The Difference of Volatile Compounds in Female and Male Buds of Herpetospermum pedunculosum Based on HS-SPME-GC-MS and Multivariate Statistical Analysis
Abstract
:1. Introduction
2. Results
2.1. Volatile Compounds of GC-MS Analysis
2.2. Multivariate Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Apparatus
4.2. Sample Collection
4.3. Sample Preparation
4.4. Chromatographic Condition
4.5. MS Condition
4.6. Data Processing
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ma, L.; Yang, L.; Zhao, J.; Wei, J.; Kong, X.; Wang, C.; Zhang, X.; Yang, Y.; Hu, X. Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the northern Tibetan plateau. Planta 2015, 241, 887–906. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, S.; Fan, X.D.; Deng, L.Q.; Ma, W.H.; Chen, M. Two new coumarin glycosides from Herpetospermum caudigerum. J. Asian Nat. Prod. Res. 2015, 17, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Suo, Y.; Zhou, C.; Li, Y.; Wang, H. Study on trace elements in seeds of Herpetospermum penduculosum (Ser) Baill. Trace Elem. Sci. 2003, 10, 45–47. [Google Scholar]
- Zhao, X.; Suo, Y.; Wang, L.; You, J.; Ding, C. Analysis of carbohydrates in a Tibetan medicine using new labeling reagent, 1-(2-naphthyl)-3-methyl-5-pyrazolone, by HPLC with DAD detection and ESI-MS identification. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 2375–2400. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.J.; Xu, T.; Du, H.; Huan, G.C.; Fan, G.; Zhang, Y. Natural medicines used in the traditional Tibetan medical system for the treatment of liver diseases. Front. Pharmacol. 2018, 9, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Wang, X.Y.; Suo, Y.R.; Wang, H.L. Protective effect of seed oil of Herpetospermum pedunculosum against carbon tetrachloride-induced liver injury in rats. Saudi Med. J. 2014, 35, 981–987. [Google Scholar]
- Hang, L.Y.; Shen, B.D.; Shen, C.Y.; Yang, K.; Yuan, H.L. Advances in modern research on anti-liver disease of Tibetan medicine Semen Hertospermi. Chin. Trad Her. Drug. 2020, 51, 549–556. [Google Scholar]
- Huang, D.; Ma, Y.X.; Wei, L.; Sun, Y.; Zeng, Q.H.; Lan, X.Z.; Liao, Z.H.; Chen, M. One new coumarin from seeds of Herpetospermum pedunculosum. China J. Chin. Mater Med. 2021, 46, 2514–2518. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Zhang, Y.; Zhang, M. Chemical constituents of the ethyl acetate extract from Semen Herpetospermi. Pharm Clin. Chin. Mater Med. 2010, 1, 15–18. [Google Scholar]
- Wang, C.; Wang, X.; Tseringand, T.; Song, Y.; Zhu, R. The plastid genome of Herpetospermum pedunculosum (Cucurbitaceae), an endangered traditional Tibetan medicinal herbs. Mitochondrial DNA B Resour. 2020, 5, 495–497. [Google Scholar] [CrossRef]
- Xie, K. Molecular Sex Identification in Herpetospermum pedunculosum (Ser.) C.B. Clarke via RAPD and SCAR Markers. Master’s Thesis, Chengdu University, Chengdu, China, 2021. [Google Scholar]
