Volatile Analysis of Wuliangye Baijiu by LiChrolut EN SPE Fractionation Coupled with Comprehensive GC×GC-TOFMS
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC×GC-TOFMS Performance
2.2. Number of Volatile Compounds
2.3. Distribution of Volatile Compounds in Fractionation
2.4. Comprehensive Identification of Volatile Compounds in Wuliangye Baijiu
2.4.1. Skeleton Compounds
Esters
Alcohols
Acids
2.4.2. Aldehydes, Ketones, and Phenolics
2.4.3. Acetals and Furans
2.4.4. Sulfurs, Pyrazines, and Terpenes
3. Materials and Methods
3.1. Sample, Solvents, Sorbents, and Standards
3.2. Aroma Extraction
3.2.1. LLE
3.2.2. LiChrolut® EN SPE
3.3. Fractionation
3.4. Comprehensive GC×GC-TOFMS Analysis
3.5. Identification of Volatile Compounds
3.6. Data Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, H.L.; Sun, B.G. Effect of fermentation processing on the flavor of baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- He, Y.X.; Liu, Z.P.; Qian, M.; Yu, X.W.; Xu, Y.; Chen, S. Unraveling the chemosensory characteristics of strong-aroma type Baijiu from different regions using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry and descriptive sensory analysis. Food Chem. 2020, 331, 127335. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.W.; Han, B.Z. Baijiu (白酒), Chinese liquor: History, classfication and manufacture. J. Ethn. Foods 2016, 3, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation—A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerda, V. Solid-phase extraction of organic compounds: A critical review (Part I). TrAC Trends Anal. Chem. 2016, 80, 641–654. [Google Scholar] [CrossRef]
- Lopez, P.; Batlle, R.; Nerın, C.; Cacho, J.; Ferreira, V. Use of new generation poly(styrene-divinylbenzene) resins for gas-phase trapping-thermal desorption: Application to the retention of seven volatile organic compounds. J. Chromatogr. A 2007, 1139, 36–44. [Google Scholar] [CrossRef]
- Zhao, P.T.; Qian, Y.P.; He, F.; Li, H.; Qian, M. Comparative characterization of aroma compounds in merlot wine by LiChrolut-EN-based aroma extract dilution analysis and odor activity value. Chemosens. Percept. 2017, 10, 149–160. [Google Scholar] [CrossRef]
- Ferreira, V.; Fernandez, P.; Gracia, J.P.; Cacho, J.F. Identification of volatile constituents in wines from Vitis vinifera var Vidadillo and sensory contribution of the different wine flavour fractions. J. Sci. Food Agric. 1995, 69, 299–310. [Google Scholar] [CrossRef]
- Qian, M.; Reineccius, G. Identification of aroma compounds in Parmigiano-Reggiano cheese by gas chromatography/olfactometry. J. Dairy Sci. 2002, 85, 1362–1369. [Google Scholar] [CrossRef]
- Fan, W.L.; Qian, M.C. Identification of aroma compounds in Chinese “Yanghe Daqu” liquor by normal phase chromatography fractionation followed by gas chromatography olfactometry. Flavour Fragr. J. 2006, 21, 333–342. [Google Scholar] [CrossRef]
- He, Z.; Yang, K.; Liu, Z.; An, M.; Qiao, Z.; Zhao, D.; Zheng, J.; Qian, M. Tandem Solid-Phase Extraction Columns for Simultaneous Aroma Extraction and Fractionation of Wuliangye and Other Baijiu. Molecules 2021, 26, 6030. [Google Scholar] [CrossRef] [PubMed]
- Shelle, R.; Marriott, P.; Morrison, P. Concepts and preliminary observations on the triple-dimensional analysis of complex volatile samples by using GC×GC-TOFMS. Anal. Chem. 2001, 73, 1336–1344. [Google Scholar] [CrossRef]
