Antioxidant and Antimicrobial Peptides Derived from Food Proteins
Abstract
:1. Introduction
2. Bioactive Peptides
2.1. Sources of Bioactive Peptides
2.1.1. Peptides of Animal Origin
2.1.2. Peptides of Vegetable Origin
2.1.3. Fungi-Derived Peptides
2.1.4. Peptides from Agri-Food By-Products
3. Production of Peptides
3.1. Enzymatic Hydrolysis
3.2. Microbial Fermentation
3.3. Emerging Technologies for the Development of Antioxidant Peptides
3.4. Bioinformatic Tools in Obtaining Bioactive Peptides
4. Health Benefits
4.1. Antioxidant Activity
Mechanisms of Antioxidant Peptides
4.2. Antimicrobial Activity
- Stage 1. Attraction for the bacterial cell wall
- Stage 2. Union to the cell membrane
- Stage 3. Peptide insertion and cell membrane permeabilization
- Bacterial membrane permeabilization: The mixed hydrophobic and cationic composition of antimicrobial peptides makes them highly suitable for interacting with and disrupting microbial cytoplasmic membranes that present anionic, lipid-rich surfaces, such as phosphatidylglycerol and cardiolipin. The fact that all Gram-negative and Gram-positive bacteria show this type of negatively charged lipids explains the lack of specificity of most antimicrobial peptides, promotes the attraction between antimicrobial peptides and bacterial membranes, and prevents their binding to most host cell membranes. The selective toxicity of antimicrobial peptides is based on differences in the membrane potential of mammalian microbes and cells. Microbes tend to have a significantly large charge difference across their membranes compared to mammalian cells, favoring cationic defensins to selectively attack microbes [208,209,210,211].
- Enzymatic attack on bacterial wall structures: Several epithelial antimicrobial peptides kill bacteria through enzymatic attacks on key cell wall structures. Lysosomes are effective against Gram-positive bacteria, where peptidoglycan is more accessible, than against Gram-negative organisms, where peptidoglycan is protected by the outer membrane [207]. In addition to directly killing bacteria, the enzymatic activity of lysozymes can regulate the innate immune responses to certain microorganisms. Secretory phospholipase A2 (sPLA2) is an example of an antimicrobial peptide that kills bacteria through an enzymatic mechanism. Bacterial membranes, rich in phosphatidylglycerol and phosphatidylethanolamine, are the key targets of sPLA2, but the enzyme can break down other phosphotriglyceride substrates. The sPLA2 peptide penetrates the bacterial cell wall to access the membrane, where it hydrolyzes phospholipids and thus compromises the integrity of the bacterial membrane. This enzyme is bactericidal, with preferential activity against Gram-positive bacteria [212].
- Interference at the intracellular level: It seems likely that many AMPs can translocate across microbial membranes at concentrations that do not induce permeabilization. Once in the cytoplasm, they can attack DNA and chaperonins, alter the formation of the cytoplasmic membrane septum, inhibit cell wall synthesis, reduce nucleic acid synthesis, suppress protein synthesis, or inhibit enzyme activity [213,214].
- Antimicrobial peptides that exploit multiple antimicrobial strategies: The peptide can affect microbes in ways other than cell destruction such as the destabilization of the membrane, the filamentation of bacterial cells due to the insertion of peptides in the membrane, the blocking of DNA replication, and the inhibition of membrane proteins involved in septum formation [214], lectin-like behavior, and antitoxin activity.
5. Bioavailability of Bioactive Peptides
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delgado, O.L.; Betanzos, C.G.; Sumaya, M.M.T. Importancia de los antioxidantes dietarios en la disminución del estrés oxidativo. Investig. Cienc. 2010, 8, 10–15. [Google Scholar]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Huanqui, G.C. Oxidantes-antioxidantes en reumatología. Rev. Peru Reum. 1997, 3, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Dunkan, S.; Farewell, A.; Ballesteros Radman, M.; Nystrom, T. Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl. Acad. Sci. USA 2000, 97, 5746–5749. [Google Scholar] [CrossRef] [Green Version]
- Lieber, M.R.; Karanjawala, Z.E. Ageing, repetitive genomes and DNA damage. Nature 2004, 5, 69–75. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Castrejón-Téllez, V.; Soto, M.E.; Rubio-Ruiz, M.E.; Manzano-Pech, L.; Guarner-Lans, V. Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int. J. Mol. Sci. 2021, 22, 1786. [Google Scholar] [CrossRef]
- Soledad-Bustos, P. Efecto de Flavonoides Frente al Estrés Oxidativo Inducido por Antibióticos. Ph.D. Thesis, Departamento de Farmacia–Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina, 2017. [Google Scholar]