- Feng, X.; Dengba, D.J.; Kong, S.X.; Li, H.K.; Shuya, K.; Zhong, G.J. Forecasting the seed yield of Tibetan herb medicine Herpetospermum pedunculosum Baill and analyzing for its influencing factors based on linear regression analysis model. Mod. Chin. Med. 2020, 22, 409–411+426. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, F.; Liu, J.; Guan, F.; Quan, H.; Meng, F. The adaptation strategies of Herpetospermum pedunculosum (Ser.) Baill at altitude gradient of the Tibetan plateau by physiological and metabolomic methods. BMC Genom. 2019, 20, 451. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.Y.; Ma, Y.X.; Wang, H.; Chen, M. Studies on chemical constituents of stems of Herpetospermum pedunculosum. China J. Chin. Mater. Med. 2020, 45, 2571–2577. [Google Scholar] [CrossRef]
- Liu, R.; Tang, D.; Liu, Q. Experimental study on the extraction process of water-soluble polysaccharide from Tibetan medicine Herpetospermum pedunculosum flower. J. Southwest Nat. Univ. (Nat. Sci. Ed.) 2019, 45, 57–578. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Li, C.Y.; Liu, C.; Zhang, Y.; De, L. Preliminary study of quality standards of Tibetan medicine Herpetospermum pedunculosum flower. J. Southwest Nat. Univ. (Nat. Sci. Ed.) 2015, 41, 432–435. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Zhou, Z.L.; Wang, L.L.; Meng, L.H.; Duan, Y.W. Development of microsatellite markers for a dioecious Herpetospermum pedunculosum (Cucurbitaceae). Evol. Bioinform. Online 2020, 16, 1176934320908261. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef]
- Hemalatha, R.; Nivetha, P.; Mohanapriya, C.; Sharmila, G.; Muthukumaran, C.; Gopinath, M. Phytochemical composition, GC-MS analysis, in vitro antioxidant and antibacterial potential of clove flower bud (Eugenia caryophyllus) methanolic extract. J. Food Sci. Technol. 2016, 53, 1189–1198. [Google Scholar] [CrossRef] [Green Version]
- Bitterling, H.; Schäfer, U.; Krammer, G.; Meier, L.; Brückner, S.I.; Hartmann, B.; Ongouta, J.; Carle, R.; Steingass, C.B. Investigations into the natural occurrence of 1-phenylethyl acetate (styrallyl acetate). J. Agric. Food Chem. 2020, 68, 8613–8620. [Google Scholar] [CrossRef]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Characterization of aroma-active compounds, phenolics, and antioxidant properties in fresh and fermented capers (Capparis spinosa) by GC-MS-olfactometry and LC-DAD-ESI-MS/MS. J. Food Sci. 2019, 84, 2449–2457. [Google Scholar] [CrossRef]
- Hu, M.; Bai, M.; Ye, W.; Wang, Y.; Wu, H. Variations in volatile oil yield and composition of “Xin-yi” (Magnolia biondii Pamp. Flower Buds) at different growth stages. J. Oleo Sci. 2018, 67, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, D.; Chaudhary, N.; Uma Kumari, K.; Singh, J.; Tripathi, P.; Meena, A.; Luqman, S.; Yadav, A.; Chanotiya, C.S.; Pandey, G.; et al. Diversity of essential oil-secretory cells and oil composition in flowers and buds of magnolia sirindhorniae and its biological activities. Chem. Biodivers. 2021, 18, e2000750. [Google Scholar] [CrossRef]
