Phytochemicals Mediated Synthesis of AuNPs from Citrullus colocynthis and Their Characterization
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Aunps
2.2.1. Preparation of Citrullus colocynthis Seed Extract
2.2.2. Preparation of Chloroauric Acid Stock Solution
2.2.3. Synthesis and Purification of AuNPs
2.3. Characterization of AuNPs
2.3.1. UV-Vis Spectroscopy
2.3.2. X-ray Diffraction (XRD)
2.3.3. Scanning Electron Microscope (SEM)
2.3.4. FTIR Analysis
3. Results
3.1. UV-Vis Spectrophotometer Analysis
3.2. X-ray Diffraction (XRD) Measurements
3.3. Scanning Electron Microscope (SEM) Measurements
3.4. FTIR Analysis of AuNPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karn, B. The road to green nanotechnology. J. Ind. Ecol. 2008, 12, 263–266. [Google Scholar]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282. [Google Scholar] [CrossRef] [PubMed]
- Xin Lee, K.; Shameli, K.; Miyake, M.; Kuwano, N.; Khairudin, B.A. Green synthesis of AuNPs using aqueous extract of Garcinia mangostana fruit peels. J. Nanomater. 2016, 2016, 8489094. [Google Scholar] [CrossRef] [Green Version]
- Samyn, P.; Barhoum, A.; Öhlund, T.; Dufresne, A. Nanoparticles and nanostructured materials in papermaking. J. Mater. Sci. 2018, 53, 146–184. [Google Scholar] [CrossRef]
- Shang, Y.; Hasan, M.; Ahammed, G.J.; Li, M.; Yin, H. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef] [Green Version]
- Zaka, M.; Abbasi, B.H.; Rahman, L.U.; Shah, A.; Zia, M. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa. IET Nanobiotechnol. 2016, 10, 134–140. [Google Scholar] [CrossRef]
- Hussain, M.; Raja, N.I.; Iqbal, M.; Ejaz, M.; Yasmeen, F. In vitro germination and biochemical profiling of Citrus reticulata in response to green synthesised zinc and copper nanoparticles. IET Nanobiotechnol. 2017, 11, 790–796. [Google Scholar] [CrossRef]
- Hussain, M.; Raja, N.I.; Iqbal, M.; Sabir, S.; Yasmeen, F. In vitro seed germination and biochemical profiling of Artemisia absinthium exposed to various metallic nanoparticles. 3 Biotech 2017, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Saranyaadevi, K.; Subha, V.; Ravindran, R.E.; Renganathan, S. Synthesis and characterization of copper nanoparticle using Capparis zeylanica leaf extract. Int. J. Chem. Tech. Res. 2014, 6, 4533–4541. [Google Scholar]
- Kotcherlakota, R.; Das, S.; Patra, C.R. Therapeutic applications of green-synthesized silver nanoparticles. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 389–428. [Google Scholar]
- Sharifi, E.; Bigham, A.; Yousefiasl, S.; Trovato, M.; Ghomi, M.; Esmaeili, Y.; Makvandi, P. Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation. Adv. Sci. 2021, 9, 2102678. [Google Scholar] [CrossRef]
- Delfi, M.; Sartorius, R.; Ashrafizadeh, M.; Sharifi, E.; Zhang, Y.; De Berardinis, P.; Makvandi, P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 2021, 38, 101119. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Chen, Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef] [PubMed]
- Goutam, S.P.; Saxena, G.; Roy, D.; Yadav, A.K.; Bharagava, R.N. Green synthesis of nanoparticles and their applications in water and wastewater treatment. In Bioremediation of Industrial Waste for Environmental Safety; Springer: Singapore, 2020; pp. 349–379. [Google Scholar]
- Huang, W.; Ling, S.; Li, C.; Omenetto, F.G.; Kaplan, D.L. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem. Soc. Rev. 2018, 47, 6486–6504. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthetic Surg. 2010, 3, 32. [Google Scholar] [CrossRef]
- Bian, P.; Zhou, J.; Liu, Y.; Ma, Z. One-step fabrication of intense red fluorescent gold nanoclusters and their application in cancer cell imaging. Nanoscale 2013, 5, 6161–6166. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Q.; Zhang, X.; Li, M.; Zhu, A.; Shi, G. Development of gold nanoparticle-sheathed glass capillary nanoelectrodes for sensitive detection of cerebral dopamine. Biosens. Bioelectron. 2015, 63, 262–268. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Hashemi, F.; Rahmani Moghadam, E.; Raei, M.; Makvandi, P. Progress in natural compounds/siRNA co-delivery employing nanovehicles for cancer therapy. ACS Comb. Sci. 2020, 22, 669–700. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef]
