Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review
Abstract
:1. Introduction
1.1. Nanoparticle Synthesis
1.2. Physical Method
1.3. Chemical Synthesis of Gold Nanoparticles
2. Biological Method of Synthesis
2.1. Green Synthesis of Gold Nanoparticles
2.2. Medicinal Plants
3. Characterization
3.1. UV–Visible Spectroscopic Analysis
3.2. Fourier Transform Infrared Spectroscopic Analysis (FTIR)
3.3. Transmission Electron Microscope (TEM)
3.4. X-ray Diffraction (XRD)
4. Theranostic Applications
4.1. Principle of MTT Assay
4.2. Biological and Theranostic Applications
5. Future Prospective
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Chen, P.; Sun, Y.; Xing, Y.; Yang, Y.; Dong, Y.; Xu, L.; Yang, Z.; Liu, D. A New Strategy Improves Assembly Efficiency of DNA Mono-Modified Gold Nanoparticles. Chem. Commun. 2011, 47, 5774–5776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, P.; Bhattacharya, R.; Bone, N.; Lee, Y.K.; Patra, C.R.; Wang, S.; Lu, L.; Secreto, C.; Banerjee, P.C.; Yaszemski, M.J.; et al. Potential Therapeutic Application of Gold Nanoparticles in B-Chronic Lymphocytic Leukemia (BCLL): Enhancing Apoptosis. J. Nanobiotechnology 2007, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Calzolai, L.; Franchini, F.; Gilliland, D.; Rossi, F. Protein–Nanoparticle Interaction: Identification of the Ubiquitin–Gold Nanoparticle Interaction Site. Nano Lett. 2010, 10, 3101–3105. [Google Scholar] [CrossRef]
- Jamison, J.A.; Bryant, E.L.; Kadali, S.B.; Wong, M.S.; Colvin, V.L.; Matthews, K.S.; Calabretta, M.K. Altering Protein Surface Charge with Chemical Modification Modulates Protein–Gold Nanoparticle Aggregation. J. Nanopart. Res. 2011, 13, 625–636. [Google Scholar] [CrossRef]
- Uehara, N. Polymer-Functionalized Gold Nanoparticles as Versatile Sensing Materials. Anal. Sci. 2010, 26, 1219–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, S.D.; Nativo, P.; Smith, J.-A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin. J. Am. Chem. Soc. 2010, 132, 4678–4684. [Google Scholar] [CrossRef]
- Khan, J.A.; Kudgus, R.A.; Szabolcs, A.; Dutta, S.; Wang, E.; Cao, S.; Curran, G.L.; Shah, V.; Curley, S.; Mukhopadhyay, D.; et al. Designing Nanoconjugates to Effectively Target Pancreatic Cancer Cells in Vitro and in Vivo. PLoS ONE 2011, 6, e20347. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef]
- Barry, N.P.E.; Sadler, P.J. Challenges for Metals in Medicine: How Nanotechnology May Help to Shape the Future. ACS Nano 2013, 7, 5654–5659. [Google Scholar] [CrossRef]
- Bakur, A.; Niu, Y.; Kuang, H.; Chen, Q. Synthesis of Gold Nanoparticles Derived from Mannosylerythritol Lipid and Evaluation of Their Bioactivities. AMB Express 2019, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R. Anticancer Activity of Eco-Friendly Au Nanoparticles against Lung and Liver Cancer Cells. J. Genet. Eng. Biotechnol. 2016, 14, 195–202. [Google Scholar]
- Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Nano-Gold Catalysis in Fine Chemical Synthesis. Chem. Rev. 2012, 112, 2467–2505. [Google Scholar] [CrossRef] [PubMed]
- Duncan, T.V. Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. J. Colloid Interface Sci. 2011, 363, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Dastjerdi, R.; Montazer, M. A Review of the Application of Microbial Nanostructured Materials in the Modification of Textiles Focus on Antimicrobial Properties. Colloids Surf. B Biointerfaces 2010, 79, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Mikhailova, E.O. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J. Funct. Biomater. 2021, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Idhayadhulla, A.; Lee, Y.R. Tyrosinase Inhibitory Activity of Silver Nanoparticles Treated with Hovenia dulcis Fruit Extract: An in Vitro Study. Mater. Lett. 2014, 129, 28–30. [Google Scholar] [CrossRef]
- Kulkarni, N.; Muddapur, U. Biosynthesis of Metal Nanoparticles: A Review. J. Nanotechnol. 2014, 2014, 510246. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.Y.; Murtijaya, J. Antioxidant Properties of Phyllanthus amorous Extracts as Affected by Different Drying Methods. LWT-Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.W.; Kim, S.; Yan, Y.Y. Cinnamomum Zeylanicum Bark Extract and Powder Mediated Green Synthesis of Nano-Crystalline Ag Particles and Its Bacterial Activity. Colloids Surf. B Biointerfaces 2009, 73, 332–338. [Google Scholar] [CrossRef]
- Safaepaser, M.; Shahverdi, A.R.; Shahverdi, H.R.; Khorramizadeh, M.R.; Gohari, A.R. Green Synthesis of Small Ag Nanoparticles Using Geraniol and Its Cytotoxicity against Fibrosarcomawehi 164. Avicenna J. Med. Biotechnol. 2009, 1, 111–115. [Google Scholar]
- Ju-Nam, Y.; Led, J.R. Manufactured Nanoparticles: An Overview of Their Chemistry, Inclination, and Potential Implication. Sci. Total Environ. 2008, 400, 396–4141. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Jung, B.; Kim, J.; Kim, W. Effects of Embedding Non-Absorbing Nanoparticles in Organic Photovoltaics on Power Conversion Efficiency. Sol. Energy Mater. Sol. Cells 2010, 94, 1835–1839. [Google Scholar] [CrossRef]
- Geoprincy, G.; Srri, B.V.; Poonguzhali, U.; Gandhi, N.N.; Ranganathan, S. A Review on Green Synthesis of Ag Nanoparticles. Asian J. Pharm. Nat. 2013, 6, 8–12. [Google Scholar]
- Kruis, F.E.; Fissan, H.; Rellinghaus, B. Sintering and Evaporation Characteristics of Gas-Phase Synthesis of Size-Selected PbS Nanoparticles. Mater. Sci. Eng. B 2000, 69–70, 329–334. [Google Scholar] [CrossRef]
- Jung, J.H.; Oh, H.C.; Noh, H.S.; Ji, J.H.; Kim, S.S. Metal Nanoparticle Generation Using a Small Ceramic Heater with a Local Heating Area. J. Aerosol Sci. 2006, 37, 1662–1670. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of Ag Nanoparticles; Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Tsuji, T.; Iryo, K.; Watanabe, N.; Tsuji, M. Preparation of Ag Nanoparticles by Laser Ablation in Solution: Influence of Laser Wavelength on Particle Size. Appl. Surf. Sci. 2002, 202, 80–85. [Google Scholar] [CrossRef]
- Tien, D.-C.; Tseng, K.-H.; Liao, C.-Y.; Huam, J.C.; Tsung, T.T. Discovery of Ionic Ag in Ag Nanoparticles Suspension Fabricated by Arc Discharge Method. J. Alloys Compd. 2008, 463, 408–411. [Google Scholar] [CrossRef]
- Iqbal, N.; Iqubal, S.M.S.; Khan, A.A.; Mohammed, T.; Alshabi, A.M.; Aazam, E.S.; Rafiquee, M.Z.A. Effect of CTABr (Surfactant) on the Kinetics of Formation of Silver Nanoparticles by Amla Extract. J. Mol. Liq. 2021, 329, 115537. [Google Scholar] [CrossRef]
- Sardar, R.; Shumaker-Parry, J.S. Spectroscopic and Microscopic Investigation of Gold Nanoparticle Formation: Ligand and Temperature Effects on Rate and Particle Size. J. Am. Chem. Soc. 2011, 133, 8179–8190. [Google Scholar] [CrossRef]
- Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L.M. Shape Control in Gold Nanoparticle Synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55. [Google Scholar] [CrossRef]
