Flexible Liquid Crystal Polymer Technologies from Microwave to Terahertz Frequencies
Abstract
:1. Introduction
2. Material Properties and Device Fabrication
2.1. Material Properties
2.1.1. Electromagnetic Properties
2.1.2. Mechanical Properties
2.1.3. Other Properties
2.2. Fabrication of LCP Devices
3. Flexible LCP Circuits
3.1. Transitions
3.2. Filters
3.3. Other Circuit Components
4. Flexible Antennas and Arrays
4.1. Antennas
4.2. Metamaterials
4.3. Antenna Arrays
5. Integration and Packaging Technologies
5.1. Chip Integration and Packging
5.2. Integraion Technologies
5.3. Front-End Modules
6. Other Applications
6.1. MEMS
6.2. Biomedical Devices
6.3. Microfluidics
7. Outlook and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Urbas, A.M.; Quan, L. Nature-inspired emerging chiral liquid crystal nanostructures: From molecular self-assembly to DNA mesophase and nanocolloids. Adv. Mater. 2021, 32, 1801335. [Google Scholar] [CrossRef] [PubMed]
- Claudine, N.; Patrick, N. Liquid crystal polymers. Prog. Polym. Sci. 1991, 16, 55–110. [Google Scholar]
- Wang, L. Self-activating liquid crystal devices for smart laser protection. Liq. Cryst. 2016, 43, 2062–2078. [Google Scholar] [CrossRef]
- Han, H.; Bhowmik, P.K. Wholly aromatic liquid-crystalline polyesters. Prog. Polym. Sci. 1997, 22, 1431–1502. [Google Scholar] [CrossRef]
- Gu, X.; Liu, D.; Sadhu, B. Packaging and antenna integration for silicon-based millimeter-wave phased arrays: 5G and beyond. IEEE J. Microw. 2021, 1, 123–134. [Google Scholar] [CrossRef]
- Watanabe, A.O.; Ali, M.; Sayeed, Y.B.; Tummala, R.R.; Pulugurtha, M.R. A review of 5G front-end systems package integration. IEEE Trans. Compon. Packag. Manuf. 2021, 11, 118–133. [Google Scholar] [CrossRef]
- Ali Khan, M.U.; Raad, R.; Tubbal, F.; Theoharis, P.I.; Liu, S.; Foroughi, J. Bending analysis of polymer-based flexible antennas for wearable, general IoT applications: A review. Polymers 2021, 13, 357. [Google Scholar] [CrossRef]
- Jayaraj, K.; Noll, T.E.; Singh, D.R. A low cost multichip packaging technology for monolithic microwave integrated circuits. IEEE Trans. Antennas Propag. 1995, 43, 992–997. [Google Scholar] [CrossRef]
- Farrell, B.; Lawrence, M.S. The processing of liquid crystalline polymer printed circuits. In Proceedings of the 52nd Electronic Components and Technology Conference, San Diego, CA, USA, 28–31 May 2002. [Google Scholar]
- Thompson, D.C.; Tantot, O.; Jallageas, H.; Ponchak, G.E.; Tentzeris, M.M.; Papapolymerou, J. Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz. IEEE Trans. Microw. Theory Tech. 2004, 52, 1343–1352. [Google Scholar] [CrossRef] [Green Version]
- Khoo, G.L.; Brox, B.; Rikard, N.; Frans, M. Effect of copper lamination on the rheological and copper adhesion properties of a thermotropic liquid crystalline polymer used in PCB applications. IEEE Trans. Compon. Packag. Manuf. Technol. Part C Manuf. 1997, 20, 219–226. [Google Scholar] [CrossRef]
- Chen, L.; Crnic, M.; Lai, Z.; Liu, J. Process development and adhesion behavior of electroless copper on liquid crystal polymer (LCP) for electronic packaging application. IEEE Trans. Electron. Packag. Manuf. 2002, 25, 273–278. [Google Scholar] [CrossRef]
- Matsuzawa, A. RF-SoC-expectations and required conditions. IEEE Trans. Microw. Theory Tech. 2002, 50, 245–253. [Google Scholar] [CrossRef]
- Zou, G.; Grönqvist, H.; Staski, J.P.; Johan, L. Characterization of liquid crystal polymer for high frequency system-in-a-package applications. IEEE Trans. Adv. Packag. 2002, 25, 503–508. [Google Scholar]
- Ji, Y.; Bai, Y.; Liu, X.; Jia, K. Progress of liquid crystal polyester (LCP) for 5G application. Adv. Ind. Eng. Polym. Res. 2020, 3, 160–174. [Google Scholar] [CrossRef]
- Wang, X.; Engel, J.; Liu, C. Liquid crystal polymer (LCP) for MEMS: Processes and applications. J. Micromech. Microeng. 2003, 13, 628. [Google Scholar] [CrossRef]
- Ahn, S.-H.; Jeong, J.; Kim, T. Emerging encapsulation technologies for long-term reliability of microfabricated implantable devices. Micromachines 2019, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Entesari, K.; Saghati, A.P. Fluidics in microwave components. IEEE Microw. Mag. 2016, 17, 50–75. [Google Scholar] [CrossRef]
- Zhang, Y. Development of Multilayer Liquid Crystal Polymer Based Radio Frequency Front-End Receiving Module at W-Band. Ph.D. Thesis, University of Delaware, Newark, DE, USA, 2016. [Google Scholar]
- Thompson, D.C.; Tentzeris, M.M.; Papapolymerou, J. Experimental analysis of the water absorption effects on RF/mm-wave active/passive circuits packaged in multilayer organic substrates. IEEE Trans. Adv. Packag. 2007, 30, 551–557. [Google Scholar] [CrossRef]
- Khan, W.T.; Morcillo, C.; Ulusoy, A.C.; Papapolymerou, J. Characterization of liquid crystal polymer from 110 GHz to 170 GHz. In Proceedings of the Radio and Wireless Symposium (RWS), Newport Beach, CA, USA, 19–23 January 2014. [Google Scholar]
- Jing, G.; Kasamatsu, A.; Kojima, F.; Li, K. Performance of transmission line on liquid crystal polymer (LCP) from 220 GHz to 330 GHz. In Proceedings of the 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT), Cardiff, UK, 14–15 September 2015. [Google Scholar]
