In Silico Molecular Docking and Simulation Studies of Protein HBx Involved in the Pathogenesis of Hepatitis B Virus-HBV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Protein Accession
2.2. Sequence Retrieval
2.3. Preparation of Ligands
2.4. ADMET Studies
- the molecular weight of molecule (MW) ≤ 500,
- the octanol/water partition coefficient (iLOGP = A log P) ≤ 5,
- the number of hydrogen bond donors (HBDs) ≤ 5,
- the number of hydrogen bond acceptors (HBAs) ≤ 10.6, and,
- the topological polar surface area (TPSA) < 40 Å2.
2.5. Molecular Dynamics
3. Results and Discussion
3.1. Molecular Docking
3.2. ADMET Studies
3.3. MD Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jianming, H.; Seeger, C. Hepadnavirus genome replication and persistence. Cold Spring Harb. Perspect. Med. 2015, 5, a021386. [Google Scholar]
- Tsuge, M.; Hiraga, N.; Akiyama, R.; Tanaka, S.; Matsushita, M.; Mitsui, F.; Abe, H.; Kitamura, S.; Hatakeyama, T.; Kimura, T.; et al. HBx protein is indispensable for development of viraemia in human hepatocyte chimeric mice. J. Gen. Virol. 2010, 91, 1854–1864. [Google Scholar] [CrossRef] [PubMed]
- Patel, E.U.; Thio, C.L.; Boon, D.; Thomas, D.L.; Tobian, A.A.R. Prevalence of Hepatitis B and Hepatitis D Virus Infections in the United States, 2011–2016. Clin. Infect. Dis. 2019, 69, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweitzer, A.; Horn, J.; Mikolajczyk, R.T.; Krause, G.; Ott, J.J. Estimations of worldwide prevalence of chronic hepatitis B virus in-fection: A systematic review of data published between 1965 and 2013. Lancet 2015, 386, 1546–1555. [Google Scholar] [CrossRef]
- Chen, C.J.; Yang, H.I.; Su, J.; Jen, C.L.; You, S.L.; Lu, S.N.; Huang, G.T.; Iloeje, U.H.; REVEAL-HBV Study Group. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006, 295, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanaway, J.D.; Flaxman, A.D.; Naghavi, M.; Fitzmaurice, C.; Vos, T.; Abubakar, I.; Abu-Raddad, L.J.; Assadi, R.; Bhala, N.; Cowie, B.; et al. The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. Lancet 2016, 388, 1081–1088. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, H.-H.; Schneider, W.M.; Rice, C.M. Interferons and viruses: An evolutionary arms race of molecular interactions. Trends Immunol. 2015, 36, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Xie, X.; Tan, X.; Yu, H.; Tian, M.; Lv, H.; Qin, C.; Qi, J.; Zhu, Q. The Functions of Hepatitis B Virus Encoding Proteins: Viral Persistence and Liver Pathogenesis. Front. Immunol. 2021, 12, 691766. [Google Scholar] [CrossRef]
- Tarocchi, M.; Polvani, S.; Marroncini, G.; Galli, A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J. Gastroenterol. 2014, 20, 11630–11640. [Google Scholar] [CrossRef]
- Yang, J.M.; Chen, C.C. Gemdock: A generic evolutionary method for molecular docking. Proteins 2004, 55, 288–304. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.-C.; Chen, Y.-F.; Lin, S.-R.; Yang, J.-M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinform. 2011, 12, S33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, R.; Bin Emran, T.; Uddin, M.M.N.; Islam, A. Junaid Molecular docking of fisetin with AD associated AChE, ABAD and BACE1 proteins. Bioinformation 2014, 10, 562–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y.J. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Chem. Inf. Model 2012, 52, 3099–3105. [Google Scholar] [CrossRef]
- Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014, 32, 40–51. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Ertl, P.; Lewis, R. The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov. Today 2011, 16, 65–72. [Google Scholar] [CrossRef]
- Attique, S.A.; Hassan, M.; Usman, M.; Atif, R.M.; Mahboob, S.; Al-Ghanim, K.A.; Bilal, M.; Nawaz, M.Z. A Molecular Docking Approach to Evaluate the Pharmacological Properties of Natural and Synthetic Treatment Candidates for Use against Hypertension. Int. J. Environ. Res. Public Health 2019, 16, 923. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Srividhya, M.; Ramanathan, K. Molecular Dynamics Simulation Approach to Understand Lamivudine Resistance in Hepatitis B Virus Polymerase. Pharm. Chem. J. 2015, 49, 432–438. [Google Scholar] [CrossRef]
- Shaw Research, D.E. ResearchSchrödinger Release 2020-1: Desmond Molecular Dynamics System; Maestro-Desmond Interoperability Tools; Schrödinger: New York, NY, USA, 2020. [Google Scholar]
- Dhanavade, M.; Jalkute, C.; Barage, S.; Sonawane, K. Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of Aβ peptide. Comput. Biol. Med. 2013, 43, 2063–2070. [Google Scholar] [CrossRef]
- Krebs, B.B.; De Mesquita, J.F. Amyotrophic Lateral Sclerosis Type 20—In Silico Analysis and Molecular Dynamics Simulation of hnRNPA1. PLoS ONE 2016, 11, e0158939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. No. | Ligand | Total Energy | VDW | H Bond | Elec | AverConPair |
---|---|---|---|---|---|---|
1 | 8190-1.pdb | −59.0259 | −37.4125 | −21.6135 | 0 | 18.4667 |
2 | 79734-0.pdb | −55.8216 | −40.0817 | −15.7399 | 0 | 18.4667 |
3 | 12527511-1.pdb | −53.6121 | −38.0934 | −15.5187 | 0 | 18.4375 |
4 | 62551-1.pdb | −52.5801 | −36.7199 | −15.8603 | 0 | 18.4375 |
5 | 90263-0.pdb | −52.1195 | −38.2955 | −13.824 | 0 | 18.5 |
6 | 11355992-0.pdb | −51.3424 | −36.5669 | −14.7755 | 0 | 18.4615 |
7 | 154263124-0.pdb | −49.9133 | −31.9133 | −18 | 0 | 18.4667 |
8 | 140933500-1.pdb | −46.1511 | −32.1511 | −14 | 0 | 18.4667 |
9 | 140264802-0.pdb | −45.7681 | −41.1789 | −4.58916 | 0 | 18.6 |
10 | 90255-1.pdb | −44.617 | −28.0377 | −16.5793 | 0 | 18.4706 |
11 | 153406521-0.pdb | −44.5652 | −44.5652 | 0 | 0 | 18.5294 |
12 | 149434283-1.pdb | −43.7893 | −30.4657 | −13.3236 | 0 | 18.5 |
13 | 8200-1.pdb | −43.0239 | −29.5751 | −13.4488 | 0 | 18.5385 |
14 | 8178-0.pdb | −42.8289 | −34.5198 | −8.30908 | 0 | 19 |
15 | 45281241-1.pdb | -42.785 | −36.6431 | −6.14197 | 0 | 19 |
16 | 78058-1.pdb | −41.9812 | −41.9812 | 0 | 0 | 18.5 |
17 | 150190459-1.pdb | −40.4711 | −40.4711 | 0 | 0 | 18.5556 |
18 | 8172-0.pdb | −40.1369 | −31.7043 | −8.4326 | 0 | 19.5 |
19 | 13811968-0.pdb | −39.4177 | −32.4177 | −7 | 0 | 18.4706 |
20 | 8076-1.pdb | −30.5437 | −23.5437 | −7 | 0 | 23.5 |
S. No. | Compound | Energy | H-M-LEU-9 | H-M-GLU-10 | H-M-THR-12 | H-S-THR-12 | H-M-ASN-15 | H-S-ASN-15 |
---|---|---|---|---|---|---|---|---|
1 | 8190-1.pdb | −59 | −6.73215 | −6.99712 | −0.884197 | 0 | −3.5 | −3.5 |
