Correlation of Solubility Thermodynamics of Glibenclamide with Recrystallization and In Vitro Release Profile
Abstract
:1. Introduction
2. Results and Discussion
2.1. Equilibrium Solubility
2.1.1. Solubility in Organic Solvents
2.1.2. Solubility in Solvent Mixtures and Solid State Stability
2.2. Ideal Solubility and Activity Coefficient
2.3. Apparent Thermodynamic Analysis
2.4. Characterization of Solvate
2.5. Tableting of GLN Solvate, In Vitro Dissolution Study, and Stability
3. Experimental Section
3.1. Materials
3.2. High-Performance Liquid Chromatography (HPLC)
3.3. GLN Solubility Determination with Experimental Approach
3.4. Computational Validation of the Experimental Data
3.4.1. Modified Apelblat Model (AM)
3.4.2. Ideal Model
3.4.3. λh Model
3.4.4. CNIBS/R-K Model
3.4.5. Modified Jouyban–Acree Model
3.4.6. Data Correlation
3.5. Ideal Solubility and the Activity Coefficient
3.6. Preparation of the GLN Solvate
3.7. Solid State Stability of the GLN Solvate
3.8. Characterization of GLN Solvate
3.9. Scanning Electron Microscope
3.10. High-Shear Wet Granulation
3.11. Tableting of Solvate, and Its Dissolution and Stability
3.12. Design of Experiment and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tieger, E.; Kiss, V.; Pokol, G.; Finta, Z.; Rohlíček, J.; Skořepová, E.; Dušek, M. Rationalization of the formation and stability of bosutinib solvated forms. CrystEngComm 2016, 18, 9260–9274. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yang, H.; Shang, Z.; Gong, T.; Zhang, X.; Wu, S. Solubility determination and correlation of glibenclamide in 11 monosolvents and (acetone+acetonitrile) binary solvents from 283.15 K to 323.15 K. J. Chem. Eng. Data 2018, 64, 189–201. [Google Scholar] [CrossRef]
- Suresh, K.; Khandavilli, U.B.R.; Gunnam, A.; Nangia, A. Polymorphism, isostructurality and physicochemical properties of glibenclamide salts. CrystEngComm 2017, 19, 918–929. [Google Scholar] [CrossRef]
- Viana, A.L.M.; Doriguetto, A.C.; Viana, O.M.M.S.; Ruela, A.L.M.; Freitas, J.T.J.; Souto, B.E.M.; de Araujo, M.B.; de Araújo Paula, F.B. Pharmacokinetics and pharmacodynamics of glimepiride polymorphs. Int. J. Pharm. 2018, 553, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Mah, P.T.; Laaksonen, T.; Rades, T.; Aaltonen, J.; Peltonen, L.; Strachan, C.J. Unravelling the relationship between degree of disorder and the dissolution behavior of milled glibenclamide. Mol. Pharm. 2014, 11, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Bonfilio, R.; Pires, S.A.; Ferreira, L.M.; de Almeida, A.E.; Doriguetto, A.C.; de Araújo, M.B.; Salgado, H.R. A discriminating dissolution method for glimepiride polymorphs. J. Pharm. Sci. 2012, 101, 794–804. [Google Scholar] [CrossRef]
- Park, H.; Seo, H.J.; Ha, E.-S.; Hong, S.-h.; Kim, J.-S.; Kim, M.-S.; Hwang, S.-J. Preparation and characterization of glimepiride eutectic mixture with L-arginine for improvement of dissolution rate. Int. J. Pharm. 2020, 581, 119288. [Google Scholar] [CrossRef]
- Goyal, P.; Rani, D.; Chadha, R. Crystal engineering: A remedy to tailor the biopharmaceutical aspects of glibenclamide. Cryst. Growth Des. 2018, 18, 105–118. [Google Scholar] [CrossRef]
- Carneiro, S.B.; Costa Duarte, F.Í.; Heimfarth, L.; Siqueira Quintans, J.d.S.; Quintans-Júnior, L.J.; Veiga Júnior, V.F.d.; Neves de Lima, Á.A. Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches. Int. J. Mol. Sci. 2019, 20, 642. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, M.S.; Najib, N.M. Isolation and physicochemical characterization of solid forms of glibenclamide. Int. J. Pharm. 1989, 50, 103–109. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; Roseman, T.J. Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs; Yalkowsky, S.H., Ed.; Marcel Dekker: New York, NY, USA, 1981; pp. 91–134. [Google Scholar]
- Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Solubility and thermodynamics of apremilast in different mono solvents: Determination, correlation and molecular interactions. Int. J. Pharm. 2017, 523, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.L. Chapter 13 - Residual solvents. In Specification of Drug Substances and Products, 2nd ed.; Riley, C.M., Rosanske, T.W., Reid, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 345–365. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Du, C.; Cong, Y.; Zhao, H. Preferential solvation of rosmarinic acid in binary solvent mixtures of ethanol + water and methanol+water according to the inverse Kirkwood–Buff integrals method. J. Mol. Liq. 2017, 240, 56–64. [Google Scholar] [CrossRef]
- Saadatfar, F.; Shayanfar, A.; Rahimpour, E.; Barzegar-Jalali, M.; Martinez, F.; Bolourtchian, M.; Jouyban, A. Measurement and correlation of clotrimazole solubility in ethanol+water mixtures at T = (293.2 to 313.2) K. J. Mol. Liq. 2018, 256, 527–532. [Google Scholar] [CrossRef]
- Asghar, S.Z.; Jouyban, A.; Martinez, F.; Rahimpour, E. Solubility of naproxen in ternary mixtures of {ethanol + propylene glycol + water} at various temperatures: Data correlation and thermodynamic analysis. J. Mol. Liq. 2018, 268, 517–522. [Google Scholar] [CrossRef]
- Lee, S.-K.; Sim, W.-Y.; Ha, E.-S.; Park, H.; Kim, J.-S.; Jeong, J.-S.; Kim, M.-S. Solubility of bisacodyl in fourteen mono solvents and N-methyl-2-pyrrolidone+ water mixed solvents at different temperatures, and its application for nanosuspension formation using liquid antisolvent precipitation. J. Mol. Liq. 2020, 113264. [Google Scholar] [CrossRef]
- Soltanpour, S.; Jafari, B.; Barzegar-Jalali, M.; Jouyban, A. Solubility of glibenclamide in the aqueous mixtures of polyethylene glycol 400, propylene glycol and N-methyl-pyrrolidone at 298.2 K. J. Drug Deliv. Sci. Technol. 2014, 24, 111–115. [Google Scholar] [CrossRef]
- Shazly, G.A.; Haq, N.; Shakeel, F. Solution thermodynamics and solubility prediction of glibenclamide in Transcutol+ water co-solvent mixtures at 298.15–333.15 K. Arch. Pharmacal Res. 2014, 37, 746–751. [Google Scholar] [CrossRef]
- Apelblat, A.; Manzurola, E. Solubilities of manganese, cadmium, mercury and lead acetates in water from T = 278.15 K to T = 340.15 K. J. Chem. Thermodyn. 2001, 33, 147–153. [Google Scholar] [CrossRef]
- Alshehri, S.; Shakeel, F. Solubility determination, various solubility parameters and solution thermodynamics of sunitinib malate in some cosolvents, water and various (Transcutol+water) mixtures. J. Mol. Liq. 2020, 112970. [Google Scholar] [CrossRef]
- Shao, X.; Ge, H.; Li, Z.; Ren, C.; Wang, J. Solubility of methylphosphonic acid in selected organic solvents. Fluid Phase Equilib. 2015, 390, 7–13. [Google Scholar] [CrossRef]
- Keck, C.M.; Müller, R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm. 2006, 62, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Zhuang, X.; Zhang, T.; Guan, Y.; Meng, Q.; Zhang, Y. Hydrogen-bonded films for zero-order release of leuprolide. Macromol. Biosci. 2020, 20, 2000050. [Google Scholar] [CrossRef]