- Wane, S.; Leyssenne, L.; Lesénéchal, D.; Lesenchal, D.; Dinh, T.V.; Descamps, P. Characterization of anisotropic substrates from RF, mm-Wave to THz: Design of 3D conformal antenna for connected objects. In Proceedings of the 2016 IEEE Conference on Antenna Measurements & Applications (CAMA), Syracuse, NY, USA, 23–27 October 2016. [Google Scholar]
- Hajisaeid, E.; Dericioglu, A.F.; Akyurtlu, A. All 3-D printed free-space setup for microwave dielectric characterization of materials. IEEE Trans. Instrum. Meas. 2018, 67, 1877–1886. [Google Scholar] [CrossRef]
- Liu, W.; Song, W. Broadband dielectric measurement of LCP Substrate materials by differential phase length method. In Proceedings of the 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 29–31 July 2020. [Google Scholar]
- Thompson, D.C.; Papapolymerou, J.; Tentzeris, M.M. High temperature dielectric stability of liquid crystal polymer at mm-wave frequencies. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 561–563. [Google Scholar] [CrossRef]
- Dean, R.N.; Weller, J.; Bozack, M.J.; Rodekohr, C.L.; Farrell, B.; Jauniskis, L.; Ting, J.; Edell, D.J.; Hetke, J.F. Realization of ultra fine pitch traces on LCP substrates. IEEE Trans. Compon. Packaging Technol. 2008, 31, 315–321. [Google Scholar] [CrossRef]
- Alhendi, M.; Umar, A.; Abbara, E.M.; Umar, A.; Cadwell, R.; Weerawarne, D.L.; Borgesen, P.; Iannotti, J.; Stoffel, N.; Poliks, M.D. A comparative study of aerosol jet printing on polyimide and liquid crystal polymer substrates for RF applications. In Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020. [Google Scholar]
- Kao, H.-L.; Cho, C.-L.; Chang, L.-C. Inkjet-printed interdigital coupled line filter on liquid crystal polymer substrate. IEEE Electron Device Lett. 2013, 34, 1584–1586. [Google Scholar] [CrossRef]
- Kao, H.-L.; Yeh, C.-S.; Zhang, X.Y.; Cho, C.-L.; Dai, X.; Wei, B.-H.; Chang, L.-C.; Chiu, H.-C. Inkjet printed series-fed two-dipole antenna comprising a balun filter on liquid crystal polymer substrate. IEEE Trans. Compon. Packag. Manuf. 2014, 4, 1228–1236. [Google Scholar] [CrossRef]
- Kao, H.-L.; Cho, C.-L.; Zhang, X.Y.; Chang, L.-C.; Wei, B.-H.; Dai, X.; Chiu, H.-C. Bending effect of an inkjet-printed series-fed two-dipole antenna on a liquid crystal polymer substrate. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1172–1175. [Google Scholar]
- Abt, M.; Roch, A.; Qayyum, J.A.; Pestotnik, S.; Stepien, L.; Abu-Ageel, A.; Wright, B.; Ulusoy, A.C.; Albrecht, J.; Harle, L. Aerosol-printed highly conductive Ag transmission lines for flexible electronic devices. IEEE Trans. Compon. Packag. Manuf. 2018, 8, 1838–1844. [Google Scholar] [CrossRef]
- Oakley, C.; Albrecht, J.D.; Papapolymerou, J.; Chahal, P. Low-loss aerosol-jet printed wideband interconnects for embedded devices. IEEE Trans. Compon. Packag. Manuf. 2019, 9, 2305–2313. [Google Scholar] [CrossRef]
- Crump, C.; Gjokaj, V.; Wright, B.; Papapolymerou, J.; Albrecht, J.D.; Chahal, P. UV flash sintering of aerosol jet printed silver conductors for microwave circuit applications. IEEE Trans. Compon. Packag. Manuf. 2021, 11, 342–350. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Gupta, K.C.; Garg, R.; Bahl, I.J. Microstrip Lines and Slotlines, 3rd ed.; Artech House, Inc.: Fitchburg, MA, USA, 1979. [Google Scholar]
- Bozzi, M.; Georgiadis, A.; Wu, K. Review of substrate-integrated waveguide circuits and antennas. IEEE Trans. Antennas Propag. 2011, 5, 909–920. [Google Scholar] [CrossRef]
- Xing, K.; Liu, B.; Guo, Z.; Wei, X.; Zhao, R.; Ma, Y. Backlobe and sidelobe suppression of a Q-band patch antenna array by using substrate integrated coaxial line feeding technique. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3043–3046. [Google Scholar] [CrossRef]
- Ariffin, A.; Isa, D. Bandwidth enhancement of microstripline-to-waveguide transitions for broadband E-band module applications. Microw. Opt. Technol. Lett. 2016, 58, 1398–1401. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Prather, D.W. Slot-coupled waveguide-to-microstrip transition and waveguide-fed patch antenna at E-band. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013. [Google Scholar]
- Yang, K.; Pinel, S.; Kim, K.; Laskar, J. Millimeter-wave low-loss integrated waveguide on liquid crystal polymer substrate. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006. [Google Scholar]
- Zhang, Y.; Shi, S.; Martin, R.D.; Prather, D.W. Broadband SIW-to-waveguide transition in multilayer LCP substrates at W-band. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 224–226. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Martin, R.D.; Prather, D.W. Ultrawide band CBCPW to stripline vertical transition in multilayer LCP substrates. Microw. Opt. Technol. Lett. 2015, 57, 1481–1484. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Shi, S.; Martin, R.D.; Yao, P.; Prather, D.W. Ultra-wideband microstrip line-to-microstrip line transition in multilayer LCP substrate at millimeter-wave frequencies. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 873–875. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Martin, R.D.; Yao, P.; Wang, F.; Prather, D.W. Ultra-wideband vialess microstrip line-to-stripline transition in multilayer LCP substrate for E- and W-band applications. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 1101–1103. [Google Scholar] [CrossRef]