- Aboyewa, J.A.; Sibuyi, N.R.; Meyer, M.; Oguntibeju, O.O. Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications. Plants 2021, 10, 1929. [Google Scholar] [CrossRef]
- Zambonino, M.C.; Quizhpe, E.M.; Jaramillo, F.E.; Rahman, A.; Santiago Vispo, N.; Jeffryes, C.; Dahoumane, S.A. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications. Int. J. Mol. Sci. 2021, 22, 989. [Google Scholar] [CrossRef]
- Chung, I.M.; Park, I.; Seung-Hyun, K.; Thiruvengadam, M.; Rajakumar, G. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Res. Lett. 2016, 11, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logeswari, P.; Silambarasan, S.; Abraham, J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J. Saudi Chem. Soc. 2015, 19, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Vinay, S.P.; Nagarju, G.; Chandrappa, C.P.; Chandrasekhar, N. Enhanced photocatalysis, photoluminescence, and anti-bacterial activities of nanosize Ag: Green synthesized via Rauvolfia tetraphylla (devil pepper). SN Appl. Sci. 2019, 1, 477. [Google Scholar] [CrossRef] [Green Version]
- Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A. Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 2012, 71, 114–116. [Google Scholar] [CrossRef]
- Iravani, A.; Akbari, M.H.; Zohoori, M. Advantages and disadvantages of green technology; goals, challenges and strengths. Int. J. Sci. Eng. Appl. 2017, 6, 272–284. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Hurtado, R.B.; Cortez-Valadez, M.; Ramírez-Rodríguez, L.P.; Larios-Rodriguez, E.; Alvarez, R.A. Instant synthesis of AuNPs at room temperature and SERS applications. Phys. Lett. A 2016, 380, 2658–2663. [Google Scholar] [CrossRef]
- Aromal, S.A.; Philip, D. Green synthesis of AuNPs using Trigonellafoenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 1–5. [Google Scholar] [CrossRef]
- Sheny, D.S.; Mathew, J.; Philip, D. Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Part A Mol. Biomol. Spectrosc. 2011, 79, 254–262. [Google Scholar] [CrossRef]
- Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 2019, 12, 3576–3600. [Google Scholar] [CrossRef] [Green Version]
- Ndeh, N.T.; Maensiri, S.; Maensiri, D. The effect of green synthesized AuNPs on rice germination and roots. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 035008. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Jabir, M.; Al-Shammari, A. AuNPs inhibiting proliferation of Human breast cancer cell line. Res. J. Biotechnol. 2019, 14, 79–82. [Google Scholar]
- Noruzi, M.; Zare, D.; Davoodi, D. A rapid biosynthesis route for the preparation of AuNPs by aqueous extract of cypress leaves at room temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 94, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Ankamwar, B.; Chaudhary, M.; Sastry, M. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2005, 35, 19–26. [Google Scholar] [CrossRef]
- Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol. Prog. 2006, 22, 577–583. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y. Biosynthesis of silver and AuNPs by novel sundried Cinnamomum camphora leaf. Nanotechnology 2007, 18, 105104. [Google Scholar] [CrossRef]
- Islam, N.U.; Jalil, K.; Shahid, M.; Rauf, A.; Muhammad, N. Green synthesis and biological activities of AuNPs functionalized with Salix alba. Arab. J. Chem. 2015, 12, 2914–2925. [Google Scholar] [CrossRef] [Green Version]
- Benariba, N.; Djaziri, R.; Bellakhdar, W.; Belkacem, N.; Kadiata, M.; Malaisse, W.J.; Sener, A. Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extracts. Asian Pac. J. Trop. Biomed. 2013, 3, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Gurudeeban, S.; Satyavani, K.; Ramanathan, T. Bitter apple (Citrullus colocynthis): An overview of chemical composition and biomedical potentials. Asian J. Plant Sci. 2010, 9, 394. [Google Scholar] [CrossRef]
- Gupta, S.C.; Tripathi, T.; Paswan, S.K.; Agarwal, A.G.; Rao, C.V.; Sidhu, O.P. Phytochemical investigation, antioxidant and wound healing activities of Citrullus colocynthis (bitter apple). Asian Pac. J. Trop. Biomed. 2018, 8, 418. [Google Scholar]
- Bourhia, M.; Bouothmany, K.; Bakrim, H.; Hadrach, S.; Salamatullah, A.M.; Alzahrani, A.; Benbacer, L. Chemical Profiling, Antioxidant, Antiproliferative, and Antibacterial Potentials of Chemically Characterized Extract of Citrullus colocynthis L. Seeds. Separations 2021, 8, 114. [Google Scholar] [CrossRef]