- Wilton-Ely, J.D.E.T. The Surface Functionalisation of Gold Nanoparticles with Metal Complexes. Dalton Trans. 2008, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Aslan, K.; Pérez-Luna, V.H. Surface Modification of Colloidal Gold by Chemisorption of Alkanethiols in the Presence of a Nonionic Surfactant. Langmuir 2002, 18, 6059–6065. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Tsai, Y.-T.; Chen, C.-C.; Lin, C.-M.; Chen, C.-H. Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles. J. Phys. Chem. B 2004, 108, 2134–2139. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid–Liquid System. J. Chem. Soc. Chem. Commun. 1994, 801–802. [Google Scholar] [CrossRef]
- Hostetler, M.J.; Wingate, J.E.; Zhong, C.-J.; Harris, J.E.; Vachet, R.W.; Clark, M.R.; Londono, J.D.; Green, S.J.; Stokes, J.J.; Wignall, G.D.; et al. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 Nm: Core and Monolayer Properties as a Function of Core Size. Langmuir 1998, 14, 17–30. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1169. [Google Scholar] [CrossRef]
- Noruzi, M.; Zare, D.; Khoshnevisan, K.; Davoodi, D. Rapid Green Synthesis of Gold Nanoparticles Using Rosa Hybrida Petal Extract at Room Temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1461–1465. [Google Scholar] [CrossRef]
- Thirumurugan, A.; Jiflin, G.J.; Rajagomathi, G.; Tomy, N.A.; Ramachandran, S.; Jaiganesh, R. Biotechnological synthesis of gold nanoparticles of Azadirachta indica leaf extract. Int. J. Biol. Technol. 2010, 1, 75–77. [Google Scholar]
- Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current Methods for Synthesis of Gold Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016, 44, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanoparticle Res. 2008, 10, 507–517. [Google Scholar] [CrossRef]
- Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A.K. Facile Green Synthesis of Variable Metallic Gold Nanoparticle Using Padina gymnospora, a Brown Marine Macroalga. Appl. Nanosci. 2013, 3, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Gardea-Torresdey, J.L.; Parsons, J.G.; Gomez, E.; Peralta-Videa, J.; Troiani, H.E.; Santiago, P.; Yacaman, M.J. Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants. Nano Lett. 2002, 2, 397–401. [Google Scholar] [CrossRef]
- Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green Synthesis of Silver Nanoparticles in Aloe Vera Plant Extract Prepared by a Hydrothermal Method and Their Synergistic Antibacterial Activity. PeerJ 2016, 4, e2589. [Google Scholar] [CrossRef]
- Ahmed, S.; Annu; Ikram, S.; Yudha, S.S. Biosynthesis of Gold Nanoparticles: A Green Approach. J. Photochem. Photobiol. B 2016, 161, 141–153. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Coriander Leaf Mediated Biosynthesis of Gold Nanoparticles. Mater. Lett. 2008, 62, 4588–4590. [Google Scholar] [CrossRef]
- Ankamwar, B. Biosynthesis of Gold Nanoparticles (Green-Gold) Using Leaf Extract Of Terminalia catappa. J. Chem. 2010, 7, 1334–1339. [Google Scholar] [CrossRef] [Green Version]
- Smitha, S.L.; Philip, D.; Gopchandran, K.G. Green Synthesis of Gold Nanoparticles Using Cinnamomum zeylanicum Leaf Broth. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 74, 735–739. [Google Scholar] [CrossRef]
- Parida, U.K.; Bindhani, B.K.; Nayak, P. Green Synthesis and Characterization of Gold Nanoparticles Using Onion (Allium cepa) Extract. World J. Nano Sci. Eng. 2011, 1, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Vadlapudi, V.; Kaladhar, D.S.V.G.K. Review: Green Synthesis of Silver and Gold Nanoparticles. Middle-East J. Sci. Res. 2014, 19, 834–842. [Google Scholar]
- Arunachalam, K.D.; Annamalai, S.K.; Hari, S. One-Step Green Synthesis and Characterization of Leaf Extract-Mediated Biocompatible Silver and Gold Nanoparticles from Memecylon umbellatum. Int. J. Nanomed. 2013, 8, 1307–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aromal, S.A.; Vidhu, V.K.; Philip, D. Green Synthesis of Well-Dispersed Gold Nanoparticles Using Macrotyloma uniflorum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 85, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Kottaisamy, M.; BarathmaniKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of Silver and Gold Nanoparticles Using Brevibacterium casei. Colloids Surf. B Biointerfaces 2010, 77, 257–262. [Google Scholar] [CrossRef]
- Sujitha, M.V.; Kannan, S. Green Synthesis of Gold Nanoparticles Using Citrus Fruits (Citrus limon, Citrus reticulata and Citrus sinensis) Aqueous Extract and Its Characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 102, 15–23. [Google Scholar] [CrossRef]
- Tamuly, C.; Hazarika, M.; Borah, S.C.; Das, M.R.; Boruah, M.P. In Situ Biosynthesis of Ag, Au and Bimetallic Nanoparticles Using Piper pedicellatum C.DC: Green Chemistry Approach. Colloids Surf. B Biointerfaces 2013, 102, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.M.; Mandal, B.K.; Sinha, M.; Krishnakumar, V. Terminalia chebula Mediated Green and Rapid Synthesis of Gold Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 86, 490–494. [Google Scholar] [CrossRef]
- Elavazhagan, T.; Arunachalam, K.D. Memecylon edule Leaf Extract Mediated Green Synthesis of Silver and Gold Nanoparticles. Int. J. Nanomed. 2011, 6, 1265–1278. [Google Scholar] [CrossRef] [Green Version]
- Das, R.K.; Gogoi, N.; Bora, U. Green Synthesis of Gold Nanoparticles Using Nyctanthes arbortristis Flower Extract. Bioprocess Biosyst. Eng. 2011, 34, 615–619. [Google Scholar] [CrossRef]
- Philip, D.; Unni, C.; Aromal, S.A.; Vidhu, V.K. Murraya koenigii Leaf-Assisted Rapid Green Synthesis of Silver and Gold Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78, 899–904. [Google Scholar] [CrossRef]
- Santhoshkumar, J.; Rajeshkumar, S.; Venkat Kumar, S. Phyto-Assisted Synthesis, Characterization and Applications of Gold Nanoparticles—A Review. Biochem. Biophys. Rep. 2017, 11, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana Peel Extract Mediated Synthesis of Gold Nanoparticles. Colloids Surf. B Biointerfaces 2010, 80, 45–50. [Google Scholar] [CrossRef]
- Vinod, V.T.P.; Saravanan, P.; Sreedhar, B.; Devi, D.K.; Sashidhar, R.B. A Facile Synthesis and Characterization of Ag, Au and Pt Nanoparticles Using a Natural Hydrocolloid Gum Kondagogu (Cochlospermum gossypium). Colloids Surf. B Biointerfaces 2011, 83, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.P.; Paul, W.; Sharma, C.P. Green Synthesis of Gold Nanoparticles with Zingiber Officinale Extract: Characterization and Blood Compatibility. Process Biochem. 2011, 46, 2007–2013. [Google Scholar] [CrossRef]
- Shrikanth, V.M.; Janardhan, B.; Dhananjaya, B.L.; Muddapura, U.M.; More, S.S. Antimicrobial And Antioxidant Activity Of Methanolic Root Extract Of Tabernaemontana alternifolia L. Int. J. Pharm. Pharm. Sci. 2015, 7, 66–69. [Google Scholar]
- Majumdar, R.; Bag, B.G.; Ghosh, P. Mimussops Elengi Bark Extract Mediated Green Synthesis of Au Nanoparticles and Study of Its Catalytic Activity. Appl. Nanosci. 2016, 6, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Shankar, S.S.; Rai, A.; Ahamed, A.; Sastry, M. Rapid Synthesis of Au, Ag and Bimetallic Au Core Ag Shell Nanoparticles Using Neem (Azadictira indica) Leaf Broth. J. Colloid Interface 2004, 275, 496–502. [Google Scholar] [CrossRef]