- Cai, F.; Chang, Y.-H.; Wang, K.; Zhang, C.; Wang, B.; Papapolymerou, J. Low-loss 3-D multilayer transmission lines and interconnects fabricated by additive manufacturing technologies. IEEE Trans. Microw. Theory Tech. 2016, 64, 3208–3216. [Google Scholar] [CrossRef]
- Hong, J.-S.G.; Lancaster, M.J. Microstrip Filters for RF/Microwave Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Pramanick, P.; Bhartia, P. Modern RF and Microwave Filter Design; Artech House: Fitchburg, MA, USA, 2016. [Google Scholar]
- Zhao, M.; Zhang, Y.; Liu, S.; Jia, Y. UWB flexible filter with low loss and excellent stopband performance. Microw. Opt. Technol. Lett. 2017, 59, 194–197. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Martin, R.D.; Prather, D.W. Substrate integrated waveguide filter on LCP substrate at 94 GHz. Microw. Opt. Technol. Lett. 2016, 58, 577–580. [Google Scholar] [CrossRef]
- Hao, Z.-C.; Hong, J.-S. UWB bandpass filter using cascaded miniature high-pass and low-pass filters with multilayer liquid crystal polymer technology. IEEE Trans. Microw. Theory Tech. 2010, 58, 941–948. [Google Scholar]
- Hao, Z.-C.; Hong, J.-S. Ultra-wideband bandpass filter using multilayer liquid-crystal-polymer technology. IEEE Trans. Microw. Theory Tech. 2008, 56, 2095–2100. [Google Scholar]
- Hao, Z.-C.; Hong, J.-S. Ultra wideband bandpass filter using embedded stepped impedance resonators on multilayer liquid crystal polymer substrate. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 581–583. [Google Scholar] [CrossRef]
- Qian, S.; Hong, J. Miniature quasi-lumped-element wideband bandpass filter at 0.5–2-Ghz band using multilayer liquid crystal polymer technology. IEEE Trans. Microw. Theory Tech. 2012, 60, 2799–2807. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Shao, Z.; You, C.J.; Ban, F. Ku-band compact bandpass filter with wide upper stopband using multilayer liquid crystal polymer technology. Microw. Opt. Technol. Lett. 2015, 57, 1121–1125. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y. Compact wearable 5-GHz flexible filter. Electron. Lett. 2017, 53, 661–663. [Google Scholar] [CrossRef]
- Miller, A.; Hong, J. Cascaded coupled line filter with reconfigurable bandwidths using LCP multilayer circuit technology. IEEE Trans. Microw. Theory Tech. 2012, 60, 1577–1586. [Google Scholar] [CrossRef]
- Cervera, F.; Hong, J. Compact self-packaged dual-band filter using multilayer liquid crystal polymer technology. IEEE Trans. Microw. Theory Tech. 2014, 62, 2618–2625. [Google Scholar] [CrossRef]
- Cervera, F.; Hong, J. High rejection, self-packaged low-pass filter using multilayer liquid crystal polymer technology. IEEE Trans. Microw. Theory Tech. 2015, 63, 3920–3928. [Google Scholar] [CrossRef]
- Huang, F.; Wang, J.; Aliqab, K.; Hong, J.; Wu, W. Analysis and design of a new self-packaged wideband balun bandpass filter with the functionality of impedance transformation. IEEE Trans. Microw. Theory Tech. 2019, 67, 2322–2330. [Google Scholar] [CrossRef]
- Huang, F.; Aliqab, K.; Wang, J.; Hong, J.; Wu, W. Self-packaged balanced bandpass filters with impedance transformation characteristic. IEEE Trans. Microw. Theory Tech. 2019, 67, 4353–4361. [Google Scholar] [CrossRef]
- Aliqab, K.; Hong, J. UWB balanced BPF using a low-cost LCP bonded multilayer PCB technology. IEEE Trans. Microw. Theory Tech. 2019, 67, 1023–1029. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Martin, R.D.; Prather, D.W. Slot-coupled directional filters in multilayer LCP substrates at 95 GHz. IEEE Trans. Microw. Theory Tech. 2017, 65, 476–483. [Google Scholar] [CrossRef]
- Cameron, R.J.; Ming, Y. Design of manifold-coupled multiplexers. IEEE Microw. Mag. 2007, 8, 46–59. [Google Scholar] [CrossRef]
- Ta, H.H.; Pham, A.V. A compact broadband balun on multilayer organic substrate. Microw. Opt. Technol. Lett. 2013, 55, 1957–1959. [Google Scholar] [CrossRef] [Green Version]
- Rahimian, A.; Abbasi, Q.H.; Alomainy, A.; Alfadhl, Y. A low-profile 28-GHz Rotman lens-fed array beamformer for 5G conformal subsystems. Microw. Opt. Technol. Lett. 2019, 61, 671–675. [Google Scholar] [CrossRef]
- Van Pham, C.; Pham, A.V. Novel stacked-defected ground structures for ultra-wideband low loss balun designs. Microw. Opt. Technol. Lett. 2019, 61, 2008–2012. [Google Scholar] [CrossRef]
- Chen, M.J.; Zhang, Z.; Pham, A.-V.H.; Hyman, D. Design and development of a broadband amplitude compensated long time delay circuit on thin-film liquid crystal polymer. Microw. Opt. Technol. Lett. 2009, 51, 1060–1063. [Google Scholar] [CrossRef]
- Chieh, J.-C.S.; Pham, A.-V. Development of a wide bandwidth Wilkinson power divider on multilayer organic substrates. Microw. Opt. Technol. Lett. 2010, 52, 1606–1609. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Milias, C.; Andersen, R.B.; Lazaridis, P.I.; Zaharis, Z.D.; Dan, D.S. Metamaterial-inspired antennas: A review of the state of the art and future design challenges. IEEE Access 2021, 9, 89846–89865. [Google Scholar] [CrossRef]