- Tieger, E. Investigation of the Pharmaceutical Applicability of Solvates: Screening, Characterization, Crystallization. Ph.D. Thesis, Budapest University of technology and economics, Prague, Czech Republic, 2017. [Google Scholar]
- Shakeel, F.; Imran, M.; Haq, N.; Alshehri, S.; Anwer, M. Synthesis, characterization and solubility determination of 6-Phenyl-pyridazin-3 (2H)-one in different pharmaceutical solvents. Molecules 2019, 24, 3404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Oh, H.K.; Heo, B.; Kim, N.A.; Lim, D.G.; Jeong, S.H. Solubility evaluation and thermodynamic modeling of β-lapachone in water and ten organic solvents at different temperatures. Fluid Phase Equilib. 2018, 472, 1–8. [Google Scholar] [CrossRef]
- Jessop, P.G.; Jessop, D.A.; Fu, D.; Phan, L. Solvatochromic parameters for solvents of interest in green chemistry. Green Chem. 2012, 14, 1245–1259. [Google Scholar] [CrossRef]
- Marcus, Y. The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 1993, 22, 409–416. [Google Scholar] [CrossRef]
- Dohrn, S.; Luebbert, C.; Lehmkemper, K.; Kyeremateng, S.O.; Degenhardt, M.; Sadowski, G. Solvent mixtures in pharmaceutical development: Maximizing the API solubility and avoiding phase separation. Fluid Phase Equilib. 2021, 548, 113200. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Salem-Bekhit, M.M. Thermodynamics of solubility of isatin in Carbitol+water mixed solvent systems at different temperatures. J. Mol. Liq. 2015, 207, 274–278. [Google Scholar] [CrossRef]
- Anwer, M.K.; Mohammad, M.; Fatima, F.; Alshahrani, S.M.; Aldawsari, M.F.; Alalaiwe, A.; Al-Shdefat, R.; Shakeel, F. Solubility, solution thermodynamics and molecular interactions of osimertinib in some pharmaceutically useful solvents. J. Mol. Liq. 2019, 284, 53–58. [Google Scholar] [CrossRef]
- Holguín, A.R.; Rodríguez, G.A.; Cristancho, D.M.; Delgado, D.R.; Martínez, F. Solution thermodynamics of indomethacin in propylene glycol+water mixtures. Fluid Phase Equilib. 2012, 314, 134–139. [Google Scholar] [CrossRef]
- Schröder, B.; Santos, L.M.; Marrucho, I.M.; Coutinho, J.A. Prediction of aqueous solubilities of solid carboxylic acids with COSMO-RS. Fluid Phase Equilib. 2010, 289, 140–147. [Google Scholar] [CrossRef]
- Ha, E.-S.; Kuk, D.-H.; Kim, J.-S.; Kim, M.-S. Solubility of trans-resveratrol in Transcutol HP+water mixtures at different temperatures and its application to fabrication of nanosuspensions. J. Mol. Liq. 2019, 281, 344–351. [Google Scholar] [CrossRef]
- Maharjan, R.; Tripathi, J.; Kim, N.A.; Park, K.E.; Jeong, S.H. Solubility determination of c-Met inhibitor in solvent mixtures and mathematical modeling to develop nanosuspension formulation. Molecules 2021, 26, 390. [Google Scholar] [CrossRef]
- Li, W.; Farajtabar, A.; Wang, N.; Liu, Z.; Fei, Z.; Zhao, H. Solubility of chloroxine in aqueous co-solvent mixtures of N,N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone and 1,4-dioxane: Determination, solvent effect and preferential solvation analysis. J. Chem. Thermodyn. 2019, 138, 288–296. [Google Scholar] [CrossRef]
- Gu, C.-H.; Young Jr, V.; Grant, D.J.W. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90, 1878–1890. [Google Scholar] [CrossRef] [PubMed]
- Rehder, S.; Sakmann, A.; Rades, T.; Leopold, C.S. Thermal degradation of amorphous glibenclamide. Eur. J. Pharm. Biopharm. 2012, 80, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulou-Kaplani, A.; Malamataris, S. Preparation and characterisation of a new insoluble polymorphic form of glibenclamide. Int. J. Pharm. 2000, 195, 239–246. [Google Scholar] [CrossRef]