- Zhu, S.K.; Lu, X.; Ji, K.L.; Guo, K.L.; Li, Y.L.; Wu, C.Y.; Xu, G.W. Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta 2007, 597, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Du, H.; Jia, W.; Xu, Y. Compositional differences and similarities between typical Chinese baijiu and western liquor as revealed by mass spectrometry-based metabolomics. Molecules 2019, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Jelen, H.H. Comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC×GC-TOFMS) in conventional and reversed column configuration for the investigation of Baijiu aroma types and regional origin. J. Chromatogr. A 2021, 1636, 461774. [Google Scholar] [CrossRef] [PubMed]
- Song, X.B.; Jing, S.; Zhu, L.; Ma, C.F.; Song, T.; Wu, J.H.; Zhao, D.R.; Zheng, F.P.; Zhao, M.M.; Chen, F. Untargeted and targeted metabolomics strategy for the classification of strong aroma-type baijiu (liquor) according to geographical origin using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Food Chem. 2019, 314, 126098. [Google Scholar] [CrossRef]
- Wang, L.; Gao, M.; Liu, Z.; Chen, S.; Xu, Y. Three Extraction Methods in Combination with Gc×Gc-Tofms for the Detailed Investigation of Volatiles in Chinese Herbacrous Aroma-Type Baijiu. Molecules 2020, 25, 4429. [Google Scholar] [CrossRef]
- Council of the EU. EU-China: Council Authorises Signature of the Agreement on Geographical Indications. Available online: https://www.consilium.europa.eu/en/press/press-releases/2020/07/20/eu-china-council-authorises-signature-of-the-agreement-on-geographical-indications/ (accessed on 20 July 2020).
- Zhao, D.; Zheng, J. Research progress on aroma compounds in Wuliangye. In Sex, Smoke, and Spirits: The Role of Chemistry; Guthrie, B., Beauchamp, J.D., Buettner, A., Toth, S., Qian, M., Eds.; ACS Publications: New York, NY, USA, 2019; Volume 1. [Google Scholar]
- Fan, W.L.; Qian, M.C. Characterization of aroma compounds of Chinese "Wuliangye" and "Jiannanchun " liquors by aroma extract dilution analysis. J. Agric. Food Chem. 2006, 54, 2695–2704. [Google Scholar] [CrossRef]
- Niu, Y.; Kong, J.; Xiao, Z.; Chen, F.; Ma, N.; Zhu, J. Characterization of Odor-Active Compounds of Various Chinese "Wuliangye" Liquors by Gas Chromatography–olfactometry, Gas Chromatography–mass Spectrometry and Sensory Evaluation. Int. J. Food Prop. 2017, S735–S745. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Barros, A.S.; Camara, J.S.; Rocha, S.M. In-depth search focused on furans, lactones, volatile phenols, and acetals as potential age markers of Madeira wines by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction. J. Agric. Food Chem. 2011, 59, 3186–3204. [Google Scholar] [CrossRef] [Green Version]
- Culleré, L.; Aznar, M.; Cacho, J.; Ferreira, V. Fast fractionation of complex organic extracts by normal-phase chromatography on a solid-phase extraction polymeric sorbent: Optimization of a method to fractionate wine flavor extracts. J. Chromatogr. A 2003, 1017, 17–26. [Google Scholar] [CrossRef]
- Burns, R.L.; Alexander, R.; Snaychuk, L.; Edwards, J.C.; Fitzgerald, N.; Gao, P.; Quan, D.; Douvris, C.; Vaughan, T.; Bussan, D.D. A Fast, Straightforward and Inexpensive Method for the Authentication of Baijiu Spirit Samples by Fluorescence Spectroscopy. Beverages 2021, 7, 65. [Google Scholar] [CrossRef]