- DeJean, G.; Bairavasubramanian, R.; Thompson, D.; Ponchak, G.E.; Tentzeris, M.M.; Papolymerou, J. Liquid crystal polymer (LCP): A new organic material for the development of multilayer dual-frequency/dual-polarization flexible antenna arrays. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Kruesi, C.M.; Vyas, R.J.; Tentzeris, M.M. Design and development of a novel 3-D cubic antenna for wireless sensor networks (WSNs) and RFID applications. IEEE Trans. Antennas Propag. 2009, 57, 3293–3299. [Google Scholar] [CrossRef] [Green Version]
- Pavuluri, S.K.; Wang, C.; Sangster, A.J. High efficiency wideband aperture-coupled stacked patch antennas assembled using millimeter thick micromachined polymer structures. IEEE Trans. Antennas Propag. 2010, 58, 3616–3621. [Google Scholar] [CrossRef]
- Nikolaou, S.; Ponchak, G.E.; Papolymerou, J.; Tentzeris, M.M. Conformal double exponentially tapered slot antenna (DETSA) on LCP for UWB applications. IEEE Trans. Antennas Propag. 2006, 54, 1663–1669. [Google Scholar] [CrossRef]
- Pazin, L.; Leviatan, Y. A compact 60-GHz tapered slot antenna printed on LCP substrate for WPAN applications. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 272–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Martin, R.D.; Prather, D.W. High-gain linearly tapered antipodal slot antenna on LCP substrate at E- and W-bands. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1357–1360. [Google Scholar] [CrossRef]
- Wang, Q.; Du, C.-Z.; Zheng, Y.-Y.; Liu, P.-C.; Yang, F.-H. A novel dual-band antenna based on liquid crystal polymer. In Proceedings of the 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT), Hangzhou, China, 5–7 September 2018. [Google Scholar]
- Du, C.-Z.; Ma, T.-C.; Wang, X.; Yang, Z.-P.; Liu, H.-Y.; Nie, Y. Flexible single band-notched ultra-wideband MIMO antenna. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019. [Google Scholar]
- Cüneray, K.; Akçam, N. LCP substrate based crescent shaped microstrip patch array antenna design for 5G applications. In Proceedings of the 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13 October 2019. [Google Scholar]
- Chletsou, A.; He, Y.; Locke, J.F.; Papapolymerou, J. Multi-band, flexible, lightweight antenna on LCP for automotive applications. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020. [Google Scholar]
- Madhav, B.T.; Usha Devi, Y.; Anilkumar, T. Defected ground structured compact MIMO antenna with low mutual coupling for automotive communications. Microw. Opt. Technol. Lett. 2019, 61, 794–800. [Google Scholar] [CrossRef]
- Du, C.; Yang, Z.; Jin, G.; Zhong, S. Design of a co-planar waveguide-fed flexible ultra-wideband-multiple-input multiple-output antenna with dual band-notched characteristics for wireless body area network. Int. J. RF Microw. Comput.-Aided Eng. 2021, 32, e22997. [Google Scholar] [CrossRef]
- Du, C.; Li, K.; Zhong, S. A novel flexible hexagon wideband CPW-fed monopole antenna for UWB applications. Microw. Opt. Technol. Lett. 2021, 63, 1899–1905. [Google Scholar] [CrossRef]
- Faisal, F.; Yoo, H. A miniaturized novel-shape dual-band antenna for implantable applications. IEEE Trans. Antennas Propag. 2019, 67, 774–783. [Google Scholar] [CrossRef]
- Du, C.; Li, X.; Zhong, S. Compact liquid crystal polymer based tri-band flexible antenna for WLAN/WiMAX/5G applications. IEEE Access 2019, 99, 1. [Google Scholar] [CrossRef]
- Li, W.; Lan, Y.; Wang, H.; Xu, Y. Microwave polarizer based on complementary split ring resonators frequency-selective surface for conformal application. IEEE Access 2021, 9, 111383–111389. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, J.; Shi, S.; Prather, D.W. Ka-band phased patch array antenna integrated with a PET-controlled phase shifter. Int. J. RF Microw. Comput.-Aided Eng. 2016, 26, 199–208. [Google Scholar] [CrossRef]
- Huang, M.; Herben, M.; Reniers, A.; Amulders, P. Causes of discrepancies between measurements and EM simulations of millimeter-wave antennas. IEEE Antennas Propag. Mag. 2013, 55, 139–149. [Google Scholar]
- Marqués, R.; Martin, F.; Sorolla, M. Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Shaltout, A.M.; Shalaev, V.M.; Brongersma, M.L. Spatiotemporal light control with active metasurfaces. Science 2019, 364, eaat3100. [Google Scholar] [CrossRef]
- Zheng, X.; Smith, W.; Jackson, J.; Moran, B.; Cui, H.; Chen, D.; Ye, J.; Fang, N.; Rodriguez, N.; Weisgraber, T.; et al. Multiscale metallic metamaterials. Nat. Mater. 2016, 15, 1100–1106. [Google Scholar] [CrossRef]
- Bertoldi, K.; Vitelli, V.; Christensen, J.; Hecke, M.V. Flexible mechanical metamaterials. Nat. Rev. Mater. 2017, 2, 17066. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.N.; Yoenak, S.H.; Smith, D.R. Multilayer W-band artificial dielectric on liquid crystal polymer. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 974–977. [Google Scholar] [CrossRef]