- Bakar, A.; Ismail, N.H.H.; Abu Bakar, J. Synthesis and Characterization of Ag Nanoparticles in Natural Rubber. Matter. Chem. Phys. 2007, 104, 276–283. [Google Scholar] [CrossRef]
- Chandan, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Au Nano Triangles and Ag Nanoparticles Using Aloevera Plant Extract. Biotechnol. Prog. 2006, 22, 577–583. [Google Scholar] [CrossRef]
- Shankar, S.S.; Rai, A.; Ahamed, A.; Sastry, M. Controlling the Optical Properties of Lemongrass Extract Synthesized Au Nano Triangles and Potential Application Infrared-Absorbing Optical Coatings. Chem. Mater. 2005, 17, 566–572. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Srivastava, B.; Bhadouria, R.; Singh, R. Green Synthesis of Silver Nanoparticles Using Leaf Extract of Holoptelea integrifolia and Preliminary Investigation of Its Antioxidant, Anti-Inflammatory, Antidiabetic and Antibacterial Activities. J. Environ. Chem. Eng. 2019, 7, 103094. [Google Scholar] [CrossRef]
- Vinosha, M.; Palanisamy, S.; Muthukrishnan, R.; Selvam, S.; Kannapiran, E.; You, S.; Prabhu, N.M. Biogenic Synthesis of Gold Nanoparticles from Halymenia dilatata for Pharmaceutical Applications: Antioxidant, Anti-Cancer and Antibacterial Activities. Process Biochem. 2019, 85, 219–229. [Google Scholar] [CrossRef]
- Barai, A.C.; Paul, K.; Dey, A.; Manna, S.; Roy, S.; Bag, B.G.; Mukhopadhyay, C. Green Synthesis of Nerium Oleander-Conjugated Gold Nanoparticles and Study of Its in Vitro Anticancer Activity on MCF-7 Cell Lines and Catalytic Activity. Nano Converg. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.P.; Bayaraa, E.; Subedi, P.; Piad, L.L.A.; Tarte, N.H.; Kim, G.D. Biogenic Synthesis, Characterization of Gold Nanoparticles Using Lonicera japonica and Their Anticancer Activity on HeLa Cells. J. Drug Deliv. Sci. Technol. 2019, 51, 83–90. [Google Scholar] [CrossRef]
- Castro-Aceituno, V.; Abbai, R.; Moon, S.S.; Ahn, S.; Mathiyalagan, R.; Kim, Y.-J.; Kim, Y.-J.; Yang, D.C. Pleuropterus Multiflorus (Hasuo) Mediated Straightforward Eco-Friendly Synthesis of Silver, Gold Nanoparticles and Evaluation of Their Anticancer Activity on A549 Lung Cancer Cell Line. Biomed. Pharmacother. 2017, 93, 995–1003. [Google Scholar] [CrossRef]
- Arulkumar, S.; Sabesan, M. Biosynthesis and Characterization of Au Nanoparticles Using Anti Parkinsonian Drug Mucuna purines Plant Extract. Int. J. Res. Pharm. Sci. 2010, 1, 417–420. [Google Scholar]
- Dash, S.S.; Majumdar, R.; Sikder, A.K.; Bag, B.G.; Patra, B.K. Saraca indica Bark Extract Mediated Green Synthesis of Polyshaped Gold Nanoparticles and Its Application in Catalytic Reduction. Appl. Nanosci. 2014, 4, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Mathiyalagan, R.; Kim, Y.J.; Castro-Aceituno, V.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C. Rapid Green Synthesis of Silver and Gold Nanoparticles Using Dendropanax morbifera Leaf Extract and Their Anti-Cancer Activities. Int. J. Nanomed. 2016, 10, 3691–3701. [Google Scholar]
- Geethalakshmi, R.; Sarada, D.V.L. Gold and Silver Nanoparticles from Trianthema decandra: Synthesis, Characterization, and Antimicrobial Properties. Int. J. Nanomed. 2012, 7, 5375–5384. [Google Scholar] [CrossRef] [Green Version]
- Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhanimuthu, A.; Natarajan, T.; Sowmiya, R.; Perumal, P. Structural Characterization, Antioxidant and Anticancer Properties of Gold Nanoparticles Synthesized from Leaf Extract(Decoction)of Antigonon leptopus Hook. & Arn. J. Trace Elements Med. Biol. 2015, 30, 83–89. [Google Scholar]
- Raghunandan, D.; Ravishankar, B.; Sharanbasava, G.; Mahesh, D.B.; Harsoor, V.; Yalagatti, M.S.; Bhagawanraju, M.; Venkataraman, A. Anti-Cancer Studies of Noble Metal Nanoparticles Synthesized Using Different Plant Extracts. Cancer Nanotechnol. 2011, 2, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-Álvarez, J.; Vega-Fernández, L.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J.R. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef] [PubMed]
- Balwe, S.G.; Rokade, A.A.; Park, S.S.; Jeong, Y.T. Green Synthesis and Characterization of Supported Gold Nanoparticles (Au@PS) from Schisandra Chinensis Fruit Extract: An Efficient and Reusable Catalyst for the Synthesis of Chromeno[2,3-d]Pyrimidin-2-Yl)Phenol Derivatives under Solvent-Free Conditions. Catal. Commun. 2019, 128, 105703. [Google Scholar] [CrossRef]
- Singh, C.; Baboota, R.K.; Naik, P.K.; Singh, H. Biocompatible Synthesis of Silver and Gold Nanoparticles Using Leaf Extract of Dalbergia sissoo. Adv. Mater. Lett. 2012, 3, 279–285. [Google Scholar] [CrossRef]
- Sermakkani, M.; Pandian, T. Biological Synthesis of Ag Nanoparticles Using Medicinal Plant (Cassia italica) Leaves. Int. J. Curr. Res. 2012, 4, 53–58. [Google Scholar]
- Konwar Boruah, S.; Kumar Boruah, P.; Sarma, P.; Medhi, C.; Medhi, O.K. Green Synthesis of Gold Nanoparticles Using Camellia sinensis and Kinetics of the Reaction. Adv. Mater. Lett. 2012, 3, 481–486. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Akhter, S.; Rahman, Z.; Akhter, S.; Anwar, M.; Mallik, N.; Ahmad, F.J. Nanometric Gold in Cancer Nanotechnology: Current Status and Future Prospect. J. Pharm. Pharmacol. 2013, 65, 634–651. [Google Scholar] [CrossRef]
- Shiva, M.P. Inventory of Forestry Resources for Sustainable Management and Biodiversity Conservation; Indus Publishing: New Delhi, India, 1996. [Google Scholar]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Adesokan, A.A.; Yakuba, M.T.; Owoyele, B.V.; Akanji, M.A.; Soladoge, A.; Lawal, O. Effect of Administration of Aqueous and Ethanolic Extracts of Enantia cloranthasteen Bark on Brewer’s Yeast Induced Pepsis in Rats. Afr. J. Biochem. Res. 2008, 2, 165–169. [Google Scholar]
- Owolabi, M.A.; Coker, H.A.; Jaja, S.I. Flavonoid Metabolites in Urine after Oral Administration of the Aqueous Extract of Persea americana to Rats. J. Nat. Med. 2007, 61, 200–204. [Google Scholar] [CrossRef]
- Subramanian, V.; Gautam, V.; Raman, R.; Prahalathan, S.; Ashish, K. The Case of Selected Indian Health Care System; Export-Import Bank of India: Mumbai, India, 2003. [Google Scholar]
- John, D.; Britto, A.; Sujin, M.; Dhurmar, M.R. Ethnomedicinal Wisdom of the Manavalakarchi People in Kawgkumari District, Tamilnadu. Int. J. Biol. Technol. 2010, 1, 25–30. [Google Scholar]
- Ullah, S.; Khan, M.R.; Alishah, N.; Shah, S.; Majid, M. Ethno Medical Plant Use-Value in the Lakki Marwat District of Pakistan. J. Ethnopharmacol. 2014, 158, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.P. Himalayan Forest and Ecosystem Services: Incorporating in National Accounting; Central Himalayan Environment Association (CHEA): Nainital, Uttarakhand, India, 2007. [Google Scholar]
- Jain, S.K. Medicinal Plants; National Book Trust: Delhi, India, 1968; pp. 1–216.