- Herrero-Calvillo, R.; Borjas-Garcia, S.E.; Rosas, G. Biosynthesis of AuNPs Using Loeselia Mexicana Extract. Microsc. Microanal. 2018, 24, 1738–1739. [Google Scholar] [CrossRef] [Green Version]
- Benkovicova, M.; Vegso, K.; Siffalovic, P.; Jergel, M.; Luby, S.; Majkova, E. Preparation of AuNPs for plasmonic applications. Thin Solid Film. 2013, 543, 138–141. [Google Scholar] [CrossRef]
- Sane, N.; Hungund, B.; Ayachit, N. Biosynthesis and characterization of AuNPs using plant extracts. In International Conference on Advanced Nanomaterials & Emerging Engineering Technologies; IEEE: Chennai, India, 2013; pp. 295–299. [Google Scholar]
- Rahman, F.A.; Foo, K.L. Synthesis and characterization of gold doped zinc oxide nanostructure for biosensor application. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; Volume 1892, p. 020024. [Google Scholar]
- El-Brolossy, T.A.; Abdallah, T.; Mohamed, M.B.; Abdallah, S.; Easawi, K.; Negm, S.; Talaat, H. Shape and size dependence of the surface plasmon resonance of AuNPs studied by Photoacoustic technique. Eur. Phys. J. Spec. Top. 2008, 153, 361–364. [Google Scholar] [CrossRef]
- Chen, M.; He, Y.; Liu, X.; Zhu, J.; Liu, R. Synthesis and optical properties of size-controlled AuNPs. Powder Technol. 2017, 311, 25–33. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Esterle, A.; Sharma, N.C.; Sahi, S.V. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res. Lett. 2014, 9, 627. [Google Scholar] [CrossRef] [Green Version]
- Piruthiviraj, P.; Margret, A.; Krishnamurthy, P.P. AuNPs synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi. Appl. Nanosci. 2016, 6, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Akintelu, S.A.; Olugbeko, S.C.; Folorunso, A.S. A review on synthesis, optimization, characterization and antibacterial application of AuNPs synthesized from plants. Int. Nano Lett. 2020, 237–248. [Google Scholar] [CrossRef]
- Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green synthesis of AuNPs using seed aqueous extract of Abelmoschusesculentus and its antifungal activity. Ind. Crops Prod. 2013, 45, 423–429. [Google Scholar] [CrossRef]
- Katas, H.; Lim, C.S.; Azlan, A.Y.H.N.; Buang, F.; Busra, M.M.F. Antibacterial activity of biosynthesized AuNPs using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm. J. 2019, 27, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Oza, G.; Mewada, A.; Sharon, M. Green synthesis of highly stable AuNPs using Momordica charantia as nano fabricator. Arch. Appl. Sci. Res. 2012, 4, 1135–1141. [Google Scholar]
- Li, C.; Li, D.; Wan, G.; Xu, J.; Hou, W. Facile synthesis of concentrated AuNPs with low size-distribution in water: Temperature and pH controls. Nanoscale Res. Lett. 2011, 6, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, A.; Wei, Y.; Syed, F.; Imran, M.; Khan, Z.U.H.; Tahir, K.; Yuan, Q. Size dependent catalytic activities of green synthesized AuNPs and electro-catalytic oxidation of catechol on AuNPs modified electrode. RSC Adv. 2015, 5, 99364–99377. [Google Scholar] [CrossRef]
- Ismail, E.H.; Saqer, A.; Assirey, E.; Naqvi, A.; Okasha, R.M. Successful green synthesis of AuNPs using a Corchorus olitorius extract and their antiproliferative effect in cancer cells. Int. J. Mol. Sci. 2018, 19, 2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MubarakAli, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and AuNPs and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B Biointerfaces 2011, 85, 360–365. [Google Scholar] [CrossRef]
- Rodríguez, G.C.; Gauthier, G.H.; Ladeira, L.O.; Cala, J.S.; Cataño, D.L. Effect of pH and chloroauric acid concentration on the geometry of AuNPs obtained by photochemical synthesis. J. Phys. Conf. Ser 2017, 935, 012027. [Google Scholar] [CrossRef] [Green Version]
- Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.D.; Kalaichelvan, P.T. Acalyphaindica Linn: Biogenic synthesis of silver and AuNPs and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep. 2014, 4, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Milanezi, F.G.; Meireles, L.M.; de Christo Scherer, M.M.; de Oliveira, J.P.; da Silva, A.R.; de Araujo, M.L.; Endringer, D.C.; Fronza, M.; Guimaraes, M.C.C.; Scherer, R. Antioxidant, antimicrobial and cytotoxic activities of AuNPs capped with quercetin. Saudi Pharm. J. 2019, 27, 968–974. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Iatì, M.A. Surface plasmon resonance in AuNPs: A review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Vo, T.T.; Dang, C.H.; Doan, V.D.; Dang, V.S.; Nguyen, T.D. Biogenic synthesis of silver and AuNPs from Lactucaindica leaf extract and their application in catalytic degradation of toxic compounds. J. Inorg. Organomet. Polym. Mater. 2020, 30, 388–399. [Google Scholar] [CrossRef]
