Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material Preparation
2.3. Sample Extraction
2.4. Phytochemical Profiling
2.4.1. Identification of the Phytochemical Compounds via HPLC–Electrospray Ionization–Tandem Mass Spectrometry
2.4.2. Quantification of Individual Phenolics by HPLC Coupled with Diode Array Detection
2.4.3. Quantification of Triterpenic Acids by HPLC Coupled with Diode Array Detection
2.5. TFC
2.6. TPC
2.7. Antioxidant Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Identification and Quantification of Phytochemical Compounds
3.1.1. Flavonoid Derivatives
3.1.2. Iridoid Derivatives
3.1.3. Terpene Derivatives
3.1.4. Simple Phenol, Coumarins, and Hydroxycinnamic Acids
3.2. TPC, TFC, and Antioxidant Activities
3.3. Multivariate Data Analysis
3.3.1. Correlation Analysis
3.3.2. PCA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Talhaoui, N.; Taamalli, A.; Maria Gomez-Caravaca, A.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Yang, L.; Ma, J.; Hou, C.; Lu, X.; Yan, H.; Kong, W.; Deng, Y. Evolution of phenotypic traits and main functional components in the fruit of ‘Chenggu-32’ olives (Olea europaea L.) cultivated in longnan (China). J. Oleo Sci. 2020, 69, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Zugcic, T.; Abdelkebir, R.; Alcantara, C.; Carmen Collado, M.; Vicente Garcia-Perez, J.; Melendez-Martinez, A.J.; Jambrak, A.R.; Lorenzo, J.M.; Barba, F.J. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends Food Sci. Technol. 2019, 83, 63–77. [Google Scholar] [CrossRef]
- Paskovic, I.; Lukic, I.; Zurga, P.; Majetic, G.V.; Brkljaca, M.; Koprivnjak, O.; Major, N.; Grozic, K.; Franic, M.; Ban, D.; et al. Temporal variation of phenolic and mineral composition in olive leaves is cultivar dependent. Plants 2020, 9, 1099. [Google Scholar] [CrossRef] [PubMed]
- Lama-Munoz, A.; Contreras, M.; Espinola, F.; Moya, M.; Romero, I.; Castro, E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem. 2020, 320, 126626. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, C.; Zugcic, T.; Abdelkebir, R.; Garcia-Perez, J.V.; Jambrak, A.R.; Lorenzo, J.M.; Collado, M.C.; Granato, D.; Barba, F.J. Effects of Ultrasound-Assisted extraction and solvent on the phenolic profile, bacterial growth, and Anti-Inflammatory/Antioxidant activities of mediterranean olive and fig leaves extracts. Molecules 2020, 25, 1718. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.; Pimentel, F.B.; Oliveira, M.B.P.P. Olive by-products: Challenge application in cosmetic industry. Ind. Crop. Prod. 2015, 70, 116–124. [Google Scholar] [CrossRef]
- Azar, F.A.N.; Pezeshki, A.; Ghanbarzadeh, B.; Hamishehkar, H.; Mohammadi, M.; Hamdipour, S.; Daliri, H. Pectin-sodium caseinat hydrogel containing olive leaf extract-nano lipid carrier: Preparation, characterization and rheological properties. LWT Food Sci. Technol. 2021, 148, 111757. [Google Scholar] [CrossRef]