- Rajasekharreddy, P.; Rani, P.U.; Sreedhar, B. Qualitative Assessment of Silver and Goldnanoparticle Synthesis in Various Plants: A Photobiological Approach. J. Nanopart. Res. 2010, 12, 1711–1721. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; et al. Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf. Nanotechnology 2007, 18, 105104. [Google Scholar] [CrossRef]
- Vilchis-Nestor, A.R.; Sánchez-Mendieta, V.; Camacho-López, M.A.; Gómez-Espinosa, R.M.; Camacho-López, M.A.; Arenas-Alatorre, J.A. Solvent Less Synthesis and Optical Properties of Au and Ag Nanoparticles Using Camellia sinensis Extract. Mater. Lett. 2008, 62, 3103–3105. [Google Scholar] [CrossRef]
- Noruzi, M.; Zare, D.; Davoodi, D. A Rapid Biosynthesis Route for the Preparation of Gold Nanoparticles by Aqueous Extract of Cypress Leaves at Room Temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 94, 84–88. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, D.; Zhang, G.; He, N.; Liu, H.; Huang, J.; Odoom-Wubah, T.; Li, Q. Investigation of Active Biomolecules Involved in the Nucleation and Growth of Gold Nanoparticles by Artocarpus heterophyllus Lam Leaf Extract. J. Nanopart. Res. 2013, 15, 1741. [Google Scholar] [CrossRef]
- Yasmin, A.; Ramesh, K.; Rajeshkumar, S. Optimization and Stabilization of Gold Nanoparticles by Using Herbal Plant Extract with Microwave Heating. Nano Converg. 2014, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Xu, D.; Guan, H.N.; Wang, C.; Huang, L.K.; Chi, D.F. Facile One-Step Green Synthesis of Gold Nanoparticles Using Citrus maxima Aqueous Extracts and Its Catalytic Activity. Mater. Lett. 2016, 166, 110–112. [Google Scholar] [CrossRef]
- Aromal, S.A.; Philip, D. Green Synthesis of Gold Nanoparticles Using Trigonella foenumgraecum and Its Size Dependent Catalytic Activity. Spectrochim. Acta Part A Mol. Biomol. 2012, 97, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, A.; Babu, S.T.; Jose, N.A.; Sudha, D.; Lyza, C.V. Biosynthesis and characterization of silver and gold nanoparticles using aqueous leaf extraction of Phyllanthus amarus Schum & Thonn. World Appl. Sci. J. 2011, 13, 1833–1840. [Google Scholar]
- Andrei, A.B.; Hassan, Y.; Serban, F. FTIR Spectrophotometric Methods Used for Antioxidant Activity Assay in Medicinal Plants. Appl. Spectrosc. Rev. 2012, 47, 245–255. [Google Scholar]
- Bhuvanasree, S.R.; Harini, D.; Rajaram, A.; Rajaram, R. Rapidsyn-thesis of gold nanoparticles with Cissus quadrangularis extract usingmicrowave ir-radiation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 106, 190–196. [Google Scholar] [CrossRef]
- Ghodake, G.S.; Deshpande, N.G.; Lee, Y.P.; Jin, E.S. Pear Fruit Extract-Assisted Room-Temperature Biosynthesis of Gold Nanoplates. Colloids Surf. B Biointerfaces 2010, 75, 584–589. [Google Scholar] [CrossRef]
- Pasca, R.-D.; Mocanu, A.; Cobzac, S.-C.; Petean, I.; Horovitz, O.; Tomoaia-Cotisel, M. Biogenic Syntheses of Gold Nanoparticles Using Plant Extracts. Part. Sci. Technol. 2014, 32, 131–137. [Google Scholar] [CrossRef]
- Jun, S.H.; Kim, H.-S.; Koo, Y.K.; Park, Y.; Kim, J.; Cho, S.; Park, Y. Root Extracts of Polygala tenuifolia for the Green Synthesis of Gold Nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 6202–6208. [Google Scholar] [CrossRef]
- Putnam, C.D.; Hammel, M.; Hura, G.L.; Tainer, J.A. X-Ray Solution Scattering (SAXS.) Combined with Crystallography and Computation: Defining Accurate Macromolecular Structures, Conformations and Assemblies in Solution. Q. Rev. Biophys. 2007, 40, 191–285. [Google Scholar] [CrossRef]
- Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tansy Fruit Mediated Greener Synthesis of Silver and Gold Nanoparticles. Process Biochem. 2010, 45, 1065–1071. [Google Scholar] [CrossRef]
- Geng, G.; Chen, P.; Guan, B.; Liu, Y.; Yang, C.; Wang, N.; Liu, M. Sheetlike Gold Nanostructures/Graphene Oxide Composites via a One-Pot Green Fabrication Protocol and Their Interesting Two-Stage Catalytic Behaviors. RSC Adv. 2017, 7, 51838–51846. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Ghosal, K.; Jana, N.K.; Mukherjee, A.; Basak, P. Green Synthesis and Characterization of Silver Nanoparticles Using Belladonna Mother Tincture and Its Efficacy as a Potential Antibacterial and Anti-Inflammatory Agent. Mater. Chem. Phys. 2019, 228, 310–317. [Google Scholar] [CrossRef]
- Sozer, N.; Kokini, J.L. Nanotechnology and Its Applications in the Food Sector. Trends Biotechnol. 2009, 27, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of Gold Nanoparticles in Cancer Nanotechnology. Nanotechnol. Sci. Appl. 2008, 1, 17–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.; Hewlett, I. Nanoparticle-Based Immunoassays for Sensitive and Early Detection of HIV-1 Capsid (P24) Antigen. J. Infect. Dis. 2010, 201, S59–S64. [Google Scholar] [CrossRef] [Green Version]
- Ayan, K.; Barui, R.; Kotcherlakota, C.-H.R. Medicinal Applications of Metal Nanoparticles Synthesis and Applications in Pharmaceutical Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Riss, T.L.; Moravec, R.A.; O’Brien, M.A.; Hawkins, E.M.; Niles, A. Homogeneous multiwell assays for measuring cell viability, cytotoxicity, and apoptosis. In Handbook of Assay Development in Drug Discovery; CRC Press: Boca Raton, FL, USA, 2006; pp. 385–406. ISBN 9781574444711. [Google Scholar]
- Nakkala, J.R.; Mata, R.; Bhagat, E.; Sadras, S.R. Green Synthesis Ofsilver and Gold Nanoparticles from Gymnema Sylvestre Leafextract: Study of Antioxidant and Anti-Cancer Activities. J. Nanopart. Res. 2015, 17, 151. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ghosh, S.; Das, D.K. Gold-Conjugated Green Teananoparticles for Enhanced Anti-Tumor Activities and Hepatoprotection-Synthesis, Characterization and in Vitro Evaluation. J. Nutr. Biochem. 2015, 26, 1283–1297. [Google Scholar] [CrossRef]
- Rajan, A.; Vilas, V.; Philip, D. Studies on Catalytic, Antioxidant, Antibacterial and Anti-Cancer Activities of Biogenic Gold Nanoparticles. J. Mol. Liq. 2015, 212, 331–339. [Google Scholar] [CrossRef]
- Ganesan, R.; Prabu, H.G. Synthesis of Gold NanoparticlesUsing Herbal Acorus Calamus Rhizome Extract And Coating on Cotton Fabric for Antibacterial and UV Blocking Applications. Arab. J. Chem. 2015, 12, 2166–2174. [Google Scholar] [CrossRef] [Green Version]
- Bindhu, M.; Umadevi, M. Antibacterial Activities of Green Synthesized Gold Nanoparticles. Mater. Lett. 2014, 120, 122–125. [Google Scholar] [CrossRef]
- Al Saqr, A.; Khafagy, E.-S.; Alalaiwe, A.; Aldawsari, M.F.; Alshahrani, S.M.; Anwer, M.K.; Khan, S.; Lila, A.S.A.; Arab, H.H.; Hegazy, W.A.H. Synthesis of Gold Nanoparticles by Using Green Machinery: Characterization and in Vitro Toxicity. Nanomaterials 2021, 11, 808. [Google Scholar] [CrossRef]
- Botteon, C.E.A.; Silva, L.B.; Ccana-Ccapatinta, G.V. Biosynthesis and Characterization of Gold Nanoparticles Using Brazilian Red Propolis and Evaluation of Its Antimicrobial and Anti-Cancer Activities. Sci. Rep. 2021, 11, 1974. [Google Scholar] [CrossRef]