- Xu, L.; Liu, H.P.; Ma, Y.C.; Wu, C.; Li, R.Q.; Chao, Z.M. Comparative study of volatile components from male and female flower buds of Populus tomentosa by HS-SPME-GC-MS[J]. Nat. Prod. Res. 2019, 33, 2105–2108. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, H.M.; Sekozawa, Y.; Kobayashi, M.; Saito, K.; Kusano, M.; Sugaya, S. Metabolomics analysis of ‘Housui’ Japanese pear flower buds during endodormancy reveals metabolic suppression by thermal fluctuation. Plant Physiol. Biochem. 2018, 126, 134–141. [Google Scholar] [CrossRef] [PubMed]
- McGinty, D.; Lapczynski, A.; Scognamiglio, J.; Letizia, C.S.; Api, A.M. Fragrance materials review on isoamyl alcohol. Food Chem. Toxicol. 2010, 48, S102–S109. [Google Scholar] [CrossRef] [PubMed]
- Tu, R.; Lv, T.; Sun, L.; He, R.; Wang, Q. Development of a simple colorimetric assay for determination of the isoamyl alcohol-producing strain. Appl. Biochem. Biotechnol. 2020, 192, 632–642. [Google Scholar] [CrossRef]
- Shaver, T.N.; Lingren, P.D.; Marshall, H.F. Nighttime variation in volatile content of bud of the night blooming plant Gaura drummondii. J. Chem. Ecol. 1997, 23, 2673–2682. [Google Scholar] [CrossRef]
- Sun, W.; Chao, Z.M.; Wang, C.; Wu, X.Y.; Tan, Z.G. Research on the difference of volatile compounds in female and male buds of Trichosanthes kirilowii Maxim based on HS-SPME-GC-MS. China J. Chin. Mater. Med. 2012, 37, 1570–1574. [Google Scholar]
- Twidle, A.M.; Mas, F.; Harper, A.R.; Horner, R.M.; Welsh, T.J.; Suckling, D.M. Kiwifruit flower odor perception and recognition by honey bees, Apis mellifera. J. Agric. Food Chem. 2015, 63, 5597–5602. [Google Scholar] [CrossRef]
- Tang, Y.C.; Zhou, C.L.; Chen, X.M.; Zheng, H. Visual and olfactory responses during butterfly foraging. J. Insect. Behav. 2013, 26, 387–401. [Google Scholar] [CrossRef]
- Zhu, X.Z.; Lu, Q.B.; Hu, X.H.; Deng, T.; Duan, Y.B.; Fang, Z.M.; Huang, S.X. Leaf volatile components and foraging insects of dioecious Siraitia grosvenorii: Sexual differences and its ecological effects. Guihaia 2020, 40, 1259–1268. [Google Scholar]
No. | Rt/min | Compound | F | CAS | MW | Fragment (m/z) | Relative Content/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Female | Male | ||||||||||||
1 | 2 | 3 | 1 | 2 | 3 | ||||||||
1 | 4.044 | Isoamyl alcohol | C5H12O | 123-51-3 | 88 | 70/55/42 | 90.19 | 83.29 | 90.17 | 43.23 | 57.90 | 64.01 | |
2 | 8.555 | (E)-4-Hexenol | C6H12O | 928-92-7 | 100 | 82/67/55//41 | 1.24 | 0.64 | 1.92 | - | - | - | |
3 | 8.675 | (Z)-3-Methylbutanal oxime | C5H11NO | 5780-40-5 | 101 | 86/59/41 | - | - | - | 7.15 | 6.71 | 6.66 | |