- Venkateswara, R.; Madhav, M.; Tirunagari, A.; Badugu, P. Circularly polarized flexible antenna on liquid crystal polymer substrate material with metamaterial loading. Microw. Opt. Technol. Lett. 2019, 62, 866–874. [Google Scholar] [CrossRef]
- Peng, H.; Wang, C.; Zhao, L.; Liu, J. Novel SRR-loaded CPW-fed UWB antenna with wide band-notched characteristics. Int. J. Microw. Wirel. Technol. 2017, 9, 875–880. [Google Scholar] [CrossRef]
- Xiao, W.; Mei, T.; Lan, Y.; Wu, Y.-Q.; Xu, R.; Xu, Y.-H. Triple band-notched UWB monopole antenna on ultra-thin liquid crystal polymer based on ESCSRR. Electron. Lett. 2017, 53, 57–58. [Google Scholar] [CrossRef]
- Soliman, A.M.; Elsheakh, D.M.; Abdallah, E.A.; El-Hennawy, H. Design of planar inverted-F antenna over uniplanar EBG structure for laptop mimo applications. Microw. Opt. Technol. Lett. 2015, 57, 277–285. [Google Scholar] [CrossRef]
- Kingsley, N.; Ponchak, G.E.; Papapolymerou, J. Reconfigurable RF MEMS phased array antenna integrated within a liquid crystal polymer (LCP) system-on-package. IEEE Trans. Antennas Propag. 2008, 56, 108–118. [Google Scholar] [CrossRef]
- Chieh, J.-C.S.; Pham, B.; Pham, A.-V.; Kannell, G.; Pidwebetsky, A. Millimeter-wave dual-polarized high-isolation antennas and arrays on organic substrates. IEEE Trans. Antennas Propag. 2013, 61, 5948–5957. [Google Scholar] [CrossRef] [Green Version]
- Weily, A.R.; Jay Guo, Y. Circularly polarized ellipse-loaded circular slot array for millimeter-wave WPAN applications. IEEE Trans. Antennas Propag. 2009, 57, 2862–2870. [Google Scholar] [CrossRef]
- Chieh, J.-C.S.; Pham, A.-V. A bidirectional microstrip X-band antenna array on liquid crystal polymer for beamforming applications. IEEE Trans. Antennas Propag. 2013, 61, 3364–3368. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, A.; Zhao, Y. Wideband dipole antenna and array based on liquid crystal polymer for 5G applications. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019. [Google Scholar]
- Gu, X.; Liu, D.; Hasegawa, Y.; Masuko, K.; Baks, C.; Suto, Y.; Fujisaku, Y.; Sadhu, B.; Paidimarri, A.; Guan, N.; et al. Antenna-in-package integration for a wideband scalable 5G millimeter-wave phased-array module. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 682–684. [Google Scholar] [CrossRef]
- Arabi, E.; Shamim, A. Three-dimensional RF SoP technologies: LTCC versus LCP. Microw. Opt. Technol. Lett. 2015, 57, 434–441. [Google Scholar] [CrossRef]
- Gang, Z.; Gronqvist, H.; Liu, J. Integrated capacitors and resistors on liquid crystal polymer substrate. In Proceedings of the 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, Shanghai, China, 27–29 June 2005. [Google Scholar]
- Mukherj, S.; Mutnury, B.; Dalmia, S.; Swaminathan, M. Layout-level synthesis of RF inductors and filters in LCP substrates for Wi-Fi applications. IEEE Trans. Microw. Theory Tech. 2005, 53, 2196–2210. [Google Scholar] [CrossRef]
- Bavisi, A.; Swaminathan, M.; Sundaram, V.; Dalmia, S.; White, G. A novel miniaturized feedback LC oscillator for UMTS-type applications in 3D stacked liquid crystalline polymer technology. Int. J. RF Microw. Comput.-Aided Eng. 2006, 16, 227–237. [Google Scholar] [CrossRef]
- Yun, W.; Sundaram, V.; Swaminathan, M. High-Q embedded passives on large panel multilayer liquid crystalline polymer-based substrate. IEEE Trans. Adv. Packag. 2007, 30, 580–591. [Google Scholar] [CrossRef]
- Cho, C.-L.; Kao, H.-L.; Chang, L.-C.; Wu, Y.-H.; Chiu, H.-C. Inkjet-printed multilayer bandpass filter using liquid crystal polymer system-on-package technology. IEEE Trans. Compon. Packag. Manuf. 2016, 6, 622–629. [Google Scholar] [CrossRef]
- Thompson, D.C.; Tentzeris, M.M.; Papapolymerou, J. Packaging of MMICs in multilayer LCP substrates. IEEE Microw. Wirel. Compon. Lett. 2006, 16, 410–412. [Google Scholar] [CrossRef] [Green Version]
- Aihara, K.; Chen, M.J.; Anh-Vu, P. Development of thin-film liquid-crystal-polymer surface-mount packages for Ka-band applications. IEEE Trans. Microw. Theory Tech. 2008, 56, 2111–2117. [Google Scholar] [CrossRef]
- Altunyurt, N.; Rieske, R.; Swaminathan, M.; Sundaram, V. Conformal antennas on liquid crystalline polymer based rigid-flex substrates integrated with the front-end module. IEEE Trans. Adv. Packag. 2009, 32, 797–808. [Google Scholar] [CrossRef]
- Chlieh, O.L.; Morcillo, C.; Pavlidis, S.; Khan, W.T.; Papapolymerou, J. Integrated microfluidic cooling for GaN devices on multilayer organic LCP substrate. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013. [Google Scholar]
- Zhang, Y.; Shi, S.; Martin, R.D.; Wright, A.A.; Yao, P.; Shreve, K.; Harrity, C.; Prather, D.W. Packaging of high-gain multichip module in multilayer LCP substrates at W-band. IEEE Trans. Compon. Packag. Manuf. 2017, 7, 1655–1662. [Google Scholar] [CrossRef]
- Jiang, J.; Green, S.R.; Gianchandani, Y.B. Thermoformed liquid crystal polymer packages for magnetoelastic frame-suspended resonators. J. Microelectromech. Syst. 2019, 28, 532–539. [Google Scholar] [CrossRef]
- Yazdani, F. Signal integrity characterization of microwave XFP ASIC BGA package realized on Low-K liquid crystal polymer (LCP) substrate. IEEE Trans. Adv. Packag. 2006, 29, 359–363. [Google Scholar] [CrossRef]