- Bonfilio, R.; Leal, J.S.; Santos, O.M.; Pereira, G.R.; Doriguetto, A.C.; de Araújo, M.B. Analysis of chlorthalidone polymorphs in raw materials and tablets and the effect of forms I and II on the dissolution properties of drug products. J. Pharm. Biomed. Anal. 2014, 88, 562–570. [Google Scholar] [CrossRef]
- Gong, Y.; Collman, B.M.; Mehrens, S.M.; Lu, E.; Miller, J.M.; Blackburn, A.; Grant, D.J.W. Stable-form screening: Overcoming trace impurities that inhibit solution-mediated phase transformation to the stable polymorph of sulfamerazine. J. Pharm. Sci. 2008, 97, 2130–2144. [Google Scholar] [CrossRef]
- Johnson, M.D.; Burcham, C.L.; May, S.A.; Calvin, J.R.; McClary Groh, J.; Myers, S.S.; Webster, L.P.; Roberts, J.C.; Reddy, V.R.; Luciani, C.V. API continuous cooling and antisolvent crystallization for kinetic impurity rejection in cGMP manufacturing. Org. Process Res. Dev. 2021, 1284–1351. [Google Scholar] [CrossRef]
- Lestari, M.L.A.D.; Indrayanto, G. Chapter 5—Glimepiride. In Profiles of Drug Substances, Excipients and Related Methodology; Brittain, H.G., Ed.; Academic Press: Massachusetts, MA, USA, 2011; Volume 36, pp. 169–204. [Google Scholar] [CrossRef]
- Otsuka, M.; Onoe, M.; Matsuda, Y. Physicochemical stability of phenobarbital polymorphs at various levels of humidity and temperature. Pharm. Res. 1993, 10, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Rehder, S.C. Solid-State Transformations Induced by Pharmaceutical Processes during Manufacturing. Ph.D. Thesis, Universität Hamburg, Hamburg, Germany, 2013. [Google Scholar]
- Guillory, J.K. Generation of polymorphs, hydrates, solvates, and amorphous solids. In Generation of Polymorphs, Hydrates, Solvates, and Amorphous Solids; Marcel Dekker: New York, NY, USA, 1999; Volume 95, pp. 183–226. [Google Scholar]
- Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3, 5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 1999, 31, 85–91. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, Q.; Liu, Z.; Gong, J.; Bao, Y.; Zhang, M.; Hao, H.; Hou, B.; Xie, C. Measurement and correlation of solubility of dodecanedioic acid in different pure solvents from T=(288.15 to 323.15) K. J. Chem. Thermodyn. 2014, 68, 270–274. [Google Scholar] [CrossRef]
- Jouyban-Gharamaleki, A.; Acree Jr, W. Comparison of models for describing multiple peaks in solubility profiles. Int. J. Pharm. 1998, 167, 177–182. [Google Scholar] [CrossRef]
- Zhao, K.; Lin, L.; Li, C.; Du, S.; Huang, C.; Qin, Y.; Yang, P.; Li, K.; Gong, J. Measurement and correlation of solubility of γ-aminobutyric acid in different binary solvents. J. Chem. Eng. Data 2016, 61, 1210–1220. [Google Scholar] [CrossRef]
- Sardari, F.; Jouyban, A. Solubility of nifedipine in ethanol+water and propylene glycol+water mixtures at 293.2 to 313.2 K. Ind. Eng. Chem. Res. 2013, 52, 14353–14358. [Google Scholar] [CrossRef]
- Ruidiaz, M.A.; Delgado, D.R.; Martínez, F.; Marcus, Y. Solubility and preferential solvation of indomethacin in 1,4-dioxane+water solvent mixtures. Fluid Phase Equilib. 2010, 299, 259–265. [Google Scholar] [CrossRef]
- Hildebrand, J.H.; Prausnitz, J.M.; Scott, R.L. Regular and Related Solutions: The Solubility of Gases, Liquids, and Solids; Van Nostrand Reinhold Company: New York, NY, USA, 1970. [Google Scholar]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Impurities: Guideline for Residual Solvents Q3C(R8), (4); ICH Expert Working Group: Geneva, Switzerland, 2021. [Google Scholar]