4 | 8.960 | p-Xylene | C8H10 | 106-42-3 | 106 | 91/76 | - | - | - | 2.57 | 2.11 | 1.83 | |
5 | 9.513 | 3-Methyl-1-butanol acetate | C7H14O2 | 123-92-2 | 130 | 70/55/43 | 1.66 | 1.31 | 1.69 | - | - | - | |
6 | 9.438 | (E)-3-Methylbutanal oxime | C5H11NO | 5775-74-6 | 101 | 86/59/41 | - | - | - | 2.11 | 2.13 | 1.94 | |
7 | 10.000 | o-Xylene | C8H10 | 95-47-6 | 106 | 91/76 | - | - | - | 0.3 | 0.15 | 0.11 | |
8 | 10.393 | 2,2-Dimethyl-1-butanol | C6H14O | 1185-33-7 | 102 | 71/43/27 | - | - | - | 1.38 | 1.30 | 1.13 | |
9 | 10.578 | 1-Nitropentane | C5H11NO2 | 628-05-7 | 117 | 71/43/29 | - | - | - | 5.35 | 5.39 | 4.82 | |
10 | 11.791 | 2-Methyl-5-(1-methylethyl)-bicyclo[3.1.0]hex-2-ene | C10H16 | 2867-05-2 | 136 | 93/77 | - | - | - | 0.13 | 0.10 | 0.07 | |
11 | 12.055 | 1R-α-Pinene | C10H16 | 7785-70-8 | 136 | 121/93/77 | 0.17 | 0.29 | 0.15 | 0.12 | 0.11 | 0.11 | |
12 | 13.451 | Benzaldehyde | C7H6O | 100-52-7 | 106 | 77/51 | - | - | - | 0.10 | 0.08 | 0.07 | |
13 | 14.158 | Sabinene | C10H16 | 3387-41-5 | 136 | 93/77/41 | 0.17 | 0.33 | 0.14 | 1.02 | 0.53 | 0.45 | |
14 | 15.227 | β-Myrcene | C10H16 | 123-35-3 | 136 | 93/69/41/27 | - | - | - | 0.61 | 0.36 | 0.25 | |
15 | 16.423 | (+)-4-Carene | C10H16 | 29050-33-7 | 136 | 121/93/79 | - | - | - | 0.07 | 0.06 | 0.05 | |
16 | 16.846 | p-Cymene | C10H14 | 535-77-3 | 134 | 119/91 | - | - | - | 0.17 | 0.13 | 0.11 | |
17 | 17.044 | TMδ-Limonene | C10H16 | 5989-27-5 | 136 | 121/107/93/68 | 1.64 | 1.95 | 1.19 | 2.20 | 2.95 | 2.10 | |
18 | 17.258 | 2-Ethyl-1-hexanol | C8H18O | 104-76-7 | 130 | 70/57/41/29 | 1.16 | 2.86 | 1.61 | - | - | - | |
19 | 17.351 | Benzyl alcohol | C7H8O | 100-51-6 | 108 | 91/79/77/51 | - | - | - | 1.17 | 0.81 | 0.86 | |
20 | 17.695 | α-Pinene | C10H16 | 80-56-8 | 136 | 93/77/39/27 | - | - | - | 0.50 | 0.21 | 0.10 | |
21 | 18.209 | β-Ocimene | C10H16 | 13877-91-3 | 136 | 93/79/53/39 | 1.19 | 0.56 | 0.79 | 5.69 | 5.22 | 5.58 | |
22 | 18.638 | γ-Terpinene | C10H16 | 99-85-4 | 136 | 121/93/77/43 | 0.19 | 0.33 | 0.15 | 0.65 | 0.39 | 0.26 | |
23 | 21.073 | Nonanal | C9H18O | 124-19-6 | 142 | 98/70/57/41 | 0.15 | 0.39 | 0.15 | 0.15 | 0.14 | 0.14 | |
24 | 22.362 | 2-Methyl-1-undecene | C12H24 | 18516-37-5 | 168 | 69/56/41 | - | - | - | 1.36 | 1.70 | 1.08 | |
25 | 22.934 | 4-Oxoisophorone | C9H12O2 | 1125-21-9 | 152 | 96/68/39 | - | - | - | 5.57 | 5.79 | 5.62 | |
26 | 24.110 | 2,2,6-Trimethyl-1,4-cyclohexanedione | C9H14O2 | 20547-99-3 | 154 | 139/69/56/42 | - | - | - | 2.68 | 1.97 | 1.88 | |
27 | 30.453 | n-Pentadecane | C15H32 | 629-62-9 | 212 | 85/71/57/43 | 0.19 | 0.27 | 0.19 | - | - | - | |
28 | 33.704 | α-Copaene | C10H16 | 3856-25-5 | 136 | 161/119/105/91 | - | - | - | 0.09 | 0.10 | 0.11 | |
29 | 34.834 | n-Hexadecane | C14H30 | 629-73-2 | 198 | 85/57/43 | 0.35 | 0.51 | 0.22 | - | - | - | |
30 | 35.068 | (+)-7-epi-Sesquithujene | C15H24 | 159407-35-9 | 204 | 119/93/77/69/41 | 0.13 | 0.13 | 0.13 | 0.50 | 0.88 | 0.97 | |