- Alimenti, F.; Mezzanotte, P.; Roselli, L.; Sorrentino, R. Modeling and characterization of the bonding-wire interconnection. IEEE Trans. Microw. Theory Tech. 2001, 49, 142–150. [Google Scholar] [CrossRef]
- Shireen, R.; Shi, S.; Yao, R.; Prather, D.W. Multi-chip module packaging for W-band LiNbO3 modulator. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 145–147. [Google Scholar] [CrossRef]
- Beer, S.; Gulan, H.; Rusch, C.; Zwick, T. Coplanar 122-GHz antenna array with air cavity reflector for integration in plastic packages. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 160–163. [Google Scholar] [CrossRef]
- Jentzsch, A.; Heinrich, W. Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz. IEEE Trans. Microw. Theory Tech. 2001, 49, 871–878. [Google Scholar] [CrossRef]
- Khan, W.T.; Ulusoy, A.C.; Schmid, R.L.; Papapolymerou, J. Characterization of a low-loss and wide-band (DC to 170 GHz) flip-chip interconnect on an organic substrate. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014. [Google Scholar]
- Beer, S.; Gulan, H.; Rusch, C.; Zwick, T. Integrated 122-GHz antenna on a flexible polyimide substrate with flip chip interconnect. IEEE Trans. Antennas Propag. 2012, 61, 1564–1572. [Google Scholar] [CrossRef]
- Khan, W.T.; Lopez, A.L.; Ulusoy, A.C.; Papapolymerou, J. Packaging a W-band integrated module with an optimized flip-chip interconnect on an organic substrate. IEEE Trans. Microw. Theory Tech. 2013, 62, 64–72. [Google Scholar] [CrossRef]
- Patterson, C.E.; Thrivikraman, T.K.; Yepes, A.M.; Begley, S.M.; Bhattacharya, S.K.; Gressler, J.D.; Papapolymerou, J. A lightweight organic X-band active receiving phased array with integrated SiGe amplifiers and phase shifters. IEEE Trans. Antennas Propag. 2011, 59, 100–109. [Google Scholar] [CrossRef]
- Liu, Y.; Agrawal, A.; Natarajan, A. Millimeter-wave IC-antenna cointegration for integrated transmitters and receivers. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1848–1852. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Martin, R.; Martin, R.D.; Peng, Y.; Prather, D.W. Multilayer liquid crystal polymer based RF frontend module for millimeter wave imaging. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014. [Google Scholar]
- Martin, R.D.; Shi, S.; Zhang, Y.; Wright, A.; Prather, D.W. Video rate passive millimeter-wave imager utilizing optical upconversion with improved size, weight, and power. In Proceedings of the Passive and Active Millimeter-Wave Imaging XVIII, SPIE, Baltimore, MD, USA, 20–24 April 2015. [Google Scholar]
- Zhang, Y.; Martin, R.D.; Shi, S.; Wright, A.A.; Yao, P.; Shreve, K.; Mackrides, D.; Harrity, C.; Prather, D.W. 95-GHz front-end receiving multichip module on multilayer LCP substrate for passive millimeter-wave imaging. IEEE Trans. Compon. Packag. Manuf. 2018, 8, 2180–2189. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, H.; Chen, S.; Han, X.; Zhang, D. Optimising the dielectric property of carbon nanotubes/P(VDF-CTFE) nanocomposites by tailoring the shell thickness of liquid crystalline polymer modified layer. IET Nanodielectr. 2019, 2, 142–150. [Google Scholar] [CrossRef]
- He, Y.; Drew, E.; Chahal, P.; Zhang, J.Z.; Papapolymerou, J. 3D printed spherical cavity resonator with fine tuning using nanomagnetic thin film. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021. [Google Scholar]
- He, Y.; Drew, E.; John, Z.; Papapolymerou, J. Compact patch antenna on thick (>800 μm) NiFe2O4 magnetic film. IET Microw. Antennas Propag. 2020, 15, 12–20. [Google Scholar] [CrossRef]
- Takeda, T.; Kondo, M.; Matsuda, A. Thin film silicon solar cells on liquid crystal polymer substrate. In Proceedings of the 3rd World Conference onPhotovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003. [Google Scholar]
- Esashi, M. MEMS development focusing on collaboration using common facilities: A retrospective view and future directions. Microsyst. Nanoeng. 2021, 7, 60. [Google Scholar] [CrossRef]
- Chen, M.J.; Pham, A.V.; Evers, N.A.; Kapusta, C.; Iannotti, J.; Kornrumpf, W.; Maciel, J.; Karabudak, N. Design and development of a package using LCP for RF/Microwave MEMS switches. IEEE Trans. Microw. Theory Tech. 2006, 54, 4009–4015. [Google Scholar] [CrossRef]
- Xin, J.; Wang, C.; Wei, L. A laser-assisted bonding method using a liquid crystal polymer film for MEMS and sensor packaging. IEEE Trans. Compon. Packag. Manuf. 2015, 5, 583–591. [Google Scholar]
- Han, L.; Gao, X. Modeling of bending characteristics on micromachined RF MEMS switch based on LCP substrate. IEEE Trans. Electron Devices 2016, 63, 3707–3712. [Google Scholar] [CrossRef]
- Han, L.; Yu, Y.; Qin, R.; Zhang, Z.; Su, S. Static modeling of bending characteristics on V-shaped beam actuator based on flexible substrate. IEEE Trans. Electron Devices 2019, 66, 5295–5300. [Google Scholar] [CrossRef]
- Han, L.; Wang, R.; Chen, L. Bending characteristics of radio frequency microelectromechanical system low-pass filter based on flexible substrate. Electron. Lett. 2021, 57, 860–862. [Google Scholar] [CrossRef]