- Jarring, K.; Larsson, T.; Stensland, B.; Ymen, I. Thermodynamic stability and crystal structures for polymorphs and solvates of formoterol fumarate. J. Pharm. Sci. 2006, 95, 1144–1161. [Google Scholar] [CrossRef]
T/K | (Experimental) | XAM (Modified AM) | XIdl (Ideal Model) | Xλh (λh Model) |
---|---|---|---|---|
DMSO | ||||
293.15 | 1.63 × 104 | 1.62 × 104 | 1.63 × 104 | 1.30 × 104 |
298.15 | 1.89 × 104 | 1.87 × 104 | 1.89 × 104 | 1.54 × 104 |
303.15 | 2.02 × 104 | 2.12 × 104 | 2.02 × 104 | 1.81 × 104 |
308.15 | 2.41 × 104 | 2.38 × 104 | 2.41 × 104 | 2.13 × 104 |
313.15 | 2.69 × 104 | 2.63 × 104 | 2.69 × 104 | 2.49 × 104 |
318.15 | 2.91 × 104 | 2.88 × 104 | 2.91 × 104 | 2.90 × 104 |
323.15 | 3.08 × 104 | 3.12 × 104 | 3.08 × 104 | 3.38 × 104 |
NMP | ||||
293.15 | 1.32 × 104 | 1.33 × 104 | 1.32 × 104 | 1.37 × 104 |
298.15 | 1.58 × 104 | 1.54 × 104 | 1.58 × 104 | 1.43 × 104 |
303.15 | 1.71 × 104 | 1.78 × 104 | 1.71 × 104 | 1.15 × 104 |
308.15 | 2.02 × 104 | 2.04 × 104 | 2.02 × 104 | 2.18 × 104 |
313.15 | 2.35 × 104 | 2.32 × 104 | 2.35 × 104 | 2.66 × 104 |
318.15 | 2.70 × 104 | 2.63 × 104 | 2.70 × 104 | 2.74 × 104 |
323.15 | 2.90 × 104 | 2.96 × 104 | 2.90 × 104 | 2.65 × 104 |
1,4-Dioxane | ||||
293.15 | 1.13 × 103 | 1.15 × 103 | 1.14 × 103 | 1.18 × 103 |
298.15 | 1.35 × 103 | 1.35 × 103 | 1.35 × 103 | 1.15 × 103 |
303.15 | 1.57 × 103 | 1.55 × 103 | 1.57 × 103 | 1.68 × 103 |
308.15 | 1.74 × 103 | 1.74 × 103 | 1.74 × 103 | 1.75 × 103 |
313.15 | 1.91 × 103 | 1.93 × 103 | 1.91 × 103 | 1.99 × 103 |
318.15 | 2.08 × 103 | 2.11 × 103 | 2.07 × 103 | 2.15 × 103 |
323.15 | 2.30 × 103 | 2.27 × 103 | 2.30 × 103 | 2.39 × 103 |
PEG 400 | ||||
293.15 | 1.37 × 102 | 1.35 × 102 | 1.36 × 102 | 1.34 × 102 |
298.15 | 1.49 × 102 | 1.46 × 102 | 1.48 × 102 | 1.47 × 102 |
303.15 | 1.58 × 102 | 1.55 × 102 | 1.57 × 102 | 1.55 × 102 |
308.15 | 1.70 × 102 | 1.66 × 102 | 1.69 × 102 | 1.67 × 102 |
313.15 | 1.81 × 102 | 1.78 × 102 | 1.80 × 102 | 1.78 × 102 |
318.15 | 1.93 × 102 | 1.94 × 102 | 1.92 × 102 | 1.89 × 102 |
323.15 | 2.01 × 102 | 2.04 × 102 | 2.00 × 102 | 1.97 × 102 |
THP | ||||
293.15 | 2.82 × 101 | 2.81 × 101 | 2.72 × 101 | 2.72 × 101 |
298.15 | 3.07 × 101 | 3.01 × 101 | 2.97 × 101 | 2.96 × 101 |
303.15 | 3.31 × 101 | 3.28 × 101 | 3.21 × 101 | 3.21 × 101 |
308.15 | 3.59 × 101 | 3.51 × 101 | 3.49 × 101 | 3.49 × 101 |
313.15 | 3.89 × 101 | 3.90 × 101 | 3.79 × 101 | 3.78 × 101 |
318.15 | 4.20 × 101 | 4.22 × 101 | 4.10 × 101 | 4.09 × 101 |
323.15 | 4.49 × 101 | 4.53 × 101 | 4.40 × 101 | 4.40 × 101 |
Water | ||||
293.15 | 3.57 × 10−2 | 3.45 × 10−2 | 3.45 × 10−2 | 3.24 × 10−2 |
298.15 | 5.00 × 10−2 | 5.32 × 10−2 | 5.32 × 10−2 | 4.91 × 10−2 |
303.15 | 8.16 × 10−2 | 7.87 × 10−2 | 7.87 × 10−2 | 7.96 × 10−2 |
308.15 | 1.04 × 10−1 | 1.12 × 10−1 | 1.12 × 10−1 | 1.01 × 10−1 |
313.15 | 1.67 × 10−1 | 1.53 × 10−1 | 1.53 × 10−1 | 1.61 × 10−1 |
318.15 | 2.04 × 10−1 | 2.02 × 10−1 | 2.02 × 10−1 | 2.01 × 10−1 |
323.15 | 2.51 × 10−1 | 2.52 × 10−1 | 2.58 × 10−1 | 2.59 × 10−1 |
Group | Group Number | ||
---|---|---|---|
CONH | 1 | 33.47 | 9.5 |
CH2 | 2 | 2 × 4.94 = 9.88 | 2 × 16.1 = 32.2 |
Cl | 1 | 11.55 | 24 |
S | 1 | 14.14 | 12 |
NH | 2 | 2 × 8.37 = 16.74 | 2 × 4.5 = 9 |
O | 4 | 4 × 3.35 = 13.40 | 4 × 3.8 = 15.2 |
Phenylene (p) | 1 | 31.92 | 52.4 |
Phenyl (tri-substituted) | 1 | 31.92 | 33.4 |
6-member ring closure | 1 | 1.05 | 16 |
Total | 164.07 | 203.7 | |
Solubility parameter | (164,070/203.7)1/2 = 28.38 MPa1/2 |
Solvent | α | β | π* | δH (MPa1/2) |
---|---|---|---|---|
DMSO | 0.00 | − | 0.94 | 13.00 |
NMP | 0.00 | 0.77 | 0.92 | 23.10 |
1,4-Dioxane | 0.00 | 0.37 | 0.55 | 23.40 |