- Venereo, G.J.R. Daño Oxidativo, Radicales Libres y Antioxidantes. Rev. Cuba. Med. Mil. 2002, 31, 126–133. [Google Scholar]
- Monfared, S.S.M.S.; Vahidi, H.; Abdolghaffari, A.H.; Nikfar, S.; Abdollahi, M. Antioxidant therapy in the management of acute, chronic and post-ERCP pancreatitis: A systematic review. World J Gastroenterol. 2009, 15, 4481–4490. [Google Scholar] [CrossRef]
- Albuquerque, R.V.; Malcher, N.S.; Amado, L.L.; Coleman, M.D.; Dos Santos, D.C.; Borges, R.S.; Valente, S.A.; Valente, V.C.; Monteiro, M.C. In vitro protective effect and antioxidant mechanism of resveratrol induced by dapsone hydroxylamine in human cells. PLoS ONE 2015, 10, e0134768. [Google Scholar] [CrossRef] [Green Version]
- Atli, O.; Demir-Ozkay, U.; Ilgin, S.; Aydin, T.H.; Akbulut, E.N.; Sener, E. Evidence for neurotoxicity associated with amoxicillin in juvenile rats. Hum. Exp. Toxicol. 2016, 35, 866–876. [Google Scholar] [CrossRef]
- Correa Salde, V.A. Efecto de Fármacos a Nivel del Equilibrio de Especies Reactivas: Consecuencias Moleculares y Celulares. Ph.D. Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina, 2011. [Google Scholar]
- Ilgin, S.; Can, O.D.; Atli, O.; Ucel, U.I.; Sener, E.; Guven, I. Ciprofloxacininduced neurotoxicity: Evaluation of possible underlying mechanisms. Toxicol. Mech. Methods 2015, 25, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Keeney, J.T.; Miriyala, S.; Noel, T.; Moscow, J.A.; St Clair, D.K.; Butterfield, D.A. Superoxide induces protein oxidation in plasma and TNF-α elevation in macrophage culture: Insights into mechanisms of neurotoxicity following doxorubicin chemotherapy. Cancer Lett. 2015, 367, 157–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, P.; Liu, R. Oxidative stress response of two fluoroquinolones with catalase and erythrocytes: A combined molecular and cellular study. J. Hazard. Mater. 2013, 252–253, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Sankar, M.; Rajkumar, J.; Devi, J. Hepatoprotective activity of hepatoplus on isonaizid and rifampicin induced hepatotoxicity in rats. Pak. J. Pharm. Sci. 2015, 28, 983–990. [Google Scholar] [PubMed]
- Carrasco-Castilla, J.; Hernández-Álvarez, A.J.; Jiménez-Martínez, C.; Gutiérrez-López, G.F.; Dávila-Ortiz, G. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng. Rev. 2012, 4, 224–243. [Google Scholar] [CrossRef]
- De Castro, R.J.S.; Sato, H.H. Biologically active peptides: Processes for the generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res. Int. 2015, 74, 185–198. [Google Scholar] [CrossRef]
- FitzGerald, R.J.; Murray, B.A.; Walsh, D.J. Hypotensive peptides from milk proteins. J. Nutr. 2004, 134, 980S–988S. [Google Scholar] [CrossRef] [Green Version]
- Aluko, R.E. Determination of nutritional and bioactive properties of peptides in enzymatic pea, chickpea and mung bean protein hydrolysates. J. AOAC Int. 2008, 91, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Mulero, C.J.; Zafrilla, R.P.; Martínez-Cacha, M.A.; Leal, H.M.; Abellan, A.J. Péptidos bioactivos. Clin. Investig. Arterioscler. 2011, 23, 219–227. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Zhao, Y.; Mingyong, Z. Enzymatic preparation and characterization of iron-chelating peptides from anchovy (EngrauLys japonicus) muscle protein. Food Res. Int. 2012, 48, 435–441. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Huang, W.; Zhao, Y.; Dong, S.; Zeng, M. Purification and characterization of a zinc-binding peptide from oyster protein hydrolysate. J. Funct. Foods 2013, 5, 689–697. [Google Scholar] [CrossRef]
- Montero, B.M. Protein hydrolyzed from byproducts of the fishery industry: Obtaining and functionality. Agron. Mesoam. 2021, 32, 681–699. [Google Scholar] [CrossRef]
- Sun, J.; He, H.; Xie, B.J. Novel Antioxidant Peptides from Fermented Mushroom Ganoderma lucidum. J. Agric. Food Chem. 2004, 52, 6646–6652. [Google Scholar] [CrossRef] [PubMed]
- Deraz, S.F. Protein hydrolysate from visceral waste proteins of Bolti fish (Tilapia nilotica): Chemical and nutritional variations as affected by processing pHs and time of hydrolysis. J. Aquat. Food Prod. Technol. 2014, 24, 614–631. [Google Scholar] [CrossRef]
- Bougatef, A.; Nedjar-Arroume, N.; Manni, L.; Ravallec, R.; Barkia, A.; Guillochon, D.; Nasri, M. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem. 2010, 118, 559–565. [Google Scholar] [CrossRef]
- De Macedo, M.; Segura, R.; Piñero Bonilla, J.; Coello, N. Obtención de un hidrolizado proteico por fermentación sumergida de plumas utilizando Bacillus spp. Rev. Cient. Fac. Cienc. FCV-LUZ 2002, 12, 214–220. [Google Scholar]
- Sun, Q.; Zhang, B.; Yan, Q.J.; Jiang, Z.Q. Comparative analysis on the distribution of protease activities among fruits and vegetable resources. Food Chem. 2016, 213, 708–713. [Google Scholar] [CrossRef]
