioside | 25.00–400.00 | y = 68.42x + 52.85 | 0.9968 | 8.33 | 25.00 |
Neoeriocitrin | 50.00–800.00 | y = 48.69x − 80.24 | 0.9958 | 0.83 | 2.50 |
Narirutin | 50.00–800.00 | y = 20.32x + 202.74 | 0.9954 | 3.33 | 10.00 |
Naringin | 50.00–800.00 | y = 23.58x − 107.24 | 0.9950 | 8.33 | 25.00 |
Hesperidin | 50.00–800.00 | y = 153.88x + 509.37 | 0.9951 | 1.67 | 5.00 |
Neohesperidin | 100.00–1600.00 | y = 29.03x + 905.96 | 0.9950 | 0.33 | 1.00 |
Liquiritigenin | 0.10–1.60 | y = 19,647.00x + 239.15 | 0.9959 | 0.02 | 0.05 |
Glycyrrhizin | 50.00–800.00 | y = 14.51x − 40.59 | 0.9953 | 1.67 | 5.00 |
6-Shogaol | 0.10–1.60 | y = 19,566.10x + 659.29 | 0.9966 | 0.02 | 0.05 |
Analyte | Spiked Amount (ng/mL) | Amount Found (ng/mL) | Recovery (%) | SD | CV (%) |
---|---|---|---|---|---|
Liquiritin apioside | 200.00 | 234.34 | 117.17 | 1.44 | 1.23 |
400.00 | 458.24 | 114.56 | 3.30 | 2.88 | |
800.00 | 862.88 | 107.86 | 0.78 | 0.72 | |
Neoeriocitrin | 50.00 | 59.04 | 118.08 | 1.31 | 1.11 |
100.00 | 110.50 | 110.50 | 4.10 | 3.71 | |
200.00 | 219.08 | 109.54 | 3.74 | 3.41 | |
Narirutin | 500.00 | 557.52 | 111.50 | 2.36 | 3.02 |
1000.00 | 1050.68 | 105.07 | 3.17 | 1.30 | |
2000.00 | 2010.86 | 100.54 | 1.31 | 1.11 | |
Naringin | 500.00 | 573.90 | 114.78 | 2.84 | 2.47 |
1000.00 | 1157.74 | 115.77 | 2.10 | 1.81 | |
2000.00 | 2237.84 | 111.89 | 1.97 | 1.76 | |
Hesperidin | 500.00 | 544.38 | 108.88 | 1.75 | 1.61 |
1000.00 | 1013.86 | 101.39 | 2.72 | 2.68 | |
2000.00 | 1983.78 | 99.19 | 1.72 | 1.73 | |
Neohesperidin | 1000.00 | 1076.62 | 107.66 | 7.19 | 6.68 |
2000.00 | 2009.60 | 100.48 | 5.05 | 5.03 | |
4000.00 | 4121.26 | 103.03 | 3.02 | 2.94 | |
Liquiritigenin | 4.00 | 3.66 | 91.50 | 7.42 | 8.11 |
8.00 | 7.88 | 98.50 | 6.75 | 6.86 | |
16.00 | 14.50 | 90.63 | 7.51 | 8.29 | |
Glycyrrhizin | 500.00 | 579.68 | 115.94 | 3.42 | 2.95 |
1000.00 | 1173.10 | 117.31 | 2.13 | 1.81 | |
2000.00 | 2174.32 | 108.72 | 1.38 | 1.26 | |
6-Shogaol | 1.00 | 0.98 | 98.00 | 8.37 | 8.54 |
2.00 | 1.90 | 95.00 | 7.91 | 8.32 | |
4.00 | 3.56 | 89.00 | 7.62 | 8.57 |
Analyte | Conc. (ng/mL) | Intraday (n = 5) | Interday (n = 5) | ||||
---|---|---|---|---|---|---|---|
Obtained Conc. (ng/mL) | Precision (%) a | Accuracy (%) | Obtained Conc. (ng/mL) | Precision (%) | Accuracy (%) | ||
Liquiritin apioside | 200.00 | 180.82 | 3.58 | 90.41 | 201.70 | 2.32 | 100.85 |
400.00 | 385.94 | 3.64 | 96.49 | 407.92 | 3.21 | 101.98 | |
800.00 | 784.44 | 4.66 | 98.06 | 807.92 | 2.45 | 100.99 | |
Neoeriocitrin | 50.00 | 44.56 | 5.35 | 89.12 | 50.08 | 3.34 | 100.15 |
100.00 | 96.76 | 5.10 | 96.76 | 99.12 | 4.96 | 99.12 | |
200.00 | 204.04 | 2.10 | 102.02 | 203.84 | 2.62 | 101.92 | |
Narirutin | 500.00 | 464.20 | 6.88 | 92.84 | 502.50 | 3.86 | 100.50 |
1000.00 | 940.26 | 4.62 | 94.03 | 976.10 | 3.51 | 97.61 | |
2000.00 | 1673.18 | 8.45 | 83.66 | 1868.60 | 3.92 | 93.43 | |