- Faccioli, L.S.; Klein, M.P.; Borges, G.R.; Dalanhol, C.S.; Machado, I.C.K.; Garavaglia, J.; Dal Bosco, S.M. Development of crackers with the addition of olive leaf flour (Olea europaea L.): Chemical and sensory characterization. LWT Food Sci. Technol. 2021, 141, 110848. [Google Scholar] [CrossRef]
- Lafka, T.; Lazou, A.E.; Sinanoglou, V.J.; Lazos, E.S. Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods 2013, 2, 18–31. [Google Scholar] [CrossRef]
- Moghaddam, M.F.T.; Jalali, H.; Nafchi, A.M.; Nouri, L. Evaluating the effects of lactic acid bacteria and olive leaf extract on the quality of gluten-free bread. Gene Rep. 2020, 21, 100771. [Google Scholar] [CrossRef]
- Lama-Munoz, A.; Del, M.C.M.; Espinola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem. 2019, 293, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.; Lama-Munoz, A.; Espinola, F.; Moya, M.; Romero, I.; Castro, E. Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chem. 2020, 314, 126218. [Google Scholar] [CrossRef] [PubMed]
- Jurišić Grubešić, R.; Nazlić, M.; Miletić, T.; Vuko, E.; Vuletić, N.; Ljubenkov, I.; Dunkić, V. Antioxidant capacity of free volatile compounds from olea europaea l. cv. oblica leaves depending on the vegetation stage. Antioxidants 2021, 10, 1832. [Google Scholar] [CrossRef] [PubMed]
- Nicoli, F.; Negro, C.; Vergine, M.; Aprile, A.; Nutricati, E.; Sabella, E.; Miceli, A.; Luvisi, A.; De Bellis, L. Evaluation of phytochemical and antioxidant properties of 15 Italian Olea europaea L. cultivar leaves. Molecules 2019, 24, 1998. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.; García, A.; Medina, E.; Ruíz-Méndez, M.V.; Castro, A.D.; Brenes, M. Triterpenic acids in table olives. Food Chem. 2010, 118, 670–674. [Google Scholar] [CrossRef]
- Lorini, A.; Aranha, B.C.; Antunes, B.D.F.; Otero, D.M.; Jacques, A.C.; Zambiazi, R.C. Metabolic profile of olive leaves of different cultivars and collection times. Food Chem. 2021, 345, 128758. [Google Scholar] [CrossRef]
- Kamran, M.; Hamlin, A.S.; Scott, C.J.; Obied, H.K. Drying at high temperature for a short time maximizes the recovery of olive leaf biophenols. Ind. Crop. Prod. 2015, 78, 29–38. [Google Scholar] [CrossRef]
- Ahmad-Qasem, M.H.; Canovas, J.; Barrajon-Catalan, E.; Carreres, J.E.; Micol, V.; Garcia-Perez, J.V. Influence of olive leaf processing on the bioaccessibility of bioactive polyphenols. J. Agric. Food Chem 2014, 62, 6190–6198. [Google Scholar] [CrossRef]
- Orak, H.H.; Karamac, M.; Amarowicz, R.; Orak, A.; Penkacik, K. Genotype-Related differences in the phenolic compound profile and antioxidant activity of extracts from olive (Olea europaea L.) leaves. Molecules 2019, 24, 1130. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y. The status quo and trends of China olive industry innovation-driven development and relevant countermeasures. Nonwood For. Res. 2018, 36, 1–6. [Google Scholar]