- Borawska, J.; Darewicz, M.; Vegarud, G.E.; Iwaniak, A.; Minkiewicz, P. Ex vivo digestion of carp muscle tissue–ACE inhibitory and antioxidant activities of the obtained hydrolysates. Food Funct. 2015, 6, 211–221. [Google Scholar] [CrossRef]
- Arihara, K.; Ohata, M. Bioactive Compounds in Meat. In Meat Biotechnology; Toldrá, F., Ed.; Springer: New York, NY, USA, 2008; pp. 231–249. [Google Scholar] [CrossRef]
- Escudero, E.; Toldrá, F.; Sentandreu, M.; Nishimura, H.; Arihara, K. Antihypertensive activity of peptides identified in the in vitro gastrointestinal digestof pork meat. Meat Sci. 2012, 91, 382–384. [Google Scholar] [CrossRef]
- Marshal, K. Therapeutic applications of whey protein. Altern. Med. Rev. 2004, 9, 136–156. [Google Scholar]
- Jiang, H.; Tong, T.; Sun, J.; Xu, Y.; Zhao, Z.; Liao, D. Purification, and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chem. 2014, 154, 158–163. [Google Scholar] [CrossRef]
- Ko, J.Y.; Lee, J.H.; Samarakoon, K.; Kim, J.S.; Jeon, Y.J. Purification, and determination of two novel antioxidant peptides from flounder fish (Paralichthis olivaceus) using digestive proteases. Food Chem. Toxicol. 2013, 52, 113–120. [Google Scholar] [CrossRef]
- Fujita, H.; Yokoyama, K.; Yasumoto, R.; Yoshikawa, M. Antihypertensive Effect of thermolysin digest of dried bonito in spontaneously hypertensive rat. Clin. Exp. Pharmacol. Physiol. 1995, 22, S304–S305. [Google Scholar] [CrossRef]
- Capriotti, A.; Caruso, G.; Cavaliere, C.; Samperi, R.; Chiozzi, S.; Laganà, A. Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Compos. Anal. 2015, 44, 205–213. [Google Scholar] [CrossRef]
- Salas, C.E.; Badillo-Corona, J.A.; Ramírez-Sotelo, G.; Oliver-Salvador, C. Biologically Active and Antimicrobial Peptides from Plants. Biomed Res. Int. 2015, 2015, 102129. [Google Scholar] [CrossRef] [Green Version]
- Hammami, R.; Hamida, B.J.; Vergoten, G.; FLyss, I. PhytAMP: A database dedicated to antimicrobial plant peptides. Nucleic Acids Res. 2009, 37, 963–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, R.; Meisel, H. Food-derived peptides with biological activity: From research to food aplications. Curr. Opin. Biotechnol. 2007, 18, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Yaklich, R.W. beta-Conglycinin and glycinin in high-protein soybean sedes. J. Agric. Food Chem. 2001, 49, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, H.; Wang, L.; Guo, X.; Wang, X.; Yao, H. Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography. Food Chem. 2010, 119, 226–234. [Google Scholar] [CrossRef]
- Przybylski, R.; Firdaous, L.; Châtaigné, G.; Dhulster, P.; Nedjar, N. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem. 2016, 211, 306–313. [Google Scholar] [CrossRef]
- Tavares, L.S.; Rettore, J.V.; Freitas, R.M.; Porto, W.F.; Do Nascimento Duque, A.P.; De Lacorte Singulani, J.; Silva, O.N.; De Lima Detoni, M.; Vasconcelos, E.G.; Dias, S.C. Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides 2012, 37, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkouch, I.O.; Tabbene, D.; Gharbi, M.A.; Ben Mlouka, S.; Elkahoui, C.; Rihouey, L.; Coquet, P.; Cosette Jouenne, T.; Limam, F. Antioxidant, antityrosinase and antibiofilm activities of synthesized peptides derived from vicia faba protein hydrolysate: A powerful agents in cosmetic application. Ind. Crop. Prod. 2017, 109, 310–319. [Google Scholar] [CrossRef]
- Pu, C.; Tang, W. The antibacterial and antibiofilm efficacies of a liposomal peptide originating from rice bran protein against: Listeria monocytogenes. Food Funct. 2017, 8, 4159–4169. [Google Scholar] [CrossRef]
- Chi, C.-F.; Hu, F.-Y.; Wang, B.; Ren, X.-J.; Deng, S.-G.; Wu, C.-W. Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker (Pseudosciaena crocea) muscle. Food Chem. 2015, 168, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, W.; He, Y.; Ren, D.; Kow, F.; Song, L.; Yu, X. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem. 2014, 14, 991–996. [Google Scholar] [CrossRef]
- Ahn, C.-B.; Kim, J.-G.; Je, J.-Y. Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chem. 2014, 147, 78–83. [Google Scholar] [CrossRef]
- Wenyi, W.; Gonzalez, E. A New Frontierin Soy Bioactive Peptides that May Prevent Age-related, Chronic Diseases. Compr. Rev. Food Sci. Food Saf. 2005, 4, 63–73. [Google Scholar]
- Saiga, A.; Iwai, K.; Hayakawa, T.; Takahata, Y.; Kitamura, S.; Nishimura, T.; Morimatsu, F. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J. Agric. Food Chem. 2008, 56, 9586–9591. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Vaz, J.A.; Vasconcelos, M.H.; Martins, A. Compounds from wild mushrooms with antitumor potential. Anti-Cancer Agents Med. Chem. 2010, 10, 424–436. [Google Scholar] [CrossRef] [Green Version]