PEG 400 | 0.31 | 0.75 | 0.91 | 32.90 |
THP | 0.00 | − | 0.64 | 22.30 |
Water | 1.17 | 0.47 | 1.09 | 47.82 |
Modified Apelblat Model | Ideal Model | λh Model | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solvent | A* | 103 B* | C | 104 RMSD | 102 MRD | A# | 103 B# | 104 RMSD | 102 MRD | λ | 103h | 104 RMSD | 102 MRD |
DMSO | 236.67 | −12.12 | −32.68 | 0.189 | 0.001 | 1.03 | 33.46 | 0.392 | 0.239 | −0.32 | −8448.28 | 2.426 | 1.915 |
NMP | 70.70 | −4.94 | −7.81 | 0.032 | 0.281 | 9.13 | 296.78 | 0.379 | 0.738 | −0.56 | −1313 | 2.155 | 1.179 |
Dioxane | 351.50 | −17.56 | −50.09 | 0.078 | 0.164 | 7.49 | 2.43 | 0.231 | 0.612 | −0.16 | −968.61 | 0.178 | 1.824 |
PEG 400 | 54.97 | −2.67 | −7.73 | 0.086 | 13.654 | 722.19 | 2.35 | 0.227 | 0.857 | 8.32 | −8969.38 | 1.703 | 0.993 |
THP | 54.97 | −2.67 | −7.73 | 0.132 | 11.300 | 151.21 | 0.49 | 1.072 | 4.052 | 35.00 | −3660.41 | 3.566 | 0.971 |
Water | 709.79 | −37.97 | −102.74 | 0.224 | 0.684 | 372.41 | 0.01 | 2.079 | 6.837 | 72.44 | 100.30 | 0.847 | 0.598 |
Overall | 0.124 | 4.347 | 0.730 | 2.223 | 1.813 | 1.247 |
T/K | XAM (Modified AM) | XIDL (Ideal Model) | XRK (CNIBS/R-K) | XJA (Modified JA) | |
---|---|---|---|---|---|
w = 0.1 | |||||
293.15 | 3.79 × 10−1 | 3.75 × 10−1 | 3.74 × 10−1 | 3.75 × 10−1 | 3.96 × 10−1 |
298.15 | 4.10 × 10−1 | 4.32 × 10−1 | 4.32 × 10−1 | 4.32 × 10−1 | 4.86 × 10−1 |
303.15 | 4.71 × 10−1 | 4.25 × 10−1 | 4.78 × 10−1 | 4.75 × 10−1 | 5.27 × 10−1 |
308.15 | 5.12 × 10−1 | 5.18 × 10−1 | 5.11 × 10−1 | 5.18 × 10−1 | 5.65 × 10−1 |
313.15 | 5.91 × 10−1 | 5.15 × 10−1 | 6.02 × 10−1 | 5.95 × 10−1 | 6.01 × 10−1 |
318.15 | 7.11 × 10−1 | 7.13 × 10−1 | 7.15 × 10−1 | 7.13 × 10−1 | 7.28 × 10−1 |
323.15 | 8.47 × 10−1 | 8.11 × 10−1 | 8.58 × 10−1 | 8.41 × 10−1 | 8.59 × 10−1 |
w = 0.2 | |||||
293.15 | 2.51 | 2.08 | 2.53 | 2.67 | 2.36 |
298.15 | 2.95 | 2.78 | 2.94 | 2.92 | 2.99 |
303.15 | 3.38 | 3.21 | 3.49 | 3.30 | 3.65 |
308.15 | 4.03 | 3.39 | 4.12 | 4.02 | 4.09 |
313.15 | 4.57 | 4.51 | 4.71 | 4.68 | 4.80 |
318.15 | 5.13 | 5.62 | 5.61 | 5.18 | 5.17 |
323.15 | 5.71 | 5.74 | 5.70 | 5.69 | 5.59 |
w = 0.3 | |||||
293.15 | 4.98 × 101 | 4.90 × 101 | 4.72 × 101 | 4.72 × 101 | 4.49 × 101 |
298.15 | 5.86 × 101 | 5.37 × 101 | 5.88 × 101 | 5.97 × 101 | 5.71 × 101 |
303.15 | 6.72 × 101 | 6.20 × 101 | 7.01 × 101 | 6.51 × 101 | 6.65 × 101 |
308.15 | 8.00 × 101 | 8.38 × 101 | 8.09 × 101 | 8.06 × 101 | 8.22 × 101 |
313.15 | 9.08 × 101 | 9.51 × 101 | 9.14 × 101 | 9.20 × 101 | 9.61 × 101 |
318.15 | 1.02 × 102 | 1.06 × 102 | 1.01 × 102 | 1.01 × 102 | 1.17 × 102 |
323.15 | 1.13 × 102 | 1.30 × 102 | 1.11 × 102 | 1.14 × 102 | 1.35 × 102 |
w = 0.4 | |||||
293.15 | 1.07 × 102 | 1.26 × 102 | 1.01 × 102 | 1.06 × 102 | 9.81 × 101 |
298.15 | 1.25 × 102 | 1.38 × 102 | 1.26 × 102 | 1.27 × 102 | 1.14 × 102 |
303.15 | 1.44 × 102 | 1.67 × 102 | 1.49 × 102 | 1.56 × 102 | 1.38 × 102 |
308.15 | 1.71 × 102 | 1.83 × 102 | 1.73 × 102 | 1.68 × 102 | 1.89 × 102 |
313.15 | 1.94 × 102 | 1.96 × 102 | 1.95 × 102 | 1.96 × 102 | 1.97 × 102 |
318.15 | 2.18 × 102 | 2.14 × 102 | 2.17 × 102 | 2.55 × 102 | 1.99 × 102 |
323.15 | 2.42 × 102 | 2.49 × 102 | 2.38 × 102 | 2.70 × 102 | 2.17 × 102 |
w = 0.5 | |||||
293.15 | 2.85 × 102 | 2.81 × 102 | 2.69 × 102 | 2.81 × 102 | 2.48 × 102 |
298.15 | 3.34 × 102 | 3.65 × 102 | 3.35 × 102 | 3.42 × 102 | 3.43 × 102 |
303.15 | 3.83 × 102 | 3.94 × 102 | 3.99 × 102 | 3.46 × 102 | 3.94 × 102 |
308.15 | 4.56 × 102 | 4.47 × 102 | 4.61 × 102 | 4.75 × 102 | 4.37 × 102 |