- Vanaraj, S.; Jabastin, J.; Sathiskumar, S.; Preethi, K. Production and Characterization of Bio-AuNPs to Induce Synergistic Effect against Multidrug Resistant Bacterial Biofilm. J. Cluster Sci. 2017, 28, 227–244. [Google Scholar] [CrossRef]
- Abhijith, K.S.; Thakur, M.S. Application of Green Synthesis of Gold Nanoparticles for Sensitive Detection of Aflatoxin B1 Based on Metal Enhanced Fluorescence. Anal. Methods 2012, 4, 4250–4256. [Google Scholar] [CrossRef]
- Nagaraj, B.; Divya, T.; Malakar, B.; Krishnamurthy, N.; Dinesh, R.; Negrila, C.; Ciobanu, C.; Iconaru, S. Phytosynthesis of Gold Nanoparticles Using Caesalpinia pulcherrima (Peacock Flower) Flower Extract And Evaluation of Their Antimicrobial Activities. Dig. J. Nanomater. Biostructures 2012, 7, 899–905. [Google Scholar]
- Nagaraj, B.; Malakar, B.; Divya, T.; Krishnamurthy, N.; Liny, P.; Dinesh, R.; Iconaru, S.; Ciobanu, C. Synthesis of Plant Mediated Gold Nanoparticles Using Flower Extracts of Carthamus tinctorius L. (Safflower) and Evaluation Of Their Biological Activities. Dig. J. Nanomater. Biostructures 2012, 7, 1289–1296. [Google Scholar]
- Ke, Y.; Al Aboody, M.S.; Alturaiki, W.; Alsagaby, S.A.; Alfaiz, F.A.; Veeraraghavan, V.P.; Mickymaray, S. Photosynthesized Gold Nanoparticles from Catharanthus roseus Induces Caspase-Mediated Apoptosis in Cervical Cancer Cells (HeLa). Artif. Cells Nanomed. Biotechnol. 2019, 47, 1938–1946. [Google Scholar] [CrossRef] [Green Version]
- Muthukumar, T.; Sambandam, B.; Aravinthan, A.; Sastry, T.P.; Kim, J.-H. Green Synthesis of Gold Nanoparticlesand Their Enhanced Synergistic Antitumor Activity Using HepG2 and MCF7 Cells and Its Antibacterial Effects. Process Biochem. 2016, 51, 384–391. [Google Scholar] [CrossRef]
- Naraginti, S.; Sivakumar, A. Eco-Friendly Synthesis of Silver and Gold Nanoparticles with Enhanced Bactericidal Activity and Study of Silver Catalyzed Reduction of 4-Nitrophenol. Spectrochim. Acta Part A Mol. Biomol. 2014, 128, 357–362. [Google Scholar] [CrossRef]
- Brian, M.O.; Selvi, S. Biosynthesis and characterization of gold nanoparticles from Ceiba pentandra (L.) Gaertn bark and evaluation of its antibacterial and anticancer activity. Int. J. Res. Pharm. Sci. 2020, 35, 5643–5650. [Google Scholar]
- Ramesh, V.; Armash, A. Green Synthesis of Gold Nanoparticles Against Pathogens and Cancer Cells. IJPR 2015, 10, 250–256. [Google Scholar]
- Sreekanth, T.V.M.; Nagajyothi, P.C.; Supraja, N.; Prasad, T.N.V.K.V. Evaluation of the Antimicrobial Activity and Cytotoxicity of Phytogenic Gold Nanoparticles. Appl. Nanosci. 2015, 5, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.U.; Yuan, Q.; Wei, Y.; Khan, G.M.; Khan, Z.U.H.; Khan, S.; Ali, F.; Tahir, K.; Ahmad, A.; Khan, F.U. Photocatalytic and Antibacterial Response of Biosynthesized Gold Nanoparticles. J. Photochem. Photobiol. B Biol. 2016, 162, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Dorosti, N.; Jamshidi, F. Plant-Mediated Gold Nanoparticles by Dracocephalum kotschyi as Anticholinesterase Agent: Synthesis, Characterisation, and Evaluation of Anticancer and Antibacterial Activity. J. Appl. Biomed. 2016, 14, 235–245. [Google Scholar] [CrossRef]
- Annamalai, A.; Christina, V.L.P.; Sudha, D.; Kalpana, M.; Lakshmi, P.T.V. Green Synthesis, Characterization and Antimicrobial Activity of Au NPs Using Euphorbia hirta L. Leaf Extract. Colloids Surf. B Biointerfaces 2013, 108, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M. Green Synthesis of Silver, Gold and Silver/Gold Bimetallic Nanoparticles Using the Gloriosa superba Leaf Extract and Their Antibacterial and Antibiofilm Activities. Microb. Pathog. 2016, 101, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B. Green Biosynthesis of Gold Nanoparticles Using Galaxaura elongata and Characterization of Their Antibacterial Activity. Arab. J. Chem. 2013, 10, S3029–S3039. [Google Scholar] [CrossRef] [Green Version]
- Karthika, V.; Arumugam, A.; Gopinath, K.; Kaleeswarran, P.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Guazuma ulmifolia Bark-Synthesized Ag, Au and Ag/Au Alloy Nanoparticles: Photocatalytic Potential, DNA/Protein Interactions, Anticancer Activity and Toxicity against 14 Species of Microbial Pathogens. J. Photochem. Photobiol. B Biol. 2017, 167, 189–199. [Google Scholar] [CrossRef]
- Bindhu, M.; Rekha, P.V.; Umamaheswari, T.; Umadevi, M. Antibacterial Activities of Hibiscus cannabinus Stemassisted Silver and Gold Nanoparticles. Mater. Lett. 2014, 131, 194–197. [Google Scholar] [CrossRef]
- Basavegowda, N.; Idhayadhulla, A.; Lee, Y.R. Phyto-Synthesis of Gold Nanoparticles Using Fruit Extract of Hovenia dulcis and Their Biological Activities. Ind. Crops Prod. 2014, 52, 745–751. [Google Scholar] [CrossRef]
- Liny, P.; Divya, T.; Barasa, M.; Nagaraj, B.; Krishnamurthy, N.; Dinesh, R. Preparation of Gold Nanoparticles from Helianthus annuus (Sun Flower) Flowers and Evaluation of Their Antimicrobial Activities. Int. J. Pharma Bio Sci. 2012, 3, 439–446. [Google Scholar]
- Santos, N.M.; Gomes, A.S.; Cavalcante, D.G.; Santos, L.F.; Teixeira, S.R.; Cabrera, F.C.; Job, A.E. Green Synthesis of Colloidal Gold Nanoparticles Using Latex from Hevea brasiliensis and Evaluation of Their in Vitro Cytotoxicity and Genotoxicity. IET Nanobiotechnol. 2019, 13, 307–315. [Google Scholar] [CrossRef]
- Lava, M.B.; Muddapur, U.M.; Basavegowda, N.; More, S.S.; More, V.S. Characterization, anticancer, antibacterial, anti-diabetic and anti-inflammatory activities of green synthesized silver nanoparticles using Justica wynaadensis leaves extract. Mater. Today Proc. 2021, 46, 5942–5947. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Kala, S.M.J.; Pushparaj, T.L. Biogenic Synthesis of Gold Nanoparticles Using Jasminum auriculatum Leaf Extract and Their Catalytic, Antimicrobial and Anticancer Activities. J. Drug Deliv. Sci. Technol. 2020, 57, 101620. [Google Scholar] [CrossRef]
- Lava, M.B.; Muddapur, U.M.; Nagaraj, B. Synthesis and Characterization of Gold Nanoparticles from Lobelia nicotianifolia Leaf Extract and Its Biological Activities. Adv. Mater. Lett. 2020, 11, 1–4. [Google Scholar] [CrossRef]
- Poojary, M.M.; Passamonti, P.; Adhikari, A.V. Green Synthesis of Silver and Gold Nanoparticles Using Root Bark Extract of Mammea suriga: Characterization, Process Optimization, and Their Antibacterial Activity. BioNanoScience 2016, 6, 110–120. [Google Scholar] [CrossRef]
- Mubarakali, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant Extract Mediated Synthesis of Silver and Gold Nanoparticles and Its Antibacterial Activity Against Clinically Isolated Pathogens. Colloids Surf. B Biointerfaces 2011, 85, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Syed, F.; Imran, M.; Khan, A.U.; Tahir, K.; Khan, Z.U.H.; Yuan, Q. Phytosynthesis and AntileishmanialActivity of Gold Nanoparticles by Maytenus Royleanus. J. Food Biochem. 2015, 40, 420–427. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Gopi, N.; Ekambaram, P.; Pachaiappan, R.; Velusamy, P.; Murugan, K.; Benelli, G.; Suresh Kumar, R.; et al. Therapeutic Effects of Gold Nanoparticles Synthesized Using Musa paradisiaca Peel Extract against Multiple Antibiotic Resistant Enterococcus faecalis Biofilms and Human Lung Cancer Cells (A549). Microb. Pathog. 2017, 102, 173–183. [Google Scholar] [CrossRef]