- Blagodatski, A.; Yatsunskaya, M.; Mikhailova, V.; Tiasto, V.; Kagansky, A.; Katanaev, V.L. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018, 9, 29259–29274. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Liu, Z.K.; Zhang, Y.N.; Wong, J.H.; Ng, T.B.; Liu, F. Research Progress of Bioactive Proteins from the Edible and Medicinal Mushrooms. Curr. Protein Pept. Sci. 2019, 20, 196–219. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdmann, K.; Cheung, B.W.Y.; Schroder, H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 2008, 19, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, preparation, and purification of marine bioactive peptides. Biomed. Res. Int. 2017, 2017, 9746720. [Google Scholar] [CrossRef] [Green Version]
- Mygind, P.H.; Fischer, R.L.; Schnorr, K.M.; Hansen, M.T.; Sönksen, C.P.; Ludvigsen, S.; Raventós, D.; Buskov, S.; Christensen, B.; De Maria, L. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 2005, 437, 975–980. [Google Scholar] [CrossRef]
- Alemán, A.; Gómez-Guillén, M.C.; Montero, P. Identification of ace-inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestión. Food Res. Int. 2013, 54, 790–795. [Google Scholar] [CrossRef]
- Je, J.Y.; Qian, Z.J.; Byun, H.G.; Kim, S.K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 2007, 42, 840–846. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Wu, K.-C.; Chiang, S.H. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chem. 2007, 100, 1537–1543. [Google Scholar] [CrossRef]
- Adler-Nissen, J.; Olsen, H.S. The influence of peptide chain length on taste and functional properties of enzymatically modified soy protein. In Functionality and Protein Structure; Pour-El, A., Ed.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1979; Volume 92, pp. 125–146. [Google Scholar] [CrossRef]
- Kong, X.; Zhou, H.; Qian, H. Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chem. 2007, 101, 615–620. [Google Scholar] [CrossRef]
- Bhaskar, N.; Benila, T.; Radha, C.; Lalitha, R.G. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour. Technol. 2008, 99, 335–343. [Google Scholar] [CrossRef]
- Kamnerdpetch, C.; Weiss, M.; Kasper, C.; Scheper, T. An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems. Enzym. Microb. Technol. 2007, 40, 508–514. [Google Scholar] [CrossRef]
- Pihlanto-Leppälä, A. Bioactive Peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends Food Sci. Technol. 2001, 11, 347–356. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Food-derived bioactive peptides opportunities for designing future foods. Curr. Pharm. Des. 2003, 9, 1297–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Medina, G.A.; Prado-Barragán, A.; Martínez Hernández, J.L.; Ruíz, H.A.; Rodríguez, M.R.; Contreras-Esquivel, J.C.; Aguilar, C.N. Peptidos bio-funcionales: Bioactividad, producción y aplicaciones. J. Chem. Technol. Biotechnol. 2019, 13, 1–7. [Google Scholar]
- Mora, L.; Reig, M.; Toldrá, F. Bioactive peptides generated from meat industry by-products. Food Res. Int. 2014, 65, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Albericio, F.; Jiménez, J.C.; Giralt, E. Péptidos y la Industria Farmacéutica. In Anales de la Real Sociedad Española de Química; Real Sociedad Española de Química: Madrid, Spain, 2004; pp. 10–16. [Google Scholar]
- Inouye, K.; Nakano, K.; Asaoka, K.; Yasukawa, K. Effects of thermal treatment on the coagulation of soy proteins induced by subtiLysin Carlsberg. J. Agric. Food Chem. 2009, 57, 717–723. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Korhonen, H. Milk-derived bioactive peptides: From science to applications. J. Funct. Foods 2009, 1, 177–187. [Google Scholar] [CrossRef]
- Meisel, H.; FitzGerald, R.J. Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Curr. Pharm. Des. 2003, 9, 1289–1295. [Google Scholar] [CrossRef]
- Yamamoto, N.; Ejiri, M.; Mizuno, S. Biogenic peptides and their potential use. Curr. Pharm. Des. 2003, 9, 1345–1355. [Google Scholar] [CrossRef]
- Gobbetti, M.; Minervini, F.; Rizzello, C.G. Bioactive peptides in dairy products. In Handbook of Food Products Manufacturing; Hui, Y.H., Ed.; John Wiley & Sons, Inc.: San Francisco, CA, USA, 2007; pp. 489–517. [Google Scholar] [CrossRef]
- Suetsuna, K.; Osajima, K. Blood pressure reduction and vasodilatory effects in vivo of peptides originating from sardine muscle. J. Jpn. Soc. Nutr. Food Sci. 1989, 42, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Suetsuna, K.; Chen, J.R. Identification of antihypertensive peptides from peptic digest of two microalgae Chlorella vulgaris and Spirulina platensis. Mar. Biotechnol. 2001, 3, 305–309. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, D.; FitzGerald, R.J. Production of caseinophosphopeptides (CPPs) from sodium caseinate using a range of commercial protease preparations. Int. Dairy J. 1998, 8, 39–45. [Google Scholar] [CrossRef]
- Pihlanto-Leppälä, A.; Koskinen, P.; Piilola, K.; Tupasela, T.; Korhonen, H. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: Concentration and characterization of active peptides. J. Dairy Res. 2000, 67, 53–64. [Google Scholar] [CrossRef]