- Zhao, D.R.; Shi, D.M.; Sun, J.Y.; Li, A.J.; Sun, B.G.; Zhao, M.M.; Chen, F.; Sun, X.T.; Li, H.H.; Huang, M.Q.; et al. Characterization of key aroma compounds in Gujinggong Chinese Baijiu by gas chromatography-olfactometry, quantitative measurements, and sensory evaluation. Food Res. Int. 2018, 105, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Falcao, L.D.; Lytra, G.; Darriet, P.; Barbe, J.C. Identification of ethyl 2-hydroxy-4-methylpentanoate in red wines, a compound involved in blackberry aroma. Food Chem. 2012, 132, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Fan, W.L.; Xu, Y. Extraction and isolation method of volatile compounds with astringent and bitter taste in Baijiu (Chinese liquor). Food Ferment. Ind. 2018, 40, 240–244. [Google Scholar]
- Hufnagel, J.C.; Hofmann, T. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. J. Agric. Food Chem. 2008, 56, 1376–1386. [Google Scholar] [CrossRef]
- Fan, W.L.; Tang, K.; Zhang, Y.H. Characterization of pyrazines in some Chinese liquors and their approximate concentrations. J. Agric. Food Chem. 2007, 24, 9956–9962. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Oliveros, J.C. An interactive tool for comparing lists with Venn’s diagrams. 2007–2015. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
Ester | Alcohol | Acid | Aldehyde | Acetal | Ketone | Furan | Phenolic | Terpene | Sulfur | Lactone | Pyrazine | Other | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | SPE | LLE | |
F1 | 48 | 24 | 6 | 3 | 0 | 2 | 4 | 6 | 8 | 9 | 5 | 4 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F2 | 40 | 37 | 13 | 11 | 1 | 1 | 9 | 7 | 5 | 5 | 6 | 4 | 3 | 2 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F3 | 26 | 33 | 26 | 32 | 1 | 2 | 2 | 5 | 2 | 4 | 4 | 5 | 8 | 6 | 4 | 5 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
F4 | 11 | 33 | 38 | 32 | 2 | 4 | 5 | 3 | 0 | 2 | 4 | 3 | 5 | 5 | 6 | 5 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
F5 | 9 | 9 | 25 | 20 | 2 | 2 | 3 | 0 | 0 | 0 | 3 | 3 | 7 | 3 | 5 | 4 | 2 | 0 | 0 | 0 | 3 | 1 | 5 | 1 | 0 | 0 |
F6 | 7 | 10 | 19 | 21 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 3 | 2 | 4 | 5 | 5 | 2 | 1 | 0 | 0 | 1 | 3 | 5 | 6 | 0 | 0 |
F7 | 11 | 16 | 20 | 24 | 3 | 4 | 6 | 2 | 0 | 1 | 3 | 7 | 5 | 4 | 0 | 10 | 3 | 0 | 1 | 0 | 2 | 2 | 5 | 4 | 0 | 1 |
F8 | 3 | 14 | 15 | 23 | 4 | 7 | 1 | 3 | 0 | 1 | 1 | 4 | 3 | 2 | 5 | 9 | 0 | 0 | 2 | 2 | 0 | 0 | 1 | 2 | 1 | 1 |
F9 | 4 | 12 | 11 | 16 | 11 | 11 | 3 | 2 | 0 | 0 | 2 | 4 | 2 | 2 | 3 | 7 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F10 | 5 | 4 | 13 | 11 | 15 | 17 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 2 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; He, Z.; Yang, K.; Liu, Z.; Zhao, D.; Qian, M.C. Volatile Analysis of Wuliangye Baijiu by LiChrolut EN SPE Fractionation Coupled with Comprehensive GC×GC-TOFMS. Molecules 2022, 27, 1318. https://doi.org/10.3390/molecules27041318
Zheng J, He Z, Yang K, Liu Z, Zhao D, Qian MC. Volatile Analysis of Wuliangye Baijiu by LiChrolut EN SPE Fractionation Coupled with Comprehensive GC×GC-TOFMS. Molecules. 2022; 27(4):1318. https://doi.org/10.3390/molecules27041318
Chicago/Turabian StyleZheng, Jia, Zhanglan He, Kangzhuo Yang, Zhipeng Liu, Dong Zhao, and Michael C. Qian. 2022. "Volatile Analysis of Wuliangye Baijiu by LiChrolut EN SPE Fractionation Coupled with Comprehensive GC×GC-TOFMS" Molecules 27, no. 4: 1318. https://doi.org/10.3390/molecules27041318
APA StyleZheng, J., He, Z., Yang, K., Liu, Z., Zhao, D., & Qian, M. C. (2022). Volatile Analysis of Wuliangye Baijiu by LiChrolut EN SPE Fractionation Coupled with Comprehensive GC×GC-TOFMS. Molecules, 27(4), 1318. https://doi.org/10.3390/molecules27041318