- Bhau, B.S.; Ghosh, S.; Puri, S.; Borah, B.; Sarmah, D.K.; Khan, R. Green Synthesis of Gold Nanoparticles from the Leaf Extract of Nepenthes khasiana and Antimicrobial Assay. Adv. Mater. Lett. 2015, 6, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Chahardoli, A.; Karimi, N.; Sadeghi, F.; Fattahi, A. Green Approach for Synthesis of Gold Nanoparticles from Nigella arvensis Leaf Extract and Evaluation of Their Antibacterial, Antioxidant, Cytotoxicity and Catalytic Activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokina, S.; Suresh, R.; Giribabu, K.; Stephen, A.; Lakshmi Sundaram, R.; Narayanan, V. Spectroscopic Investigations, Antimicrobial, and Cytotoxic Activity of Green Synthesized Gold Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 129, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.U.; Jalil, K.; Shahid, M.; Muhammad, N.; Rauf, A. Pistacia integerrima Gall Extract Mediated Green Synthesis of Gold Nanoparticles and Their Biological Activities. Arab. J. Chem. 2019, 12, 2310–2319. [Google Scholar] [CrossRef]
- Mata, R.; Bhaskaran, A.; Sadras, S.R. Green-Synthesized Gold Nanoparticles from Plumeria alba Flower Extract to Augment Catalytic Degradation of Organic Dyes and Inhibit Bacterial Growth. Particuology 2016, 24, 78–86. [Google Scholar] [CrossRef]
- Anbu, P.; Gopinath, S.C.; Jayanthi, S. Synthesis of Gold Nanoparticles Using Platycodon grandiflorum Extract and Its Antipathogenic Activity under Optimal Conditions. Nanomater. Nanotechnol. 2020, 10, 184798042096169. [Google Scholar] [CrossRef]
- Godipurge, S.S.; Yallappa, S.; Biradar, N.J.; Biradar, J.S.; Dhananjaya, B.L.; Hegde, G.; Jagadish, K.; Hegde, G. A Facile and Green Strategy for the Synthesis of Au, Ag and Au–Ag Alloy Nanoparticles Using Aerial Parts of R. hypocrateriformis Extract and Their Biological Evaluation. Enzyme Microb. Technol. 2016, 95, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Muthuvel, A.; Adavallan, K.; Balamurugan, K.; Krishnakumar, N. Biosynthesis of Gold Nanoparticles Using Solanum nigrum Leaf Extract and Screening Their Free Radical Scavenging and Antibacterial Properties. Biomed. Prev. Nutr. 2014, 4, 325–332. [Google Scholar] [CrossRef]
- Ahmed, K.B.A.; Subramanian, S.; Sivasubramanian, A.; Veerappan, G.; Veerappan, A. Preparation of Gold Nanoparticles Using Salicornia brachiata Plant Extract and Evaluation of Catalytic and Antibacterial Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 54–58. [Google Scholar] [CrossRef]
- Bindhu, M.R.; Umadevi, M. Silver and Gold Nanoparticles for Sensor and Antibacterial Applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 37–45. [Google Scholar] [CrossRef]
- Mishra, A.; Kumari, M.; Pandey, S.; Chaudhry, V.; Gupta, K.C.; Nautiyal, C.S. Biocatalytic and Antimicrobial Activities of Gold Nanoparticles Synthesized by Trichoderma sp. Bioresour. Technol. 2014, 166, 235–242. [Google Scholar] [CrossRef]
- Geethalakshmi, R.; Sarada, D.V.L. Characterization and Antimicrobial Activity of Gold and Silver Nanoparticles Synthesized Using Saponin Isolated from Trianthema decandra L. Ind. Crops Prod. 2013, 51, 107–115. [Google Scholar] [CrossRef]
- Velmurugan, P.; Anbalagan, K.; Manosathyadevan, M.; Lee, K.-J.; Cho, M.; Lee, S.-M.; Park, J.-H.; Oh, S.-G.; Bang, K.-S.; Oh, B.-T. Green Synthesis of Silver and Gold Nanoparticles Using Zingiber officinale Root Extract and Antibacterial Activity of Silver Nanoparticles against Food Pathogens. Bioprocess Biosyst. Eng. 2014, 37, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, B. Zizyphus mauritiana Extract-Mediated Green and Rapid Synthesis of Gold Nanoparticles and Its Antibacterial Activity. J. Nanostructure Chem. 2015, 5, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Vijayashree, I.; Niranjana, P.; Prabhu, G.; Sureshbabu, V.; Manjanna, J. Conjugation of Au Nanoparticles with Chlorambucil for Improved Anti-Cancer Activity. J. Clust. Sci. 2017, 28, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Green, R.J. Green Phyto-Synthesis Of Gold Nanoparticles Using Achyranthes aspera Linn Seed-Epicotyls Layer Extracts And Its Anticancer Activity. Asian J. Pharm. Clin. Res. 2014, 7, 136–139. [Google Scholar]
- Sathishkumar, G.; Jha, P.K.; Vignesh, V.; Rajkuberan, C.; Jeyaraj, M.; Selvakumar, M.; Jha, R.; Sivaramakrishnan, S. Cannonball Fruit (Couroupita guianensis, Aubl.) Extract Mediated Synthesis of Gold Nanoparticles and Evaluation of Its Antioxidant Activity. J. Mol. Liq. 2016, 215, 229–236. [Google Scholar] [CrossRef]
- Geetha, R.; Ashokkumar, T.; Tamilselvan, S. Green Synthesis of Gold Nanoparticles and Their Anti-Cancer Activity. Cancer Nanotechnol. 2013, 4, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Pei, Q.; Shou, T.; Zhang, W.; Hu, J.; Li, W. Apoptotic Effect of Green Synthesized Gold Nanoparticles from Curcuma wenyujin Extract against Human Renal Cell Carcinoma A498 Cells. Int. J. Nanomed. 2019, 14, 4091–4103. [Google Scholar] [CrossRef] [Green Version]
- Ismail, E.H.; Saqer, A.M.A.; Assirey, E.; Naqvi, A.; Okasha, R.M. Successful Green Synthesis of Gold Nanoparticles Using a Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer Cells. Int. J. Mol. Sci. 2018, 19, 2612. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Hu, N.; Han, L.; Pi, Y.; Gao, Y.; Chen, K. Anticancer Activity of Green Synthesised Gold Nanoparticles from Marsdenia tenacissima Inhibits A549 Cell Proliferation through the Apoptotic Pathway. Artif. Cells Nanomed. Biotechnol. 2019, 47, 4012–4019. [Google Scholar] [CrossRef] [Green Version]
- Balashanmugam, P.; Mosachristas, K.; Kowsalya, E. In Vitro Cytotoxicity And Antioxidant Evaluation Of Biogenic Synthesized Gold Nanoparticles From Marsilea quadrifolia On Lung And Ovarian Cancer Cells. Int. J. Appl. Pharm. 2018, 10, 153–158. [Google Scholar]
- Philip, D. Rapid Green Synthesis of Spherical Gold Nanoparticles Using Mangifera indica Leaf. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 77, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Tahir, K.; Nazir, S.; Li, B.; Khan, A.U.; Khan, Z.U.H.; Gong, P.Y.; Khan, S.U.; Ahmad, A. Nerium oleander Leaves Extract Mediated Synthesis of Gold Nanoparticles and Its Antioxidant Activity. Mater. Lett. 2015, 156, 198–201. [Google Scholar] [CrossRef]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA). Bioinorg. Chem. Appl. 2018, 2018, 9390784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yas, R.M.; Ghafoor, A.; Saeed, M.A. Anticancer Effect of Green Synthesized Gold Nanoparticles Using Orchid Extract and Their Characterizations on Breast Cancer AMJ-13 Cell Line. Syst. Rev. Pharm 2021, 12, 500–505. [Google Scholar]
- Leonard, K.; Ahmmad, B.; Okamura, H.; Kurawaki, J. In Situ Green Synthesis of Biocompatible Ginseng Capped Gold Nanoparticles with Remarkable Stability. Colloids Surf. B Biointerfaces 2011, 82, 391–396. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Kumar, S.V.; Malarkodi, C.; Vanaja, M.; Paulkumar, K.; Annadurai, G. Optimized Synthesis of Gold Nanoparticles Using Green Chemical Process and Its Invitro Anticancer Activity Against HepG2 and A549 Cell Lines. Mech. Mater. Sci. Eng. J. 2017, 9. [Google Scholar]
- Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Karunakaran, T.; Li, F. Green Synthesis of Gold Nanoparticles from Scutellaria barbata and Its Anticancer Activity in Pancreatic Cancer Cell (PANC-1). Artif. Cells Nanomed. Biotechnol. 2019, 47, 1617–1627. [Google Scholar] [CrossRef] [Green Version]
- Hoshyar, R.; Khayati, G.R.; Poorgholami, M.; Kaykhaii, M. A Novel Green One-Step Synthesis of Gold Nanoparticles Using Crocin and Their Anti-Cancer Activities. J. Photochem. Photobiol. B: Biol. 2016, 159, 237–242. [Google Scholar] [CrossRef]
- Dhas, T.S.; Kumar, V.G.; Karthick, V.; Govindaraju, K.; Narayana, T.S. Biosynthesis of Gold Nanoparticles Using Sargassum swartzii and Its Cytotoxicity Effect on HeLa Cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133, 102–106. [Google Scholar] [CrossRef]
- Namvar, F.; Mohamad, R.; Shameli, K.; Rahman, H.S. Green Synthesis of Gold Nanoparticles (GNP) Using Seaweed Extract and Its Anticancer Effect. Open Conf. Proc. J. 2013, 4, 74. [Google Scholar] [CrossRef] [Green Version]
- Kajani, A.A.; Bordbar, A.-K.; Zarkesh Esfahani, S.H.; Razmjou, A. Gold Nanoparticles as Potent Anticancer Agent: Green Synthesis, Characterization, and in Vitro Study. RSC Adv. 2016, 6, 63973–63983. [Google Scholar] [CrossRef]
- Dey, A.; Yogamoorthy, S.M. Sundarapandian Green Synthesis of Gold Nanoparticles and Evaluation of Its Cytotoxic Property Against Colon Cancer Cell Line. Pharm. Chem. Sci. 2018, 4, 1–17. [Google Scholar]
- Patra, B.; Gautam, R.; Priyadarsini, E.; Rajamani, P.; Pradhan, S.N.; Saravanan, M.; Meena, R. Piper Betle: Augmented Synthesis of Gold Nanoparticles and Its in-Vitro Cytotoxicity Assessment on HeLa and HEK293 Cells. J. Clust. Sci. 2020, 31, 133–145. [Google Scholar] [CrossRef]
- Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green Synthesis of Gold Nanoparticles Using Seed Aqueous Extract of Abelmoschus esculentus and Its Antifungal Activity. Ind. Crops Prod. 2013, 45, 423–429. [Google Scholar] [CrossRef]
- Sundararajan, B.; Kumari, B.R. Novel Synthesis of Gold Nanoparticles Using Artemisia vulgaris L. Leaf Extract and Their Efficacy of Larvicidal Activity against Dengue Fever Vector Aedes aegypti L. J. Trace Elem. Med. Biol. 2017, 43, 187–196. [Google Scholar] [CrossRef]
- Mobaraki, F.; Momeni, M.; Taghavizadeh Yazdi, M.E.; Meshkat, Z.; Silanian Toosi, M.; Hosseini, S.M. Plant-Derived Synthesis and Characterization of Gold Nanoparticles: Investigation of Its Antioxidant and Anticancer Activity against Human Testicular Embryonic Carcinoma Stem Cells. Process Biochem. 2021, 111, 167–177. [Google Scholar] [CrossRef]
- Mousavi-Kouhi, S.M.; Beyk-Khormizi, A.; Mohammadzadeh, V.; Ashna, M.; Es-haghi, A.; Mashreghi, M.; Hashemzadeh, V.; Mozafarri, H.; Nadaf, M.; Yazdi, M.E.T. Biological Synthesis and Characterization of Gold Nanoparticles Using Verbascum speciosum Schrad. and Cytotoxicity Properties toward HepG2 Cancer Cell Line. Res. Chem. Intermed. 2022, 48, 167–178. [Google Scholar] [CrossRef]
- Yazdi, M.T.; Nazarnezhad, S.; Mousavi, S.; Amiri, M.S.; Darroudi, M.; Baino, F.; Kargozar, S. Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders. Molecules 2021, 26, 1510. [Google Scholar] [CrossRef]
- Akhter, S.; Ahmad, M.Z.; Ahmad, F.J.; Storm, G.; Kok, R.J. Gold Nanoparticles in Theranostic Oncology: Current State of the Art. Expert Opin. Drug Deliv. 2021, 10, 1225–1243. [Google Scholar] [CrossRef]
S. No | Name of the Plant | Activity | Cell Line Used | Shape | Size (nm) | Ref. |
---|---|---|---|---|---|---|
1 | Nanoparticles with antibacterial activity | |||||
1.1 | Areca catechu | Antibacterial | - | Spherical | 13 | [123] |
1.2 | Acorus calamus | Antibacterial | - | Spherical | 100 | [124] |
1.3 | Ananas comosus | Antibacterial | - | Spherical | 16 | [125] |
1.4 | Benincasa hispida | Antibacterial | - | Spherical | 23 | [126] |
1.5 | Brazilian red propolis | Antibacterial | - | Rods, triangular, pentagonal, hexagonal | 8–15 | [127] |
1.6 | Clitoria ternatea (Asian pigeonwings) | Antibacterial | - | Spherical, triangular, hexagonal | 10 | [128] |
1.7 | Citrus maxima | Antibacterial | - | Spherical | 27–30 | [104] |
1.8 | Coreopsis lanceolate | Detections of aflatoxins | - | Sphere | 23–30 | [129] |
1.9 | Caesalpinia pulcherrima | Antibacterial | - | Spherical | 10–50 | [130] |
1.10 | Carthamus tinctorius L | Antibacterial | - | Triangular, spherical | 40–200 | [131] |
1.11 | Catharanthus roseus | Antibacterial | - | Spherical, triangular | 3–9 | [132] |
1.12 | Carica papaya | Antibacterial | - | Spherical, triangular | 2–20 | [133] |
1.13 | Coleus forskohlii | Bactericidal activity | - | Triangular | 25–40 | [134] |
1.14 | Ceiba pentandra (L) | Antibacterial | - | Spherical | 20–48 | [135] |
1.15 | Diospyros ferrea | Antibacterial | - | Diverse | 70–90 | [136] |
1.16 | Dioscorea batatas | Antibacterial | - | Diverse | 19–56 | [137] |
1.17 | Dimocarpus longan | Antibacterial | - | Diverse | 25 | [138] |
1.18 | Dracocephalum kotschyi | Antibacterial | - | Spherical | 11 | [139] |
1.19 | Euphorbia hirta | Antibacterial | - | Spherical | 6–7 | [140] |
1.20 | Gloriosa superba | Antibacterial | - | Spherical | 25 | [141] |
1.21 | Galaxaura elongate | Antibacterial | - | Rod, triangular, hexagonal | 3–77 | [142] |
1.22 | Bay cedar | Antibacterial | - | Spherical | 20–25 | [143] |
1.23 | Hibiscus cannabinus | Antibacterial | - | Spherical | 13 | [144] |
1.24 | Hoveniadulcis | Antibacterial | - | Spherical | 20 | [145] |
1.25 | Helianthus annuus | Antibacterial | - | Polydispersed | 35 | [146] |
1.26 | Hevea brasiliensis | Cytotoxicity and genotoxicity | CHO-K1 cells | Spherical, triangular | 50 | [147] |
1.27 | Justica wynaadensis | Antibacterial | - | Spherical | 30–50 | [148] |
1.28 | Jasminum auriculatum | Antibacterial | - | Spherical | 8–37 | [149] |
1.29 | Lobila nicotianifolia | Antibacterial | - | Spherical | 80 | [150] |
1.30 | Mammea suriga | Antibacterial | - | Square | 50 | [151] |
1.31 | Mentha piperita | Antibacterial | - | Hexagonal | 78 | [152] |
1.32 | Maytenus royleanus | Antibacterial, Leshmenia | - | Hexagonal | 30 | [153] |
1.33 | Musa paradisiaca (Banana) | Antibacterial | - | Diverse | 300 | [154] |
1.34 | Nepenthes khasiana | Antibacterial | - | Spherical | 50–80 | [155] |
1.35 | Nigella arvensis | Antibacterial | - | Spherical | 3–37 | [156] |
1.36 | Punica granatum | Antibacterial | - | Spherical | 5.20 | [157] |
1.37 | Pistacia integerrima | Antibacterial | - | Granular | 20–200 | [158] |
1.38 | Plumeria alba | Antibacterial | - | Spherical | 16–28 | [159] |
1.39 | Platycodon grandiflorum | Antimicrobial | - | Spherical | 15 | [160] |
1.40 | Rivea hypocrateriformis | Antibacterial | - | Spherical | 10–50 | [161] |
1.41 | Solanum nigrum | Antibacterial | - | Spherical | 50 | [162] |
1.42 | Salicornia brachiate | Antibacterial | - | Polydispersed | 22–35 | [163] |
1.43 | Solanum lycopersicums | Antibacterial | - | Diverse | 14 | [164] |