- Vermeirssen, V.; Van Camp, J.; Verstraete, W. Bioavailability of angiotensin I-converting enzyme inhibitory peptides. Br. J. Nutr. 2004, 92, 357–366. [Google Scholar] [CrossRef]
- Roufik, S.; Gauthier, S.F.; Turgeon, S.L. In vitro digestibility of bioactive peptides derived from bovine ß-lactoglobulin. Int. Dairy J. 2006, 16, 294–302. [Google Scholar] [CrossRef]
- De Costa, E.L.; Rocha, J.A.; Netto, F.M. Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. Int. Dairy J. 2007, 17, 632–640. [Google Scholar] [CrossRef]
- López-Expósito, I.; Recio, I. Antibacterial activity of peptides and folding variants from milk proteins. Int. Dairy J. 2006, 16, 1294–1305. [Google Scholar] [CrossRef]
- López-Expósito, I.; Quiros, A.; Amigo, L.; Recio, I. Caseinhydrolysates as a source of antimicrobial, antioxydant and antihypertensive peptides. Lait 2007, 87, 241–249. [Google Scholar] [CrossRef]
- Pihlanto, A. Antioxidative peptides derived from milk proteins. Int. Dairy J. 2006, 16, 1306–1314. [Google Scholar] [CrossRef]
- Gauthier, S.F.; Pouliot, Y.; Saint-Sauveur, D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16, 1315–1323. [Google Scholar] [CrossRef]
- Teschemacher, H. Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 2003, 9, 1331–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef]
- Mwinw-Daliri, E.B.M.; Oh, D.H.; Lee, B.H. Bioactive Peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Wijesekara, I. Development and biological activities of marine–derived bioactive peptides: A Review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Intiquilla, A.; Jiménez-Aliaga, K.; Guzmán, F.; Álvarez, C.A.; Zavaleta, A.I.; Izaguirre, V. Novel antioxidant peptides obtained by alcalase hydrolysis of Erythrina edulis (pajuro) protein. J. Sci. Food Agric. 2019, 99, 2420–2427. [Google Scholar] [CrossRef]
- Maqsoudlou, A.; Mahoonak, A.S.; Mora, L.; Mohebodini, H.; Toldra, F.; Ghorbani, M. Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly. Food Res. Int. 2019, 116, 905–915. [Google Scholar] [CrossRef]
- Aluko, R.E. Bioactive Peptides. In Functional Foods and Nutraceuticals; Food Science Text Series; Springer: New York, NY, USA, 2012; pp. 37–61. [Google Scholar] [CrossRef]
- Hernandez-Ledesma, B.; Del Mar Contreras, M.; Recio, I. Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv. Colloid. Interface Sci. 2011, 165, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Najafian, L.; Salam, A. Fractionation and identification of novel antioxidant peptides from fermented fish (Pekasam). J. Food. Meas. Charact. 2018, 12, 2174–2183. [Google Scholar] [CrossRef]
- Rajendran, S.R.C.K.; Mohan, A.; Khiari, Z.; Udenigwe, C.C.; Mason, B. Yield, physicochemical, and antioxidant properties of Atlantic Salmon visceral hydrolysate: Comparison of lactic acid bacterial fermentation with Flavourzyme proteolysis and formic acid treatment. J. Food Process. Preserv. 2018, 42, e13620. [Google Scholar] [CrossRef]
- Christensen, J.E.; Dudley, E.G.; Pederson, J.A.; Steele, J.L. Peptidases and amino acid cataboLysm in lactic acid bacteria. Antonie Leeuwenhoek 1999, 80, 155–165. [Google Scholar]
- KulLysaar, T.; Songisepp, E.; Mikelsaar, M.; Zilmer, K.; Vihalemm, T.; Zilmer, M. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br. J. Nutr. 2003, 90, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.Y.; Yen, C.L. Reactive oxygen species and lipid peroxidation product-scavenging ability of yoghurt organisms. J. Dairy Sci. 1999, 82, 1629–1634. [Google Scholar] [CrossRef]
- Virtanen, T.; Pihlanto, A.; Akkanen, S.; Korhonen, H. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 2007, 102, 106–115. [Google Scholar] [CrossRef]
- Rajapakse, N.; Mendis, E.; Jung, W.K.; Je, J.Y.; Kim, S.K. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 2005, 38, 175–182. [Google Scholar] [CrossRef]
- Chaudhury, A.; Duvoor, C.; Reddy-Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Sanjukta, S.; Rai, A.K.; Muhammed, A.; Jeyaram, K.; Talukdar, N.C. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. J. Funct. Foods 2015, 14, 650–658. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Berovič, M.; Krieger, N. Solid-state fermentation bioreactor fundamentals: Introduction and overview. In Solid-State Fermentation Bioreactors; Mitchell, D.A., Berovič, M., Krieger, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–12. [Google Scholar] [CrossRef]
- Gohi, B.F.C.A.; Du, J.; Zeng, H.-Y.; Cao, X.; Zou, K. Microwave pretreatment and enzymolysis optimization of the Lotus seed protein. Bioengineering 2019, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Zhang, J.; Zhou, J.; Cai, M.; Duan, Y.; Zhang, H.; Ma, H. Antioxidant activity of arrowhead protein hydrolysates produced by a novel multi-frequency S-type ultrasound-assisted enzymolysis. Nat. Prod. Res. 2020, 34, 3000–3003. [Google Scholar] [CrossRef]