- Zangeneh, M.M.; Zangeneh, A. Novel green synthesis of Hibiscus sabdariffa flower extract conjugated AuNPs with excellent anti-acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl. Organomet. Chem. 2020, 34, e5271. [Google Scholar] [CrossRef]
- Anuradha, J.; Abbasi, T.; Abbasi, S.A. An eco-friendly method of synthesizing AuNPs using an otherwise worthless weed pistia (Pistia stratiotes L.). J. Adv. Res. 2015, 6, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, H.; Song, Z.; Li, P.; Wang, G.; Ma, B.; Wang, W. Development of biofabricated AuNPs for the treatment of alleviated arthritis pain. Appl. Nanosci. 2020, 10, 617–622. [Google Scholar] [CrossRef]
- Uzma, M.; Sunayana, N.; Raghavendra, V.B.; Madhu, C.S.; Shanmuganathan, R.; Brindhadevi, K. Biogenic synthesis of AuNPs using Commiphora wightii and their cytotoxic effects on breast cancer cell line (MCF-7). Process Biochem. 2020, 92, 269–276. [Google Scholar] [CrossRef]
- Manju, S.; Malaikozhundan, B.; Vijayakumar, S.; Shanthi, S.; Jaishabanu, A. Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated AuNPs. Microb. Pathog. 2016, 91, 129–135. [Google Scholar] [CrossRef]
- Punuri, J.B.; Sharma, P.; Sibyala, S.; Tamuli, R.; Bora, U. Piper betle-mediated green synthesis of biocompatible AuNPs. Int. Nano Lett. 2012, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xu, Y.; Yan, Y.; Liu, H.; Karunakaran, T.; Li, F. Green synthesis of AuNPs from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif. Cells Nanomed. Biotechnol. 2019, 47, 1617–1627. [Google Scholar] [CrossRef] [Green Version]
- Nagalingam, M.; Kalpana, V.N.; Panneerselvam, A. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible AuNPs from Alternanthera bettzickiana. Biotechnol. Rep. 2018, 19, e00268. [Google Scholar]
Area (nm2) | Mean | Perimeter (nm) | Feret Max (nm) | Feret Min (nm) | |
---|---|---|---|---|---|
1 | 1017.622 | 112.943 | 122.13 | 39.56 | 33.784 |
2 | 126.917 | 36.705 | 44.323 | 14.819 | 12.823 |
3 | 131.026 | 40.439 | 45.442 | 14.757 | 12.838 |
4 | 277.118 | 66.565 | 66.369 | 21.335 | 18.243 |
5 | 48.85 | 89.065 | 27.219 | 9.411 | 7.554 |
6 | 81.264 | 45.719 | 33.812 | 11.625 | 9.886 |
Infrared Absorption Bands of AuNPs Frequencies (cm−1). | |||||||
---|---|---|---|---|---|---|---|
S. No. | Esters Stretch C=O | Alkenes (C=C) | Alkynes (C ≡C) stretch | Alkane C-H | Nitro NO2 Strech | Alkyl & Aryl Halides C-F Stretch | Alcohol O-H Stretch |
1 | 1744.4 | 1640.0 | 2163.7 | 2929.7 2860.7 | 1390.3 | 1064.2 1235.6 | 3278.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubeen, B.; Rasool, M.G.; Ullah, I.; Rasool, R.; Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Alzarea, S.I.; Nadeem, M.S.; Kazmi, I. Phytochemicals Mediated Synthesis of AuNPs from Citrullus colocynthis and Their Characterization. Molecules 2022, 27, 1300. https://doi.org/10.3390/molecules27041300
Mubeen B, Rasool MG, Ullah I, Rasool R, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Phytochemicals Mediated Synthesis of AuNPs from Citrullus colocynthis and Their Characterization. Molecules. 2022; 27(4):1300. https://doi.org/10.3390/molecules27041300
Chicago/Turabian StyleMubeen, Bismillah, Mahvish Ghulam Rasool, Inam Ullah, Rabia Rasool, Syed Sarim Imam, Sultan Alshehri, Mohammed M. Ghoneim, Sami I. Alzarea, Muhammad Shahid Nadeem, and Imran Kazmi. 2022. "Phytochemicals Mediated Synthesis of AuNPs from Citrullus colocynthis and Their Characterization" Molecules 27, no. 4: 1300. https://doi.org/10.3390/molecules27041300
APA StyleMubeen, B., Rasool, M. G., Ullah, I., Rasool, R., Imam, S. S., Alshehri, S., Ghoneim, M. M., Alzarea, S. I., Nadeem, M. S., & Kazmi, I. (2022). Phytochemicals Mediated Synthesis of AuNPs from Citrullus colocynthis and Their Characterization. Molecules, 27(4), 1300. https://doi.org/10.3390/molecules27041300