1.44 | Trichoderma sp | Antibacterial | - | Pseudospheric | 1–24 | [165] |
1.45 | Trianthema decandra L | Antibacterial | - | Spherical, hexagonal, cuboidal | 38–80 | [166] |
1.46 | Zingiber officinale (Ginger) | Antibacterial | - | Spherical | 5–15 | [167] |
1.47 | Zizyphus mauritiana | Antibacterial | - | Spherical | 20–40 | [168] |
2 | Nanoparticles with Anticancer activity | |||||
2.1 | Areca catechu | Anticancer, catalyst | HeLa | Spherical | 13 | [123] |
2.2 | Artocarpus hirsutus (Wild jack) | Anticancer | HeLa, RKO and A549 | Spherical | 5–40 | [169] |
2.3 | Achyranthes Aspera Linn Seed | Anticancer | HeLa (Cervical) | Spherical, hexagonal, triangular | 9 | [170] |
2.4 | Benincasa hispida | Anticancer | HeLa (Cervical) | Spherical | 23 | [126] |
2.5 | Brazilian red propolis | Anticancer | Bladder (T24) and prostate (PC-3) | Rods, triangular, pentagonal, hexagonal | 8–15 | [127] |
2.6 | Couroupita guianensis | Anticancer | HL-60 | Cubic | 27 | [171,172] |
2.7 | Curcuma wenyujin | Anticancer | A498(renal carcinoma) | Spherical | 200 | [173] |
2.8 | Ceiba pentandra (L) | Anticancer | HCT-116 (colon cancer) | Spherical | 20–48 | [135] |
2.9 | Corchorus olitorius | Antiproliferative effect | (Breast) MCF-7, (colon) HCT-11, and (hepatocellular) HepG-2 | Triangular, hexagonal | 37–50 | [174] |
2.10 | Diospyros ferrea | Anticancer | HeLa | Diverse | 70–90 | [136] |
2.11 | Dioscorea batatas | Cytotoxicity | B16/F10 (melanoma) | Diverse | 19–56 | [137] |
2.12 | Dracocephalum kotschyi | Anticancer | K562 and HeLa | Spherical | 11 | [140] |
2.13 | Bay cedar | Anticancer | Cervical cancer (HeLa) | Spherical | 20–25 | [143] |
2.14 | Hevea brasiliensis | Cytoxicity and genotoxicity | CHO-K1 cells | Spherical, triangular | 50 | [147] |
2.15 | Justica wynaadensis | Anticancer | (Lung cancer) A549 | Spherical | 30–50 | [148] |
2.16 | Jasminum auriculatum | Anticancer | Cervical cancer (HeLa) | Spherical | 8–37 | [149] |
2.17 | Lobila nicotianifolia | Anticancer | (Lung cancer) A459 | Spherical | 80 | [150] |
2.18 | Musa paradisiaca (Banana) | Anticancer | (Lung cancer) A459 | Diverse | 300 | [154] |
2.19 | Marsdenia tenacissima | Anticancer | (Lung cancer) A459 | Spherical | 50 | [175] |
2.20 | Marsilea quadrifolia | Anticancer | (Lung adenocarcinoma) (A549) | Spherical | 10–40 | [176] |
2.21 | Mangifera indica (MI) mango peel | Cytotoxicity | African green monkey kidney normal cells (CV-1) and fetal lung fibroblast cells (WI-38) | Round, triangular, irregular | 19–45 | [177] |
2.22 | Nerium oleander | Anticancer | MCF-7 (breast cancer) | Spherical | 2–10 | [178] |
2.23 | Nepeta deflersiana | Anticancer | (Human cervical) HeLA | Cubic | 33 | [179] |
2.24 | Nigella arvensis | Cytotoxicity and catalytic activities | H1299 and MCF-7 | Spherical | 3–37 | [156] |
2.25 | Orchid | Anticancer | AMG-13 (breast cancer) | Spherical | 14–50 | [180] |
2.26 | Punica granatum | Anticancer | HeLa | Spherical | 5–20 | [157] |
2.27 | Korean red ginseng | Anticancer | (cervical), HeLa, Hep2 | Spherical | 3–40 | [181] |
2.28 | Padina tetrastromatica | Anticancer | Liver cancer (HepG2) and lung cancer (A549) | Spherical | 8–10 | [182] |
2.29 | Scutellaria barbata | Anticancer | Pancreatic (PANC-1) | Spherical | 154 | [183] |
2.30 | saffron stigma (crocin) | Anticancer | Human breast cancer cell line (MCF-7) | Spherical | 4–10 | [184] |
2.31 | Sargassum swartzii | Anticancer | Human cervical carcinoma (HeLa) | Spherical | 35 | [185] |
2.32 | Seaweed | Anticancer | MCF-7 (breast cancer) | Cubic, spherical | 20–50 | [186] |
2.33 | Taxus baccata | Anticancer | Breast cells (MCF-7), cervical cells (HeLa) and ovarian cells (Caov-4) | Dispersed | 20 | [187] |
2.34 | Wedelia trilobata | Anticancer | HCT 15 (colon cancer) | Spherical, cubic | 10–50 | [188] |
2.35 | Piper betle | Cytotoxicity | HeLa and HEK293 | Prism, cubic, octahedron, tetrahedron, dodecahedron, triangular | 15–55 | [189] |
3 | Nanoparticles with Antifungal activity | |||||
3.1 | Abelmoschus esculentus (Okra) | Antifungal | Crystalline | 62 | [190] | |
3.2 | Artemisia vulgaris (Mugwort) | Larvicidal activity against Aedes larvae | Spherical, triangular, hexagonal | 50–100 | [191] | |
3.3 | Brazilian red propolis | Antifungal | Rods, triangular, pentagonal, hexagonal | 8–15 | [127] | |
3.4 | Coreopsis lanceolate | Detections of aflatoxins | [129] | |||
3.5 | Carthamus tinctorius L | Antifungal | Triangular, spherical | 40–200 | [131] | |
3.6 | Caesalpinia pulcherrima | Antifungal | Spherical | 10–50 | [130] | |
3.7 | Bay cedar | Antifungal | Spherical | 20–25 | [143] | |
3.8 | Helianthus annuus | Antifungal | Polydispersed | 35 | [146] | |
3.9 | Nepenthes khasiana | Antifungal | Spherical | 50–80 | [155] | |
3.10 | Punica granatum | Antifungal | Spherical | 5–20 | [157] | |
3.11 | Pistacia integerrima | Antifungal | Granular | 20–200 | [158] | |
3.12 | Rivea hypocrateriformis | Antifungal | Spherical | 10–50 | [161] | |
3.13 | Trianthema decandra L | Antifungal | Spherical, hexagonal, cuboidal | 38–80 | [166] | |
4 | Nanoparticles with Antioxidant activity/antidiabetic activity | |||||
4.1 | Areca catechu | Catalyst, antioxidant | HeLa | Spherical | 13.7 | [123] |
4.2 | Clitoria ternatea (Asian pigeonwings) | Antioxidant | Spherical, triangular, hexagonal | 10 | [128] | |
4.3 | Couroupita guianensis | Antioxidant | HL-60 | Cubic | 27 | [171,172] |
4.4 | Hoveniadulcis | Antioxidant | Spherical | 20 | [145] | |
4.5 | Justica wynaadensis | Antidiabetic and anti-inflammatory | (Lung cancer) A549 | Spherical | 30–50 | [148] |
4.6 | Nerium oleander | Antioxidant | MCF-7 (breast cancer) | Spherical | 2–10 | [178] |
4.7 | Nigella arvensis | Antioxidant, catalytic activities | H1299 and MCF-7 | Spherical | 3–37 | [156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muddapur, U.M.; Alshehri, S.; Ghoneim, M.M.; Mahnashi, M.H.; Alshahrani, M.A.; Khan, A.A.; Iqubal, S.M.S.; Bahafi, A.; More, S.S.; Shaikh, I.A.; et al. Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review. Molecules 2022, 27, 1391. https://doi.org/10.3390/molecules27041391
Muddapur UM, Alshehri S, Ghoneim MM, Mahnashi MH, Alshahrani MA, Khan AA, Iqubal SMS, Bahafi A, More SS, Shaikh IA, et al. Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review. Molecules. 2022; 27(4):1391. https://doi.org/10.3390/molecules27041391
Chicago/Turabian StyleMuddapur, Uday M., Sultan Alshehri, Mohammed M. Ghoneim, Mater H. Mahnashi, Mohammed Abdulrahman Alshahrani, Aejaz Abdullatif Khan, S. M. Shakeel Iqubal, Amal Bahafi, Sunil S. More, Ibrahim Ahmed Shaikh, and et al. 2022. "Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review" Molecules 27, no. 4: 1391. https://doi.org/10.3390/molecules27041391
APA StyleMuddapur, U. M., Alshehri, S., Ghoneim, M. M., Mahnashi, M. H., Alshahrani, M. A., Khan, A. A., Iqubal, S. M. S., Bahafi, A., More, S. S., Shaikh, I. A., Mannasaheb, B. A., Othman, N., Maqbul, M. S., & Ahmad, M. Z. (2022). Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review. Molecules, 27(4), 1391. https://doi.org/10.3390/molecules27041391