- Dong, X.; Li, J.; Jiang, G.; Li, H.; Zhao, M.; Jiang, Y. Effects of combined high pressure and enzymatic treatments on physicochemical and antioxidant properties of Peanut proteins. Food Sci. Nutr. 2019, 7, 1417–1425. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, T. Identification and characterization of antioxidant peptides from Sweet Potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2017, 43, 92–101. [Google Scholar] [CrossRef]
- Bamdad, F.; Shin, S.H.; Suh, J.; Nimalaratne, C. Anti-inflammatory and antioxidant properties of Casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules 2017, 22, 609. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Xu, H.; Li, Y.; Zhang, Q.; Xie, H. Preparation and evaluation of peptides with potential antioxidant activity by microwave assisted enzymatic hydrolysis of collagen from sea Cucumber Acaudina Molpadioides obtained from Zhejiang province in China. Mar. Drugs 2019, 17, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketnawa, S.; Liceaga, A.M. Effect of Microwave Treatments on Antioxidant Activity and Antigenicity of Fish Frame Protein Hydrolysates. Food Bioprocess Technol. 2017, 10, 582–591. [Google Scholar] [CrossRef]
- Nguyen, E.; Jones, O.; Kim, Y.H.B.; San Martin-Gonzalez, F.; Liceaga, A.M. Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fish. Sci. 2017, 83, 317–331. [Google Scholar] [CrossRef]
- Ozuna, C.; Paniagua-Martínez, I.; Castaño-Tostado, E.; Ozimek, L.; Amaya-Llano, S.L. Innovative applications of high-intensity ultrasound in the development of functional food ingredients: Production of protein hydrolysates and bioactive peptides. Food Res. Int. 2015, 77, 685–696. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, W.; Li, Q.; Chen, Y.; Zheng, D.; Zhang, M.; Zhao, T.; Mao, G.; Feng, W.; Wu, X.; et al. Physicochemical, functional properties and antioxidant activities of Porcine Cerebral hydrolysate peptides produced by ultrasound processing. Process Biochem. 2015, 3, 441–443. [Google Scholar] [CrossRef]
- Sae-leaw, T.; Benjakul, S. Antioxidant activities of hydrolysed collagen from salmon scale ossein prepared with the aid of ultrasound. Int. J. Food Sci. Technol. 2018, 53, 2786–2795. [Google Scholar] [CrossRef]
- Chian, F.M.; Kaur, L.; Oey, I.; Astruc, T. Effect of pulsed electric fields (PEF) on the ultrastructure and in vitro protein digestibility of bovine Longissimus thoracis. LWT Food Sci. Technol. 2019, 103, 253–259. [Google Scholar] [CrossRef]
- Cho, Y.; Haq, M.; Park, J.; Lee, H.; Chun, B. Physicochemical and Biofunctional properties of Shrimp (Penaeus japonicus) hydrolysates obtained from hot-compressed water treatment. J. Supercrit. Fluids 2018, 147, 322–328. [Google Scholar] [CrossRef]
- Alvarez, C.; Tiwari, B.K.; Rendueles, M.; Díaz, M. Use of response surface methodology to describe the effect of time and temperature on the production of decoloured, antioxidant and functional peptides from Porcine haemoglobin by subcritical water hydrolysis. LWT Food Sci. Technol. 2016, 73, 280–289. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Boussetta, N.; Vorobiev, E.; Bazinet, L. High voltage electric treatments to improve the protein susceptibility to enzymatic hydrolysis. ACS Sustain. Chem. Eng. 2017, 5, 11706–11714. [Google Scholar] [CrossRef]
- Ahmed, R.; Chun, B. Supercritical Fluids Subcritical water hydrolysis for the production of bioactive peptides from Tuna skin collagen. J. Supercrit. Fluids 2018, 141, 88–96. [Google Scholar] [CrossRef]
- Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Yang, B.; Yang, H.; Li, J.; Li, Z.; Jiang, Y. Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chem. 2011, 124, 551–555. [Google Scholar] [CrossRef]
- Pedersen Søren, L.; Tofteng, A.P.; Malik, L.; Jensen, K.J. Microwave heating in solid-phase peptide synthesis. Chem. Soc. Rev. 2012, 41, 1826–1844. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, B.; Mirza, U.; Ing, Y.; Liu, Y.; Bartner, P.; Weber, P.; Bose, M. Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Sci. 2002, 11, 2676–2687. [Google Scholar] [CrossRef]
- Reddy, P.; Hsu, W.; Hu, J.; Ho, Y. Digestion Completeness of Microwave-Assisted and Conventional Trypsin-Catalyzed Reactions. J. Am. Soc. Mass Spectrom. 2010, 21, 421–424. [Google Scholar] [CrossRef] [Green Version]
- Mendiola, J.A. Extracción de Compuestos Bioactivos de Microalgas Mediante Fluidos Supercríticos. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 2008. [Google Scholar]
- Lang, Q.; Wai, C.M. Supercritical fluid extraction in herbal and natural product studies a practical review. Talanta 2001, 53, 771–782. [Google Scholar] [CrossRef]