- Shin, S.; Kim, J.H.; Jeong, J.; Gwon, T.M.; Lee, S.H.; Kim, S.J. Novel four-sided neural probe fabricated by a thermal lamination process of polymer films. J. Neurosci. Methods 2017, 278, 25–35. [Google Scholar] [CrossRef]
- Gonzalez-Carvajal, E.; Mumcu, G. Frequency and bandwidth tunable mm-Wave Hairpin bandpass filters using microfluidic reconfiguration with integrated actuation. IEEE Trans. Microw. Theory Tech. 2020, 68, 3756–3768. [Google Scholar] [CrossRef]
- Palasagaram, J.N.; Ramadoss, R. MEMS-capacitive pressure sensor fabricated using printed-circuit-processing techniques. IEEE Sens. J. 2006, 6, 1374–1375. [Google Scholar] [CrossRef]
- Kottapalli, A.G.; Asadnia, M.; Miao, J.M.; Barbastathis, G.; Triantafyllou, M.S. A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing. Smart Mater. Struct. 2012, 21, 115030. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.J.; Polcawich, R.G.; Pulskamp, J.S.; Papapolymerou, J. Reduced-size low-voltage RF MEMS X-band phase shifter integrated on multilayer organic package. IEEE Trans. Compon. Packag. Manuf. 2012, 2, 1617–1622. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C.; Durand, D.M. Flexible nerve stimulation electrode with iridium oxide sputtered on liquid crystal polymer. IEEE Trans. Biomed. Eng. 2009, 56, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Seung Woo, L.; Kyou Sik, M.; Joonsoo, J.; Junghoon, K.; Sung, K. Monolithic encapsulation of implantable neuroprosthetic devices using liquid crystal polymers. IEEE Trans. Biomed. Eng. 2011, 58, 2255–2263. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, S.W.; Min, K.S.; Shin, S.; Sang, B.J.; Kim, S.J. Liquid crystal polymer (LCP), an attractive substrate for retinal implant. Sens. Mater. 2012, 24, 189–203. [Google Scholar]
- Min, K.S.; Oh, S.H.; Park, M.-H.; Jecong, J.; Kim, S.J. A polymer-based multichannel cochlear electrode array. Otol. Neurotol. 2014, 35, 1179–1186. [Google Scholar] [CrossRef]
- Shin, S.; Kim, J.; Jecong, J.; Gwon, T.M.; Choi, G.J.; Lee, S.E.; Kim, J.; Jun, S.B.; Chang, J.W.; Kim, S.J. High charge storage capacity electrodeposited iridium oxide film on liquid crystal polymer-based neural electrodes. Sens. Mater. 2016, 28, 243–260. [Google Scholar]
- Au, S.L.; Chen, F.B.; Budgett, D.M.; Malpas, S.C.; Mccormick, D. Injection molded liquid crystal polymer package for chronic active implantable devices with application to an optogenetic stimulator. IEEE Trans. Biomed. Eng. 2020, 67, 1357–1365. [Google Scholar] [CrossRef]
- Yun, S.; Koh, C.S.; Jecong, J.; Seo, J.; Kim, S.J. Remote-controlled fully implantable neural stimulator for freely moving small animal. Electronics 2019, 8, 706. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.E.; Jun, S.B.; Lee, H.J.; Kim, J.; Lee, S.W.; Im, C.; Shin, H.C.; Chang, J.W.; Kim, S.J. A flexible depth probe using liquid crystal polymer. IEEE Trans. Biomed. Eng. 2012, 59, 2085–2094. [Google Scholar]
- Jeong, J.; Laiwalla, F.; Lee, J.; Ritasalo, R.; Pudas, M.; Larson, L.; Leung, V.; Nurmikko, A. Conformal hermetic sealing of wireless microelectronic implantable chiplets by multilayered atomic layer deposition (ALD). Adv. Funct. Mater. 2018, 29, 1806440. [Google Scholar] [CrossRef]
- Kim, C.; Jeong, J.; Kim, S.J. Recent progress on non-conventional microfabricated probes for the chronic recording of cortical neural activity. Sensors 2019, 19, 1069. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, M.S.; Ghafouri-Shiraz, H. Liquid crystalline polymer substrate-based THz microstrip antenna arrays for medical applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1533–1536. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, C.H.; Youn, J.; Jeong, J. Evaluation methods for long-term reliability of polymer-based implantable biomedical devices. Biomed. Eng. Lett. 2021, 11, 97–105. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, Y.; Santiago, T.D.; Alvarez, M.M.; Ribas, J.; Jonas, S.J.; Weiss, P.S.; Andrews, A.M.; Aizenberg, J.; Khademhjossreini, A. Interplay between materials and microfluidics. Nat. Rev. Mater. 2017, 2, 17016. [Google Scholar] [CrossRef]
- Grigorov, E.; Kirov, B.; Marinov, M.B.; Galabov, V. Review of microfluidic methods for cellular lysis. Micromachines 2021, 12, 498. [Google Scholar] [CrossRef] [PubMed]
- Chlieh, O.L.; Khan, W.T.; Papapolymerou, J. Integrated microfluidic cooling of high power passive and active devices on multilayer organic substrate. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014. [Google Scholar]
- Lemtiri Chlieh, O.; Khan, W.T.; Papapolymerou, J. Thermal modeling of microfluidic channels for cooling high power resistors on multilayer organic liquid crystal polymer substrate. J. Electron. Packag. 2015, 137, 031009. [Google Scholar] [CrossRef]
- Chlieh, O.L.; Khan, W.T.; Papapolymerou, J. L-band tunable microstrip bandpass filter on multilayer organic substrate with integrated microfluidic channel. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014. [Google Scholar]
- Gheethan, A.A.; Jo, M.C.; Guldiken, R.; Mumcu, G. Microfluidic based ka-band beam-scanning focal plane array. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1638–1641. [Google Scholar] [CrossRef]