313.15 | 5.18 × 102 | 5.65 × 102 | 5.21 × 102 | 5.19 × 102 | 5.16 × 102 |
318.15 | 5.81 × 102 | 5.94 × 102 | 5.79 × 102 | 5.80 × 102 | 5.97 × 102 |
323.15 | 6.46 × 102 | 6.36 × 102 | 6.35 × 102 | 6.27 × 102 | 6.48 × 102 |
w = 0.6 | |||||
293.15 | 5.78 × 102 | 6.35 × 102 | 5.47 × 102 | 5.72 × 102 | 5.86 × 102 |
298.15 | 6.79 × 102 | 6.83 × 102 | 6.81 × 102 | 6.49 × 102 | 6.72 × 102 |
303.15 | 7.79 × 102 | 7.95 × 102 | 8.11 × 102 | 7.61 × 102 | 7.47 × 102 |
308.15 | 9.27 × 102 | 9.07 × 102 | 9.37 × 102 | 9.54 × 102 | 9.03 × 102 |
313.15 | 1.05 × 103 | 1.21 × 103 | 1.06 × 103 | 1.02 × 103 | 1.27 × 103 |
318.15 | 1.18 × 103 | 1.24 × 103 | 1.17 × 103 | 1.17 × 103 | 1.52 × 103 |
323.15 | 1.31 × 103 | 1.35 × 103 | 1.29 × 103 | 1.29 × 103 | 1.27 × 103 |
w = 0.7 | |||||
293.15 | 1.17 × 103 | 1.06 × 103 | 1.11 × 103 | 1.16 × 103 | 1.14 × 103 |
298.15 | 1.37 × 103 | 1.22 × 103 | 1.38 × 103 | 1.34 × 103 | 1.23 × 103 |
303.15 | 1.58 × 103 | 1.36 × 103 | 1.64 × 103 | 1.57 × 103 | 1.46 × 103 |
308.15 | 1.88 × 103 | 1.53 × 103 | 1.90 × 103 | 1.82 × 103 | 1.95 × 103 |
313.15 | 2.13 × 103 | 1.97 × 103 | 2.15 × 103 | 2.19 × 103 | 2.18 × 103 |
318.15 | 2.39 × 103 | 2.34 × 103 | 2.38 × 103 | 2.38 × 103 | 2.31 × 103 |
323.15 | 2.66 × 103 | 2.58 × 103 | 2.62 × 103 | 2.65 × 103 | 2.82 × 103 |
w = 0.8 | |||||
293.15 | 1.64 × 103 | 1.41 × 103 | 1.56 × 103 | 1.65 × 103 | 1.75 × 103 |
298.15 | 1.93 × 103 | 1.87 × 103 | 1.94 × 103 | 2.01 × 103 | 2.01 × 103 |
303.15 | 2.21 × 103 | 1.99 × 103 | 2.31 × 103 | 2.26 × 103 | 2.27 × 103 |
308.15 | 2.63 × 103 | 2.56 × 103 | 2.67 × 103 | 2.73 × 103 | 2.82 × 103 |
313.15 | 2.99 × 103 | 3.00 × 103 | 3.01 × 103 | 3.04 × 103 | 3.10 × 103 |
318.15 | 3.35 × 103 | 3.11 × 103 | 3.35 × 103 | 3.37 × 103 | 3.21 × 103 |
323.15 | 3.74 × 103 | 3.73 × 103 | 3.67 × 103 | 3.73 × 103 | 3.53 × 103 |
w = 0.9 | |||||
293.15 | 1.19 × 103 | 1.08 × 103 | 1.13 × 103 | 1.20 × 103 | 1.08 × 103 |
298.15 | 1.40 × 103 | 1.38 × 103 | 1.41 × 103 | 1.41 × 103 | 1.29 × 103 |
303.15 | 1.61 × 103 | 1.68 × 103 | 1.67 × 103 | 1.63 × 103 | 1.59 × 103 |
308.15 | 1.92 × 103 | 1.91 × 103 | 1.94 × 103 | 1.80 × 103 | 1.95 × 103 |
313.15 | 2.17 × 103 | 2.24 × 103 | 2.19 × 103 | 2.15 × 103 | 2.14 × 103 |
318.15 | 2.43 × 103 | 2.38 × 103 | 2.44 × 103 | 2.49 × 103 | 2.51 × 103 |
323.15 | 2.71 × 103 | 2.79 × 103 | 2.67 × 103 | 2.75 × 103 | 2.66 × 103 |
Modified Apelblat Model | Ideal Model | ||||||||
---|---|---|---|---|---|---|---|---|---|
w | A* | 102 B* | C | 104 RMSD | 102 MRD | 103 A# | B# | 104 RMSD | 102 MRD |
0 | 709.79 | −3.80 | −102.74 | 0.781 | 0.153 | −0.70 | 2.40 | 0.015 | 0.165 |
0.1 | 1.28 | 9.41 | −0.58 | 0.144 | 0.471 | 1.03 | -3.09 | 0.096 | 0.443 |
0.2 | −5.44 | −3.32 | 0.97 | 1.126 | 0.945 | −10.22 | 37.24 | 0.085 | 0.794 |
0.3 | −2.45 | −1.18 | 0.96 | 0.291 | 1.356 | −202.91 | 739.40 | 0.168 | 1.197 |
0.4 | −1.69 | −4.41 | 1.02 | 0.629 | 1.382 | −433.96 | 1581.32 | 0.359 | 2.833 |
0.5 | −0.71 | 1.67 | 0.99 | 1.274 | 0.838 | −1157.55 | 4218.03 | 0.958 | 1.461 |
0.6 | 1.02 | 2.64 | 1.04 | 0.347 | 0.412 | −2352.07 | 8570.75 | 1.419 | 1.947 |
0.7 | 0.71 | −3.55 | 0.97 | 0.409 | 0.378 | −4761.96 | 17,352.21 | 0.935 | 3.942 |
0.8 | 1.05 | 6.48 | 1.02 | 0.406 | 0.752 | −6690.15 | 24,378.38 | 0.872 | 5.539 |
0.9 | 0.73 | −8.14 | 0.98 | 0.221 | 0.428 | −4863.29 | 17,721.47 | 0.634 | 4.432 |
1 | 5.71 | 4.23 | 0.33 | 0.102 | 0.213 | −3570.12 | 13,325.61 | 1.888 | 1.655 |
Overall | 0.519 | 0.664 | 0.675 | 2.218 |
CNIBS/R-K Model | ||||||||
---|---|---|---|---|---|---|---|---|
T/K | B0 | B1 | B2 | B3 | B4 | 104RMSD | 102MRD | |