- Olivera, L. Hidrolizado Proteico de Quinua (Chenopodium quinoa Willd) con Péptidos Bioactivos y Capacidad Antioxidante: Evaluación de la Factibilidad Económica. Ph.D. Thesis, Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería Industrial, Unidad de Posgrado, Lima, Perú, 2021. [Google Scholar]
- Holton, T.A.; Vijayakumar, V.; Khaldi, N. Bioinformatics: Current perspectives and future directions for food and nutritional research facilitated by a Food-Wiki database. Trends Food Sci. Technol. 2013, 34, 5–17. [Google Scholar] [CrossRef]
- Lacroix, I.M.; Li-Chan, E.C. Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. J. Funct. Foods 2012, 4, 403–422. [Google Scholar] [CrossRef]
- Undenigwe, C.C.; Aluko, R.E. Food Protein-Derived Bioactive peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2012, 71, R11–R24. [Google Scholar] [CrossRef] [PubMed]
- Dziuba, B.; Dziuba, M. Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Sci. Pol. Technol. Aliment. 2014, 13, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Protasiewicz, M.; Mogut, D. Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. J. Funct. Foods 2015, 16, 334–351. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, K.; Sharma, M.; Nagpal, G.; Chauhan Singh, J.; Singh, S.; Gautam, A.; Raghava, G.P.S. AHTPDB: A comprehensive platform for analysis and presentation of antihypertensive peptides. Nucleic Acids Res. 2015, 43, D956–D962. [Google Scholar] [CrossRef] [Green Version]
- Usmani, S.S.; Kumar, R.; Kumar, V.; Singh, S.; Raghava, G.P.S. AntiTbPdb: A knowledgebase of anti-tubercular peptides. Database 2018, 2018, bay025. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.; Thakur, N.; Himani, T.; Kumar, M. AVPdb: A database of experimentally validated antiviral peptides targeting medically important viruses. Nucleic Acids Res. 2013, 42, D1147–D1153. [Google Scholar] [CrossRef] [Green Version]
- Di Luca, M.; Maccari, G.; Maisetta, G.; Batoni, G. BaAMPs: The database of biofilm-active antimicrobial peptides. Biofouling 2015, 31, 193–199. [Google Scholar] [CrossRef]
- Rey, J.; Deschavanne, P.; Tuffery, P. BactPepDB: A database of predicted peptides from a exhaustive survey of complete prokaryote genomes. Database 2014, 2014, bau106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minkiewicz, P.; Dziuba, J.; Iwaniak, A.; Dziuba, M.; Darewicz, M. BIOPEP and other programs for processing bioactive peptide sequences. J. AOAC Int. 2008, 91, 965–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dorpe, S.; Bronselaer, A.; Nielandt, J.; Stalmans, S.; Wynendaele, E.; Audenaert, K.; De Spiegeleer, B. Brainpeps: The blood-brain barrier peptide database. Brain Struct. Funct. 2012, 217, 687–718. [Google Scholar] [CrossRef]
- Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures, and signatures of antimicrobial peptides. Nucleic Acids Res. 2015, 44, D1094–D1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Raghava, G.P.S. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res 2015, 43, D837–D843. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, M.; Hällbrink, M.; Prochiantz, A.; Langel, Ü. Cell-penetrating peptides. Trends Pharmacol. Sci. 2000, 21, 99–103. [Google Scholar] [CrossRef]
- Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Tartakovsky, M. DBAASP vol 2: An enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 2016, 44, D1104–D1112. [Google Scholar] [CrossRef]
- Zamyatnin, A.A.; Borchikov, A.S.; Vladimirov, M.G.; Voronina, O.L. The EROP-Moscow oligopeptide database. Nucleic Acids Res. 2006, 34, D261–D266. [Google Scholar] [CrossRef] [Green Version]
- Gautam, A.; Chaudhary, K.; Singh, S.; Joshi, A.; Anand, P.; Tuknait, A.; Raghava, G.P.S. Hemolytik: A database of experimentally determined hemolytic and nonhemolytic peptides. Nucleic Acids Res. 2014, 42, D444–D449. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Yin, S.; Jang, R.; Wang, J.; Xue, Z.; Xu, T. NeuroPep: A comprehensive resource of neuropeptides. Database 2015, 2015, bav038. [Google Scholar] [CrossRef] [Green Version]
- Shtatland, T.; Guettler, D.; Kossodo, M.; Pivovarov, M.; Weissleder, R. PepBank–A database of peptides based on sequence text mining and public peptide data sources. BMC Bioinform. 2007, 8, e280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynendaele, E.; Bronselaer, A.; Nielandt, J.; D’Hondt, M.; Stalmans, S.; Bracke, N.; De Spiegeleer, B. Quorumpeps database: Chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res. 2013, 41, D655–D659. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Singh, T.P.; Gandhi, N. Prevention of lipid oxidation in muscle foods by milk proteins and peptides: A review. Food Rev. Int. 2016, 34, 226–247. [Google Scholar] [CrossRef]