2 | 79734-0.pdb | −55.8 | −3.5 | 0 | −9.3506 | −2.5 | −0.38927 | 0 |
3 | 12527511-1.pdb | −53.6 | −3.47972 | 0 | −8.62373 | −2.5 | −0.915265 | 0 |
4 | 62551-1.pdb | −52.6 | −3.5 | 0 | −8.27415 | −2.5 | −1.5861 | 0 |
5 | 90263-0.pdb | −52.1 | −3.5 | −3.5 | −3.5 | 0 | −3.32398 | 0 |
6 | 11355992-0.pdb | −51.3 | −3.5 | −3.09354 | −7 | 0 | −1.18197 | 0 |
7 | 154263124-0.pdb | −49.9 | 0 | 0 | −10.5 | −7.5 | 0 | 0 |
8 | 140933500-1.pdb | −46.2 | −3.5 | 0 | −7 | 0 | −3.5 | 0 |
9 | 140264802-0.pdb | −45.8 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 90255-1.pdb | −44.6 | −4.86515 | 0 | −10.5 | −1.21414 | 0 | 0 |
11 | 153406521-0.pdb | −44.6 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 149434283-1.pdb | −43.8 | −3.13025 | 0 | −7 | 0 | −3.19338 | 0 |
13 | 8200-1.pdb | −43 | −3.46947 | 0 | −7 | 0 | −2.97934 | 0 |
14 | 8178-0.pdb | −42.8 | 0 | 0 | −3.5 | 0 | −1.47745 | −3.33163 |
15 | 45281241-1.pdb | −42.8 | 0 | 0 | −3.5 | 0 | −0.966519 | −1.67545 |
16 | 78058-1.pdb | −42 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 150190459-1.pdb | −40.5 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 8172-0.pdb | −40.1 | 0 | 0 | −3.5 | 0 | −1.4326 | −3.5 |
19 | 13811968-0.pdb | −39.4 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | 8076-1.pdb | −30.5 | 0 | 0 | −3.5 | 0 | −3.5 | 0 |
S. No. | CID | Mol Wt | H Bond Acceptors | H Bond Donors | TPSA | iLOGP | Lipinski Violations |
---|---|---|---|---|---|---|---|
1 | CID_8076 | 90.12 | 2 | 1 | 29.46 | 1.66 | 0 |
2 | CID_8172 | 150.17 | 4 | 2 | 58.92 | 1.57 | 0 |
3 | CID_8178 | 164.2 | 4 | 1 | 47.92 | 2.21 | 0 |
4 | CID_8190 | 178.23 | 4 | 1 | 47.92 | 2.41 | 0 |
5 | CID_8200 | 194.23 | 5 | 2 | 68.15 | 2.38 | 0 |
6 | CID_62551 | 238.28 | 6 | 2 | 77.38 | 2.9 | 0 |
7 | CID_78058 | 266.33 | 6 | 1 | 66.38 | 3.65 | 0 |
8 | CID_79734 | 222.28 | 5 | 1 | 57.15 | 3.01 | 0 |
9 | CID_90255 | 252.3 | 6 | 1 | 66.38 | 3.19 | 0 |
10 | CID_90263 | 208.25 | 5 | 1 | 57.15 | 2.84 | 0 |
11 | CID_11355992 | 192.25 | 4 | 1 | 47.92 | 2.74 | 0 |
12 | CID_12527511 | 236.31 | 5 | 1 | 57.15 | 3.34 | 0 |
13 | CID_13811968 | 252.3 | 6 | 2 | 77.38 | 2.84 | 0 |
14 | CID_45281241 | 222.28 | 5 | 2 | 68.15 | 2.36 | 0 |
15 | CID_140264802 | 226.22 | 7 | 2 | 86.61 | 2.65 | 0 |
16 | CID_140933500 | 194.23 | 5 | 2 | 68.15 | 2.38 | 0 |
17 | CID_149434283 | 226.29 | 5 | 1 | 95.95 | 0 | 0 |
18 | CID_150190459 | 268.3 | 7 | 1 | 75.61 | 3.34 | 0 |
19 | CID_153406521 | 256.27 | 7 | 2 | 77.38 | 2.75 | 0 |
20 | CID_154263124 | 224.25 | 6 | 1 | 66.38 | 2.95 | 0 |
S. No. | CID | GI Absorption | BBB Permeant | Pgp Substrate | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | log Kp (cm/s) |
---|---|---|---|---|---|---|---|---|---|
1 | CID_8076 | High | No | No | No | No | No | No | −7.08 |
2 | CID_8172 | High | No | No | No | No | No | No | −8.34 |
3 | CID_8178 | High | No | No | No | No | No | No | −8.04 |
4 | CID_8190 | High | No | No | No | No | No | No | −7.88 |
5 | CID_8200 | High | No | No | No | No | No | No | −8.61 |
6 | CID_62551 | High | No | No | No | No | No | No | −8.98 |
7 | CID_78058 | High | No | No | No | No | No | No | −8.62 |
8 | CID_79734 | High | No | No | No | No | No | No | −8.25 |
9 | CID_90255 | High | No | No | No | No | No | No | −8.69 |