293.15 | −0.9071 | 1.4012 | −1.2666 | 3.2724 | −2.0394 | 0.229 | 2.523 | |
298.15 | −0.9906 | 1.6046 | −1.4614 | 3.7922 | −2.3645 | 0.271 | 2.986 | |
303.15 | −1.0535 | 1.7962 | −1.6484 | 4.2956 | −2.6798 | 0.314 | 3.451 | |
308.15 | −1.8161 | 2.4434 | −2.1569 | 5.4956 | −3.4195 | 0.359 | 3.946 | |
313.15 | −2.3361 | 2.9271 | −2.5459 | 6.4286 | −3.9957 | 0.400 | 4.396 | |
318.15 | −2.8899 | 3.4332 | −2.9511 | 7.3975 | −4.5939 | 0.441 | 4.854 | |
323.15 | −3.2435 | 3.8378 | −3.2956 | 8.2557 | −5.1265 | 0.491 | 5.396 | |
Overall | 0.358 | 3.936 | ||||||
Modified Jouyban–Acree Model | ||||||||
A1 | A2 | A3 | A4 | A5 | A6 | 104A7 | A8 | A9 |
−7.2675 | −260.9930 | −0.4723 | 82.1708 | 255.7966 | −677.5864 | 1.7237 | −1072.8059 | 143.9475 |
104RMSD = 0.6891 | ||||||||
102MRD = 4.2473 |
Solvents | γi | ||||||
---|---|---|---|---|---|---|---|
293.15 K | 298.15 K | 303.15 K | 308.15 K | 313.15 K | 318.15 K | 323.15 K | |
DMSO | 2.80 | 1.36 | 7.40 × 10−1 | 3.66 × 10−1 | 1.98 × 10−1 | 1.13 × 10−1 | 6.66 × 10−2 |
NMP | 3.46 | 1.63 | 8.73 × 10−1 | 4.37 × 10−1 | 2.27 × 10−1 | 1.21 × 10−1 | 7.08 × 10−2 |
Dioxane | 4.01 × 101 | 1.91 × 101 | 9.49 | 5.07 | 2.79 | 1.58 | 8.91 × 10−1 |
PEG 400 | 3.33 × 102 | 1.73 × 102 | 9.43 × 101 | 5.19 × 101 | 2.94 × 101 | 1.70 × 101 | 1.02 × 101 |
THP | 1.62 × 103 | 8.41 × 102 | 4.51 × 102 | 2.46 × 102 | 1.37 × 102 | 7.81 × 101 | 4.56 × 101 |
Water | 1.28 × 106 | 5.16 × 105 | 1.83 × 105 | 8.52 × 104 | 3.19 × 104 | 1.61 × 104 | 8.18 × 103 |
Solvent | ΔH° | ΔG° | ΔS° | R2 |
---|---|---|---|---|
kJ·mol−1 | kJ·mol−1 | J·mol−1·K−1 | ||
DMSO | −10.04 | −2.30 | −25.12 | 0.9992 |
NMP | −11.56 | −1.96 | −31.17 | 0.9996 |
Dioxane | −9.65 | 4.42 | −45.70 | 0.9992 |
PEG 400 | −5.52 | 10.38 | −51.60 | 0.9990 |
THP | −6.17 | 14.33 | −66.57 | 0.9993 |
Water | 30.33 | 28.96 | 4.44 | 0.9996 |
w | ΔH° | ΔG° | ΔS° | R2 |
---|---|---|---|---|
kJ·mol−1 | kJ·mol−1 | J·mol−1 K−1 | ||
0 | 52.89 | 5.75 | 153.08 | 0.9996 |
0.1 | 20.99 | 1.58 | 63.03 | 0.9991 |
0.2 | 38.93 | −3.77 | 138.64 | 0.9990 |
0.3 | 19.47 | −11.03 | 99.02 | 0.9995 |
0.4 | 11.33 | −12.74 | 78.15 | 0.9992 |
0.5 | 4.28 | −15.05 | 62.76 | 0.9991 |
0.6 | 2.77 | −16.79 | 63.49 | 0.9996 |
0.7 | 1.65 | −18.57 | 65.63 | 0.9998 |
0.8 | 7.26 | −19.63 | 87.32 | 0.9990 |
0.9 | 16.15 | −19.15 | 114.63 | 0.9990 |
1 | 17.85 | −19.04 | 119.79 | 0.9992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharjan, R.; Jeong, J.; Bhujel, R.; Kim, M.-S.; Han, H.-K.; Kim, N.A.; Jeong, S.H. Correlation of Solubility Thermodynamics of Glibenclamide with Recrystallization and In Vitro Release Profile. Molecules 2022, 27, 1392. https://doi.org/10.3390/molecules27041392
Maharjan R, Jeong J, Bhujel R, Kim M-S, Han H-K, Kim NA, Jeong SH. Correlation of Solubility Thermodynamics of Glibenclamide with Recrystallization and In Vitro Release Profile. Molecules. 2022; 27(4):1392. https://doi.org/10.3390/molecules27041392
Chicago/Turabian StyleMaharjan, Ravi, Junoh Jeong, Ripesh Bhujel, Min-Soo Kim, Hyo-Kyung Han, Nam Ah Kim, and Seong Hoon Jeong. 2022. "Correlation of Solubility Thermodynamics of Glibenclamide with Recrystallization and In Vitro Release Profile" Molecules 27, no. 4: 1392. https://doi.org/10.3390/molecules27041392
APA StyleMaharjan, R., Jeong, J., Bhujel, R., Kim, M. -S., Han, H. -K., Kim, N. A., & Jeong, S. H. (2022). Correlation of Solubility Thermodynamics of Glibenclamide with Recrystallization and In Vitro Release Profile. Molecules, 27(4), 1392. https://doi.org/10.3390/molecules27041392