- Beltran, G.; Uceda, M.; Jimenez, A.; Aguilera, M.P. Olive oil extractability index as a parameter for olive cultivar characterisation. J. Sci. Food Agric. 2003, 83, 503–506. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Gomez-Del-Campo, M.; Zhang, D.; Deng, Y.; Jia, Z. Youth tree behavior of olive (Olea europaea L.) cultivars in Wudu, China: Cold and drought resistance, growth, fruit production, and oil quality. Sci. Hortic. 2018, 236, 106–122. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Martinović, A.; Cavoski, I. The exploitation of cornelian cherry (Cornus mas L.) cultivars and genotypes from Montenegro as a source of natural bioactive compounds. Food Chem. 2020, 318, 126549. [Google Scholar] [CrossRef] [PubMed]
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant properties of phenolic compounds: H-Atom versus electron transfer mechanism. J. Phys. Chem. A 2004, 108, 4916–4922. [Google Scholar] [CrossRef]
- Oliveira, A.L.S.; Gondim, S.; Gómez-García, R.; Ribeiro, T.; Pintado, M. Olive leaf phenolic extract from two Portuguese cultivars-bioactivities for potential food and cosmetic application. J. Environ. Chem. Eng. 2021, 9, 106175. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arab. J. Chem. 2020, 13, 1685–1701. [Google Scholar] [CrossRef]
- Abaza, L.; Taamalli, A.; Arraez-Roman, D.; Segura-Carretero, A.; Fernandez-Gutierrerez, A.; Zarrouk, M.; Youssef, N.B. Changes in phenolic composition in olive tree parts according to development stage. Food Res. Int. 2017, 100, 454–461. [Google Scholar] [CrossRef]
- Vinha, A.F.; Ferreres, F.; Silva, B.M.; Valentão, P.; Gonçalves, A.; Pereira, J.A.; Oliveira, M.B.; Seabra, R.M.; Andrade, P.B. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005, 89, 561–568. [Google Scholar] [CrossRef]
- Blasi, F.; Rocchetti, G.; Montesano, D.; Lucini, L.; Chiodelli, G.; Ghisoni, S.; Baccolo, G.; Simonetti, M.S.; Cossignani, L. Changes in extra-virgin olive oil added with Lycium barbarum L. carotenoids during frying: Chemical analyses and metabolomic approach. Food Res. Int. 2018, 105, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef]
- Anastasiu, A.; Chira, N.; Banu, I.; Ionescu, N.; Stan, R.; Rosca, S. Oil productivity of seven Romanian linseed varieties as affected by weather conditions. Ind. Crop. Prod. 2016, 86, 219–230. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Cherubini, C.; Giusti, M.; Zanoni, B.; Innocenti, M.; Mulinacci, N. Phenolic profiles, oil amount and sugar content during olive ripening of three typical Tuscan cultivars to detect the best harvesting time for oil production. Food Res. Int. 2013, 54, 1876–1884. [Google Scholar] [CrossRef]