31 | 35.435 | trans-α-Bergamotene | C15H24 | 13474-59-4 | 204 | 119/107/93/69/41 | 0.25 | 0.13 | 0.17 | 1.11 | 1.94 | 2.17 | |
32 | 37.199 | (1S,5S)-4-Methylene-1-((R)-6-methylhept-5-en-2-yl)bicyclo[3.1.0]hexane | C15H24 | 58319-04-3 | 204 | 93/69/41 | - | - | - | 1.03 | 1.71 | 1.85 | |
33 | 39.901 | (1R,5R)-4-Methylene-1-((R)-6-methylhept-5-en-2-yl)bicyclo[3.1.0]hexane | C15H24 | 58319-04-3 | 204 | 93/69/41 | 0.64 | 0.45 | 0.57 | 1.39 | 1.78 | 1.99 | |
34 | 51.476 | Neophytadiene | C20H38 | 504-96-1 | 278 | 123/95/82/68/55/41 | 0.27 | 0.76 | 0.35 | - | - | - | |
35 | 54.139 | (E,E,E)-3,7,11,15-Tetramethylhexadeca-1,3,6,10,14-pentaene | C20H32 | 77898-97-6 | 272 | 93/81/69/55/41 | - | - | - | 0.10 | 0.10 | 0.10 | |
36 | 56.232 | (E,E)-7,11,15-Trimethyl-3-methylene-1,6,10,14-hexadecatetrene | C20H32 | 70901-63-2 | 272 | 93/81/69/41 | 0.21 | 0.67 | 0.17 | 0.24 | 0.14 | 0.13 | |
37 | 57.391 | (Z)-9-Tricosene | C23H46 | 27519-02-4 | 322 | 97/83/55 | - | - | - | 0.14 | 0.14 | 0.18 | |
38 | 57.569 | n-Eicosane | C20H42 | 112-95-8 | 282 | 85/71/57/43 | 0.21 | 0.13 | 0.23 | 0.12 | 0.18 | 0.26 |
Section | No. | Compound | VIP |
---|---|---|---|
A | 1 | Isoamyl alcohol | 4.00 |
B | 3 | (Z)-3-Methylbutanal oxime | 1.83 |
B | 9 | 1-Nitropentane | 1.59 |
B | 21 | β-Ocimene | 1.48 |
B | 25 | 4-Oxoisophorone | 1.26 |
B | 24 | 2-Methyl-1-undecene | 1.07 |
B | 26 | 2,2,6-Trimethyl-1,4-cyclohexanedione | 1.03 |
B | 4 | p-Xylene | 1.03 |
B | 6 | (E)-3-Methylbutanal oxime | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Fang, Y.; Wu, C.; Hai, X.; Xu, B.; Li, Z.; Song, P.; Wang, H.; Chao, Z. The Difference of Volatile Compounds in Female and Male Buds of Herpetospermum pedunculosum Based on HS-SPME-GC-MS and Multivariate Statistical Analysis. Molecules 2022, 27, 1288. https://doi.org/10.3390/molecules27041288
Liu Z, Fang Y, Wu C, Hai X, Xu B, Li Z, Song P, Wang H, Chao Z. The Difference of Volatile Compounds in Female and Male Buds of Herpetospermum pedunculosum Based on HS-SPME-GC-MS and Multivariate Statistical Analysis. Molecules. 2022; 27(4):1288. https://doi.org/10.3390/molecules27041288
Chicago/Turabian StyleLiu, Zhenying, Ye Fang, Cui Wu, Xian Hai, Bo Xu, Zhuojun Li, Pingping Song, Huijun Wang, and Zhimao Chao. 2022. "The Difference of Volatile Compounds in Female and Male Buds of Herpetospermum pedunculosum Based on HS-SPME-GC-MS and Multivariate Statistical Analysis" Molecules 27, no. 4: 1288. https://doi.org/10.3390/molecules27041288
APA StyleLiu, Z., Fang, Y., Wu, C., Hai, X., Xu, B., Li, Z., Song, P., Wang, H., & Chao, Z. (2022). The Difference of Volatile Compounds in Female and Male Buds of Herpetospermum pedunculosum Based on HS-SPME-GC-MS and Multivariate Statistical Analysis. Molecules, 27(4), 1288. https://doi.org/10.3390/molecules27041288