Naringin | 500.00 | 470.92 | 2.57 | 94.18 | 500.80 | 2.23 | 100.16 |
1000.00 | 972.82 | 2.11 | 97.28 | 1008.50 | 1.89 | 100.85 | |
2000.00 | 2020.58 | 1.74 | 101.03 | 2019.00 | 1.85 | 100.95 | |
Hesperidin | 500.00 | 465.32 | 2.39 | 93.06 | 492.55 | 2.43 | 98.51 |
1000.00 | 939.70 | 3.16 | 93.97 | 967.20 | 2.74 | 96.72 | |
2000.00 | 1982.78 | 3.06 | 99.14 | 1967.20 | 1.85 | 98.36 | |
Neohesperidin | 1000.00 | 955.86 | 5.67 | 95.59 | 987.40 | 5.54 | 98.74 |
2000.00 | 1948.32 | 5.38 | 97.42 | 1929.40 | 5.04 | 96.47 | |
4000.00 | 3908.70 | 3.86 | 97.72 | 3997.20 | 3.05 | 99.93 | |
Liquiritigenin | 4.00 | 3.74 | 4.06 | 93.50 | 3.55 | 5.76 | 88.83 |
8.00 | 7.30 | 3.21 | 91.25 | 7.77 | 4.85 | 97.08 | |
16.00 | 14.98 | 5.41 | 93.63 | 15.27 | 5.87 | 95.46 | |
Glycyrrhizin | 500.00 | 511.30 | 5.58 | 102.26 | 517.31 | 3.36 | 103.46 |
1000.00 | 971.88 | 3.86 | 97.19 | 1027.81 | 2.62 | 102.78 | |
2000.00 | 1976.92 | 3.40 | 98.85 | 2031.49 | 2.34 | 101.57 | |
6-Shogaol | 1.00 | 0.98 | 8.54 | 98.00 | 0.92 | 8.64 | 92.00 |
2.00 | 1.74 | 6.55 | 87.00 | 1.87 | 7.72 | 93.67 | |
4.00 | 3.88 | 8.43 | 97.00 | 4.05 | 6.17 | 101.17 |
Analyte | Amount | |||||
---|---|---|---|---|---|---|
GHT-1 a | GHT-2 b | |||||
Mean (mg/g) | SD (×10−1) | CV (%) | Mean (mg/g) | SD (×10−1) | CV (%) | |
Liqiritin apioside | 0.007 | 0.002 | 2.831 | 0.003 | 0.002 | 8.377 |
Neoeriocitrin | 1.089 | 0.259 | 2.377 | 0.315 | 0.292 | 9.274 |
Narirutin | 5.878 | 2.395 | 4.075 | 0.944 | 0.838 | 8.870 |
Naringin | 16.157 | 1.297 | 0.803 | 2.785 | 2.473 | 8.880 |
Hesperidin | 8.002 | 1.647 | 2.058 | 6.559 | 1.031 | 1.573 |
Neohesperidin | 8.338 | 5.982 | 7.175 | 0.044 | 0.035 | 7.857 |
Liquiritigenin | 2.423 | 0.518 | 2.139 | 0.809 | 0.741 | 9.160 |
Glycyrrhizin | 6.416 | 0.818 | 1.275 | 2.801 | 0.819 | 2.923 |
6-Shogaol | 0.007 | 0.007 | 9.042 | 0.008 | 0.007 | 8.072 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, C.-S.; Shin, H.-K. Simultaneous Analysis for Quality Control of Traditional Herbal Medicine, Gungha-Tang, Using Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2022, 27, 1223. https://doi.org/10.3390/molecules27041223
Seo C-S, Shin H-K. Simultaneous Analysis for Quality Control of Traditional Herbal Medicine, Gungha-Tang, Using Liquid Chromatography–Tandem Mass Spectrometry. Molecules. 2022; 27(4):1223. https://doi.org/10.3390/molecules27041223
Chicago/Turabian StyleSeo, Chang-Seob, and Hyeun-Kyoo Shin. 2022. "Simultaneous Analysis for Quality Control of Traditional Herbal Medicine, Gungha-Tang, Using Liquid Chromatography–Tandem Mass Spectrometry" Molecules 27, no. 4: 1223. https://doi.org/10.3390/molecules27041223
APA StyleSeo, C. -S., & Shin, H. -K. (2022). Simultaneous Analysis for Quality Control of Traditional Herbal Medicine, Gungha-Tang, Using Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 27(4), 1223. https://doi.org/10.3390/molecules27041223