- Xie, P.; Huang, L.; Zhang, C.; Deng, Y.; Wang, X.; Cheng, J. Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem. 2019, 276, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.E.; Planas, J.M. Cancer chemopreventive activity of maslinic acid, a pentacyclic triterpene from olives and olive oil. Olives Olive Oil Health Dis. Prev. 2021, 525–535. [Google Scholar] [CrossRef]
- Lozano-Mena, G.; Sanchez-Gonzalez, M.; Juan, M.E.; Planas, J.M. Maslinic acid, a natural phytoalexin-type triterpene from olives—A promising nutraceutical? Molecules 2014, 19, 11538–11559. [Google Scholar] [CrossRef] [Green Version]
- Guinda, Á.; Castellano, J.M.; Santos-Lozano, J.M.; Delgado-Hervás, T.; Gutiérrez-Adánez, P.; Rada, M. Determination of major bioactive compounds from olive leaf. LWT Food Sci. Technol. 2015, 64, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Gullon, B.; Gullon, P.; Eibes, G.; Cara, C.; De Torres, A.; Lopez-Linares, J.C.; Ruiz, E.; Castro, E. Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Sci. Total Environ. 2018, 645, 533–542. [Google Scholar] [CrossRef]
- Gullon, P.; Gullon, B.; Davila, I.; Labidi, J.; Gonzalez-Garcia, S. Comparative environmental life cycle assessment of integral revalorization of vine shoots from a biorefinery perspective. Sci. Total Environ. 2018, 624, 225–240. [Google Scholar] [CrossRef] [Green Version]
- Bashmil, Y.M.; Ali, A.; Bk, A.; Dunshea, F.R.; Suleria, H.A.R. Screening and characterization of phenolic compounds from australian grown bananas and their antioxidant capacity. Antioxidants 2021, 10, 1521. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chai, Z.; Hutabarat, R.P.; Zeng, Q.; Niu, L.; Li, D.; Yu, H.; Huang, W. Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Res. Int. 2019, 122, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Benavente-Garcia, O.; Castillo, J.; Lorente, J. Antioxidant activity of phenolics extracted from Olea europaea L. Leaves. Food Chem. 2000, 68, 457–462. [Google Scholar] [CrossRef]
- Ma, Q.; Cai, S.; Liu, X.; Shi, J.; Yi, J. Characterization of phytochemical components and identification of main antioxidants in Crateva unilocalaris Buch. Shoots by UHPLC-Q-Orbitrap-MS(2) analysis. Food Res. Int. 2021, 143, 110264. [Google Scholar] [CrossRef]
Code | Cultivar | Origin | Moisture Content% | Attitude | Oil Content |
---|---|---|---|---|---|
OL1 | Bouteillan | France | 45.05 ± 1.76 ab | O/T | H |
OL2 | Fecciaro | Italy | 54.83 ± 2.25 kl | O | L |
OL3 | Frantoio selection | China | 47.71 ± 1.20 de | O | L |
OL4 | Manzanilla | Italy | 47.16 ± 1.36 cde | T | L |
OL5 | Nocellara del belice | Italy | 54.77 ± 1.38 kl | O/T | M |
OL6 | Picudo de Labata | Spain | 44.66 ± 1.29 ab | O | H |
OL7 | I-79 | Italy | 50.45 ± 1.56 fg | O | L |
OL8 | Pendolino | Italy | 56.56 ± 0.31 lm | O | M |
OL9 | O. europaea subsp. Cuspidata isolate Yunnan | China | 48.84 ± 0.83 ef | R | L |
OL10 | Ascolana tenera | Italy | 57.81 ± 2.26 n | T | M |
OL11 | Zhonglan | China | 48.23 ± 1.88 ef | R | L |
OL12 | Koroneiki | Greece | 52.12 ± 1.12 ij | O | L |