- Dey, A.; Guldiken, R.; Mumcu, G. Microfluidically reconfigured wideband frequency-tunable liquid-metal monopole antenna. IEEE Trans. Antennas Propag. 2016, 64, 2572–2576. [Google Scholar] [CrossRef]
- Dey, A.; Mumcu, G. Microfluidically controlled frequency-tunable monopole antenna for high-power applications. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 226–229. [Google Scholar] [CrossRef]
- Palomo, T.; Mumcu, G. Microfluidically reconfigurable metallized plate loaded frequency-agile RF bandpass filters. IEEE Trans. Microw. Theory Tech. 2016, 64, 158–165. [Google Scholar] [CrossRef]
- Gheethan, A.A.; Dey, A.; Mumcu, G. Passive feed network designs for microfluidic beam-scanning focal plane arrays and their performance evaluation. IEEE Trans. Antennas Propag. 2015, 63, 3452–3464. [Google Scholar] [CrossRef]
- Gonzalez, E.; Mumcu, G. Integrated actuation of microfluidically reconfigurable mm-Wave SPST switches. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 541–544. [Google Scholar] [CrossRef]
- Graham-Rowe, D. Terahertz takes to the stage. Nat. Photonics 2007, 1, 75–77. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Yi, M.; Li, S.; Yu, H.; Khan, W.; Ulusoy, C.; Vera-Lopez, A.; Papapolymerou, J.; Swaminathan, M. Surface roughness modeling of substrate integrated waveguide in D-band. IEEE Trans. Microw. Theory Tech. 2016, 64, 1209–1216. [Google Scholar] [CrossRef]
- Hassona, A.; Perez-Ortega, A.; He, Z.S.; He, Z.S.; Zirath, H. Low-cost D-band Waveguide Transition on LCP Substrate. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018. [Google Scholar]
- Siegel, P.H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 2004, 52, 2438–2447. [Google Scholar] [CrossRef]
- Zhang, X.; Quan, X.; Xia, L.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Han, J.; Zhang, W. Terahertz surface plasmonic waves: A review. Adv. Photonics 2020, 2, 014001. [Google Scholar] [CrossRef]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in healthcare wearable devices. Npj Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Liu, G.; Chang, C.; Qiao, Z.; Wu, K.; Zhu, Z.; Cui, G.; Peng, W.; Tang, Y.; Li, J.; Fan, C. Myelin sheath as a dielectric waveguide for signal propagation in the mid-infrared to terahertz spectral range. Adv. Funct. Mater. 2019, 29, 1807862. [Google Scholar] [CrossRef]
- Xiang, Z.; Tang, C.; Chang, C.; Liu, G. A primary model of THz and far-infrared signal generation and conduction in neuron systems based on the hypothesis of the ordered phase of water molecules on the neuron surface I: Signal characteristics. Sci. Bull. 2020, 65, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Li, Z.; Sang, D.K.; Xiang, Y.; Li, J.; Zhang, S.; Zhang, H. THz photonics in two dimensional materials and metamaterials: Properties, devices and prospects. J. Mater. Chem. C 2018, 6, 1291–1306. [Google Scholar] [CrossRef]
Classification | Company | Technologies |
---|---|---|
LCP film | muRata | BIAC Film |
kuraray | Vecstar | |
SUMITOMO CHEMICAL | LCP Film (BDU) | |
Superex | Oriented LCP Film | |
LCP Flexible Copper Clad Laminate (FCCL) | muRata | BIAC CCL |
Azotek | AZOTEX®-LD | |
Sytech | SF701 | |
Rogers | ULTRALAM®3000/3850 | |
Panasonic | FELIOS-LCP, R-F705T | |
LCP printed circuits | muRata | MetroCire ™ |
SUMITOMO ELECTRIC | High-speed circuits | |
Kinwong | Flexible antennas and circuits | |
MFLEX | Flexible multilayer circuits | |
Fujikura | Flexible multilayer circuits | |
AKM Electronics Industrial (PanYu) Ltd. | Flexible multilayer circuits | |
LCP modules and electronic products | muRata | mmW antenna module |
Fujikura | mmW antenna module | |
Amphenol | mmW antenna module/UHD module/backplane connector | |
LUXSHARE | mmW connecting line/device/antenna | |
Speed | modules | |
Sunway | connecting line/device/antenna | |
Qualcomm | 5G chip LCP RF antenna | |
Apple | iPhone 7; iPhone X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Li, W.; Qian, J.; Liu, W.; Wang, Y.; Zhang, X.; Guo, Q.; Yashchyshyn, Y.; Wang, Q.; Shi, Y.; et al. Flexible Liquid Crystal Polymer Technologies from Microwave to Terahertz Frequencies. Molecules 2022, 27, 1336. https://doi.org/10.3390/molecules27041336
Zhou Z, Li W, Qian J, Liu W, Wang Y, Zhang X, Guo Q, Yashchyshyn Y, Wang Q, Shi Y, et al. Flexible Liquid Crystal Polymer Technologies from Microwave to Terahertz Frequencies. Molecules. 2022; 27(4):1336. https://doi.org/10.3390/molecules27041336
Chicago/Turabian StyleZhou, Zepeng, Wenqing Li, Jun Qian, Weihong Liu, Yiming Wang, Xijian Zhang, Qinglei Guo, Yevhen Yashchyshyn, Qingpu Wang, Yanpeng Shi, and et al. 2022. "Flexible Liquid Crystal Polymer Technologies from Microwave to Terahertz Frequencies" Molecules 27, no. 4: 1336. https://doi.org/10.3390/molecules27041336
APA StyleZhou, Z., Li, W., Qian, J., Liu, W., Wang, Y., Zhang, X., Guo, Q., Yashchyshyn, Y., Wang, Q., Shi, Y., & Zhang, Y. (2022). Flexible Liquid Crystal Polymer Technologies from Microwave to Terahertz Frequencies. Molecules, 27(4), 1336. https://doi.org/10.3390/molecules27041336