10 | CID_90263 | High | No | No | No | No | No | No | −8.32 |
11 | CID_11355992 | High | No | No | No | No | No | No | −7.43 |
12 | CID_12527511 | High | No | No | No | No | No | No | −7.85 |
13 | CID_13811968 | High | No | No | No | No | No | No | −8.82 |
14 | CID_45281241 | High | No | No | No | No | No | No | −8.27 |
15 | CID_140264802 | High | No | No | No | No | No | No | −8.74 |
16 | CID_140933500 | High | No | No | No | No | No | No | −8.61 |
17 | CID_149434283 | High | No | No | No | No | No | No | −8.09 |
18 | CID_150190459 | High | No | No | No | No | No | No | −8.75 |
19 | CID_153406521 | High | No | No | No | No | No | No | −8.73 |
20 | CID_154263124 | High | No | No | No | No | No | No | −8.38 |
S. No. | CID | Lipinski | Ghose | Veber | Egan | Muegge | Bioavailability Score |
---|---|---|---|---|---|---|---|
1 | CID_8076 | 0 | 3 | 0 | 0 | 2 | 0.55 |
2 | CID_8172 | 0 | 3 | 0 | 0 | 1 | 0.55 |
3 | CID_8178 | 0 | 0 | 0 | 0 | 1 | 0.55 |
4 | CID_8190 | 0 | 0 | 0 | 0 | 1 | 0.55 |
5 | CID_8200 | 0 | 1 | 0 | 0 | 1 | 0.55 |
6 | CID_62551 | 0 | 1 | 1 | 0 | 0 | 0.55 |
7 | CID_78058 | 0 | 0 | 1 | 0 | 0 | 0.55 |
8 | CID_79734 | 0 | 0 | 1 | 0 | 0 | 0.55 |
9 | CID_90255 | 0 | 0 | 1 | 0 | 0 | 0.55 |
10 | CID_90263 | 0 | 0 | 1 | 0 | 0 | 0.55 |
11 | CID_11355992 | 0 | 0 | 0 | 0 | 1 | 0.55 |
12 | CID_12527511 | 0 | 0 | 1 | 0 | 0 | 0.55 |
13 | CID_13811968 | 0 | 1 | 1 | 0 | 0 | 0.55 |
14 | CID_45281241 | 0 | 0 | 1 | 0 | 0 | 0.55 |
15 | CID_140264802 | 0 | 1 | 1 | 0 | 0 | 0.55 |
16 | CID_140933500 | 0 | 1 | 0 | 0 | 1 | 0.55 |
17 | CID_149434283 | 0 | 0 | 1 | 0 | 0 | 0.55 |
18 | CID_150190459 | 0 | 0 | 1 | 0 | 0 | 0.55 |
19 | CID_153406521 | 0 | 0 | 1 | 0 | 0 | 0.55 |
20 | CID_154263124 | 0 | 0 | 1 | 0 | 0 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaikh, I.A.; Muddapur, U.M.; C, K.; Badiger, S.; Kulkarni, M.; Mahnashi, M.H.; Alshamrani, S.A.; Huneif, M.A.; More, S.S.; Khan, A.A.; et al. In Silico Molecular Docking and Simulation Studies of Protein HBx Involved in the Pathogenesis of Hepatitis B Virus-HBV. Molecules 2022, 27, 1513. https://doi.org/10.3390/molecules27051513
Shaikh IA, Muddapur UM, C K, Badiger S, Kulkarni M, Mahnashi MH, Alshamrani SA, Huneif MA, More SS, Khan AA, et al. In Silico Molecular Docking and Simulation Studies of Protein HBx Involved in the Pathogenesis of Hepatitis B Virus-HBV. Molecules. 2022; 27(5):1513. https://doi.org/10.3390/molecules27051513
Chicago/Turabian StyleShaikh, Ibrahim Ahmed, Uday M. Muddapur, Krithika C, Shrikanth Badiger, Madhura Kulkarni, Mater H. Mahnashi, Saleh A. Alshamrani, Mohammed A. Huneif, Sunil S. More, Aejaz Abdullatif Khan, and et al. 2022. "In Silico Molecular Docking and Simulation Studies of Protein HBx Involved in the Pathogenesis of Hepatitis B Virus-HBV" Molecules 27, no. 5: 1513. https://doi.org/10.3390/molecules27051513
APA StyleShaikh, I. A., Muddapur, U. M., C, K., Badiger, S., Kulkarni, M., Mahnashi, M. H., Alshamrani, S. A., Huneif, M. A., More, S. S., Khan, A. A., & Iqubal, S. M. S. (2022). In Silico Molecular Docking and Simulation Studies of Protein HBx Involved in the Pathogenesis of Hepatitis B Virus-HBV. Molecules, 27(5), 1513. https://doi.org/10.3390/molecules27051513