OL13 | Arbequina | Spain | 52.33 ± 1.30 ij | O | M |
OL14 | Huaou 5 | China | 52.04 ± 0.50 ij | O | L |
OL15 | Nikitskii I | Azerbaijan | 52.16 ± 1.79 ij | O/T | H |
OL16 | Picholine | France | 51.08 ± 0.97 gh | O/T | M |
OL17 | Chemlal de Kabylie | Algeria | 49.02 ± 0.60 efg | O | L |
OL18 | Hojiblanca | Spain | 46.76 ± 2.50 bc | O/T | H |
OL19 | Manzanilla sevillana | Spain | 43.76 ± 0.86 a | T | L |
OL20 | Canino | Italy | 53.75 ± 1.35 jk | O | M |
OL21 | Cipressino | Italy | 55.12 ± 0.80 kl | O | M |
OL22 | Rosciola | Italy | 57.23 ± 1.02 mn | O | H |
OL23 | Nevadillo fino | Spain | 51.31 ± 0.31 hij | O | H |
OL24 | Castellana | Spain | 51.30 ± 1.20 hij | O | M |
OL25 | Neral | Spain | 53.72 ± 0.77 jk | O | M |
OL26 | Olivon de Roda | Spain | 47.89 ± 0.63 e | O | H |
OL27 | Largueta | Spain | 43.27 ± 1.74 a | O | M |
OL28 | Manzanilla Greece | Spain | 45.53 ± 0.59 ab | O/T | L |
OL29 | Blanqueta | Spain | 54.80 ± 0.82 kl | O | H |
OL30 | Benizar | Spain | 51.66 ± 1.35 ij | O/T | H |
OL31 | Morcona | Italy | 58.59 ± 0.42 n | O | M |
OL32 | Gentile di chieti | Italy | 58.23 ± 0.61 n | O | M |
No. | Proposed Compounds | Rt min | Molecular Formula | Ionization (ESI+/ESI−) | m/z Experimental | Class | Reference |
---|---|---|---|---|---|---|---|
1 | Loganic acid | 4.28 | C16H24O10 | [M-H]− | 375.1 | Iridoids | Alañón et al., 2020 [29] |
2 | Hydroxytyrosol | 5.543 | C8H10O3 | [M-H]− | 153.1 | Simple phenols | Standard |
3 | Esculin | 6.14 | C15H16O9 | [M-H]− | 339.2 | Coumarins | Standard |
4 | Taxifolin-3-glucoside | 6.451 | C21H22O12 | [M-H]− | 465.2 | Flavonoids | Abaza et al., 2017 [30] |
5 | Chlorogenic acid | 7.003 | C16H18O9 | [M-H]− | 353.2 | Hydroxycinnamic acid | Standard |
6 | Secoxyloganin | 8.359 | C17H24O11 | [M-H]− | 403.2 | Iridoids | Standard |
7 | Luteolin-3′,7-di-O-glucoside | 9.069 | C27H30O16 | [M-H]− | 609.1 | Flavonoids | Alañón et al., 2020 [29] |
8 | Plantamajoside | 9.55 | C29H36O16 | [M-H]− | 639.3 | Hydroxycinnamic acid | Standard |
9 | Rutin | 11.62 | C27H30O16 | [M-H]− | 609.3 | Flavonoids | Standard |
10 | Luteolin rutinoside | 11.767 | C27H30O15 | [M-H]− | 593.3 | Flavonoids | Alañón et al., 2020 [29] |
11 | Quercetin-3-O-glucoside | 12.342 | C21H20O12 | [M-H]− | 463.2 | Flavonoids | Standard |
12 | Luteolin-7-O-glucoside | 12.613 | C21H20O11 | [M-H]− | 447.4 | Flavonoids | Standard |
13 | Apigenin-7-O-neohesperidoside | 13.546 | C27H30O14 | [M-H]− | 577.3 | Flavonoids | Standard |
14 | Taxifolin | 13.793 | C15H12O7 | [M-H]− | 303.3 | Flavonoids | Standard |
15 | Quercetin 3-O-rhamnoside | 14.347 | C21H20O11 | [M-H]− | 447.2 | Flavonoids | Vinha et al., 2005 [31] |
16 | Apigenin-7-O-glucoside | 14.47 | C21H20O10 | [M-H]− | 431.4 | Flavonoids | Alañón et al., 2020 [30] |
17 | Kaempferol-7-O-glucoside | 14.697 | C21H20O11 | [M-H]− | 447.2 | Flavonoids | Standard |
18 | Luteolin-4’-O-glucoside | 15.733 | C21H20O11 | [M-H]− | 447.3 | Flavonoids | Abaza et al., 2017 [30] |
19 | Oleuropein isomer 1 | 16.419 | C25H32O13 | [M-H]− | 539.2 | Iridoids | Standard |
20 | Oleuropein isomer 2 | 17.089 | C25H32O13 | [M-H]− | 539.2 | Iridoids | Abaza et al., 2017 [30] |
21 | Oleuropein isomer 3 | 17.647 | C25H32O13 | [M-H]− | 539.2 | Iridoids | Abaza et al., 2017 [30] |
22 | Eriodictyol | 20.765 | C15H12O6 | [M-H]− | 287.1 | Flavonoids | Standard |
23 | Luteolin | 21.133 | C15H10O6 | [M-H]− | 285.5 | Flavonoids | Standard |
24 | Quercetin | 21.35 | C15H10O7 | [M-H]− | 301.3 | Flavonoids | Standard |
25 | Kaempferol | 24.85 | C15H10O6 | [M-H]− | 285.4 | Flavonoids | Standard |
26 | Hispidulin | 27.701 | C16H12O6 | [M-H]− | 299.3 | Flavonoids | Blasi et al., 2018 [32] |
27 | Asiatic acid | 38.11 | C30H48O5 | [M-H]− | 487.3 | Triterpenic acids | Standard |
28 | Oleanonic acid | 38.71 | C30H46O3 | [M+H]+ | 455.3 | Triterpenic acids | Standard |
29 | Maslinic acid | 39.64 | C30H48O4 | [M+H]+ | 473.5 | Triterpenic acids | Standard |
30 | Corosolic acid | 40.19 | C30H48O4 | [M+H]+ | 473.2 | Triterpenic acids | Standard |
31 | Oleanolic acid | 44.61 | C30H48O3 | [M-H]− | 457.5 | Triterpenic acids | Standard |
32 | Ursolic acid | 44.33 | C30H48O3 | [M+H]+ | 457.3 | Triterpenic acids | Standard |
Code | Oil Content | TPC (mg GAE/g dw) | TFC (mg RE/g dw) | DPPH (mg TE/g dw) | FRAP (mg TE/g dw) | ABTS (mg TE/g dw) |
---|---|---|---|---|---|---|
OL1 | H | 16.23 ± 0.23 b–h | 72.79 ± 24.00 ab | 176.99 ± 8.43 | 385.13 ± 50.20 a | 279.71 ± 17.57 a |
OL2 | L | 16.42 ± 0.15 c–i | 94.61 ± 10.87 a–c | 179.27 ± 4.47 | 765.99 ± 25.98 e–i | 541.13 ± 10.79 b–g |
OL3 | L | 16.87 ± 0.41 g–j | 174.22 ± 16.01 e | 178.62 ± 3.40 | 1099.99 ± 14.30 kl | 758.01 ± 16.54 l |
OL4 | L | 16.95 ± 0.40 h–j | 83.71 ± 15.19 ab | 178.56 ± 3.47 | 674.92 ± 62.07 b–g | 494.09 ± 32.17 bc |
OL5 | M | 16.57 ± 0.19 d–i | 127.97 ± 20.21 a–e | 176.54 ± 3.27 | 1139.86 ± 17.05 kl | 637.53 ± 8.43 g–k |
OL6 | H | 16.10 ± 0.19 b–g | 77.19 ± 20.20 ab | 180.12 ± 3.50 | 666.07 ± 12.74 b–g | 446.16 ± 16.42 b |
OL7 | L | 16.36 ± 0.17 b–i | 133.72 ± 12.19 b–e | 176.25 ± 2.20 | 952.77 ± 94.68 i–k | 612.91 ± 18.27 d–k |
OL8 | M | 15.60 ± 0.46 ab | 109.86 ± 9.37 a–e | 175.63 ± 1.20 | 836.55 ± 20.28 g–j | 519.86 ± 7.34 b–e |
OL9 | L | 15.91 ± 0.16 a–f | 176.30 ± 20.04 e | 180.22 ± 1.84 | 1228.29 ± 23.95 l | 623.75 ± 10.08 f–k |
OL10 | M | 16.71 ± 0.24 f–j | 132.60 ± 2.52 b–e | 174.14 ± 0.93 | 900.53 ± 83.56 h–j | 603.78 ± 27.91 d–j |
OL11 | L | 16.41 ± 0.25 b–i | 62.44 ± 26.05 a | 175.27 ± 0.90 | 738.49 ± 28.74 d–h | 526.05 ± 33.80 b–f |
OL12 | L | 16.34 ± 0.17 b–i | 111.50 ± 22.45 a–e | 173.98 ± 1.58 | 989.40 ± 21.17 jk | 598.43 ± 13.70 d–j |
OL13 | M | 16.23 ± 0.35 b–h | 156.56 ± 0.76 c–e | 177.23 ± 0.36 | 984.01 ± 17.04 jk | 670.33 ± 18.34 i–l |
OL14 | L | 15.81 ± 0.24 a–d | 116.71 ± 19.47 a–e | 176.26 ± 1.07 | 729.84 ± 16.91 d–h | 710.64 ± 14.58 kl |
OL15 | H | 16.69 ± 0.17 f–j | 71.89 ± 16.82 ab | 176.76 ± 0.95 | 666.17 ± 8.56 b–g | 609.78 ± 5.55 d–k |
OL16 | M | 16.09 ± 0.37 b–g | 98.13 ± 17.84 a–c | 174.91 ± 2.58 | 809.46 ± 27.34 f–j | 643.48 ± 19.09 g–k |
OL17 | L | 16.63 ± 0.27 e–i | 117.15 ± 25.21 a–e | 176.32 ± 0.72 | 755.47 ± 47.44 e–h | 603.15 ± 23.80 d–j |
OL18 | H | 16.85 ± 0.19 g–j | 100.20 ± 15.16 a–c | 177.01 ± 0.64 | 667.83 ± 20.57 b–g | 543.22 ± 9.74 b–g |
OL19 | L | 15.60 ± 0.05 ab | 109.34 ± 7.73 a–d | 171.10 ± 6.95 | 902.11 ± 46.12 h–j | 684.90 ± 3.00 j–l |
OL20 | M | 16.93 ± 0.29 h–j | 116.32 ± 9.32 a–e | 173.21 ± 1.50 | 709.83 ± 12.35 c–g | 624.14 ± 20.01 f–k |
OL21 | M | 16.26 ± 0.25 b–i | 97.38 ± 12.82 a–c | 175.51 ± 0.72 | 675.07 ± 28.56 b–g | 627.88 ± 16.66 f–k |
OL22 | H | 15.70 ± 0.18 a–c | 103.38 ± 1.98 a–c | 173.26 ± 2.44 | 710.58 ± 11.15 c–g | 584.71 ± 14.90 c–j |
OL23 | H | 15.13 ± 0.19 a | 125.42 ± 12.40 a–e | 175.32 ± 2.65 | 743.95 ± 13.34 d–h | 622.64 ± 13.13 e–k |
OL24 | M | 15.77 ± 0.19 a–d | 132.18 ± 18.98 b–e | 175.90 ± 2.87 | 637.54 ± 16.82 b–f | 594.99 ± 11.18 c–j |
OL25 | M | 16.70 ± 0.09 f–j | 77.72 ± 18.84 ab | 174.31 ± 0.70 | 516.82 ± 14.34 ab | 575.63 ± 18.34 c–i |
OL26 | H | 16.26 ± 0.16 b–i | 93.57 ± 10.43 a–c | 176.70 ± 0.81 | 516.90 ± 16.22 ab | 511.46 ± 13.69 b–d |
OL27 | M | 15.77 ± 0.27 a–d | 117.31 ± 19.59 a–e | 176.21 ± 0.41 | 620.80 ± 14.89 b–e | 631.50 ± 15.25 g–k |
OL28 | L | 16.11 ± 0.19 b–g | 108.21 ± 19.78 a–d | 176.74 ± 1.24 | 671.57 ± 36.85 b–g | 658.19 ± 19.80 h–l |
OL29 | H | 15.71 ± 0.38 a–c | 114.58 ± 8.76 a–e | 177.11 ± 0.46 | 505.07 ± 20.15 ab | 557.46 ± 23.16 c–h |
OL30 | H | 15.85 ± 0.08 a–e | 108.89 ± 3.29 a–d | 174.51 ± 0.66 | 557.54 ± 2.84 a–d | 563.59 ± 14.64 c–h |
OL31 | M | 17.49 ± 0.12 j | 102.23 ± 7.94 a–c | 177.22 ± 1.22 | 526.39 ± 17.86 a–c | 550.35 ± 7.54 c–g |
OL32 | M | 17.04 ± 0.24 ij | 115.23 ± 21.14 a–e | 176.06 ± 0.58 | 599.90 ± 9.56 b–e | 624.58 ± 23.24 f–k |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Xin, X.; Zhang, J.; Zhu, S.; Niu, E.; Zhou, Z.; Liu, D. Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. Molecules 2022, 27, 1292. https://doi.org/10.3390/molecules27041292
Zhang C, Xin X, Zhang J, Zhu S, Niu E, Zhou Z, Liu D. Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. Molecules. 2022; 27(4):1292. https://doi.org/10.3390/molecules27041292
Chicago/Turabian StyleZhang, Chengcheng, Xiaoting Xin, Jianming Zhang, Shenlong Zhu, Erli Niu, Zhongjing Zhou, and Daqun Liu. 2022. "Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China" Molecules 27, no. 4: 1292. https://doi.org/10.3390/molecules27041292
APA StyleZhang, C., Xin, X., Zhang, J., Zhu, S., Niu, E., Zhou, Z., & Liu, D. (2022). Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. Molecules, 27(4), 1292. https://doi.org/10.3390/molecules27041292