- Wang, J.; Yin, T.; Xiao, X.; He, D.; Xue, Z.; Jiang, X.; Wang, Y. StraPep: A structure database of bioactive peptides. Database 2018, 2018, bay038. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, P.; Singh, H.; Gautam, A.; Chaudhary, K.; Kumar, R.; Raghava, G.P.S.; Xue, B. TumorHoPe: A database of tumor homing peptides. PLoS ONE 2012, 7, e35187. [Google Scholar] [CrossRef] [Green Version]
- Piotto, S.P.; Sessa, L.; Concilio, S.; Ianelli, P. YADAMP: Yet another database of antimicrobial peptides. Int. J. Antimicrob. 2012, 39, 346–351. [Google Scholar] [CrossRef]
- Gu, Y.; Majumder, K.; Wu, J. QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Res. Int. 2011, 44, 2465–2474. [Google Scholar] [CrossRef]
- Barrero, J.A.; Cruz, C.M.; Casallas, J.; Vásquez, J.S. Evaluación in silico de péptidos bioactivos derivados de la digestión de proteínas presentes en la leche de bovino (B. taurus), oveja (O. aries), cabra (C. hircus) y búfalo (B. bubalis). TecnoLógicas 2021, 24, e1731. [Google Scholar] [CrossRef]
- Panjaitan, F.C.A.; Gómez, H.L.R.; Chang, Y.-W. In silico analysis of bioactive peptides released from giant grouper (Epinephelus lancetolatus) roe proteins identified by proteomic approach. Molecules 2018, 23, 2910. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, N.D.; Barrett, A.J.; Finn, R. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016, 44, D343–D350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.M.; Muramoto, K.; Yamauchi, F.; Nokihara, K. Antioxidant activity of design peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 1996, 44, 2619–2623. [Google Scholar] [CrossRef]
- Hattori, M.; Yamaji-Tsukamoto, K.A.; Kumagai, H.; Feng, Y.; Takahashi, K. Antioxidative activity of soluble elastin peptides. J. Agric. Food Chem. 1998, 46, 2167–2170. [Google Scholar] [CrossRef]
- Xie, Z.; Huang, J.; Xu, X.; Jin, Z. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem. 2008, 111, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Vioque, J.; Clemente, A.; Pedroche, J.; Yust, M.M.; Millán, F. Obtención y aplicaciones de hidrolizados proteicos. Grasas Aceites 2001, 52, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Turgeon, S.L.; Gauthier, S.F.; Paquin, P. Emulsifying property of whey peptide fractions as a function of Ph and ionic strengh. J. Food Sci. 1992, 57, 601–604, 634. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, P.S.W.; Rhee, K.C. Functional properties of proteolytic enzyme modified soy protein isolate. J. Agric. Food Chem. 1990, 38, 651–656. [Google Scholar] [CrossRef]
- Süle, E.; Tömösközi, S.; Hajós, G. Functional properties of enzymatically modified plant proteins. Food/Nahr. 1998, 42, 242–244. [Google Scholar] [CrossRef]
- Clemente, A.; Vioque, J.; Sánchez-Vioque, R.; Pedroche, J.; Bautista, J.; Millán, F. Protein quality of chickpea protein hydrolysates. Food Chem. 1999, 67, 269–274. [Google Scholar] [CrossRef]
- Vioque, J.; Sánchez-Vioque, R.; Clemente, A.; Pedroche, J.; Millán, F. Partially hydrolyzed rapeseed protein isolates with improved functional properties. JAOCS 2000, 77, 447–450. [Google Scholar] [CrossRef]
- Girgih, A.T.; He, R.; Hasan, F.M.; Udenigwe, C.C.; Gill, T.A.; Aluko, R.E. Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food Chem. 2015, 173, 652–659. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Pan, X.; Chi, C.; Sun, K.; Wang, B. Ten new pentapeptides from protein hydrolysate of Miiuy Croaker (Miichthis miiuy) muscle: Preparation, identification, and antioxidant activity evaluation. LWT Food Sci. Technol. 2019, 105, 1–8. [Google Scholar] [CrossRef]
- Agrawal, H.; Joshi, R.; Gupta, M. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Res. Int. 2019, 120, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; Alashi, M.A.; Aluko, R.E.; FitzGerald, R.J. Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res. Int. 2017, 100, 112–120. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Shahidi, F. Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. J. Funct. Foods 2017, 34, 7–17. [Google Scholar] [CrossRef]
- Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem. 2016, 218, 396–405. [Google Scholar] [CrossRef]
- Zenezini Chiozzi, R.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Piovesana, S.; Samperi, R.; Lagana, A. Purification and identification of endogenous antioxidant and ACE-inhibitory peptides from donkey milk by multidimensional liquid chromatography and nanoHPLC-high resolution mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 5657–5666. [Google Scholar] [CrossRef]
- Ahmed, A.S.; El-Bassiony, T.; Elmalt, L.M.; Ibrahim, H.R. Identification of potent antioxidant bioactive peptides from goat milk proteins. Food Res. Int. 2015, 74, 80–88. [Google Scholar] [CrossRef]
- Chang, S.K.; Ismail, A.; Yanagita, T.; Mohd Esa, N.; Baharuldin, M.T.H. Antioxidant peptides purified and identified from the oil palm (Elaeis guineensis Jacq.) kernel protein hydrolysate. J. Funct. Foods 2015, 14, 63–75. [Google Scholar] [CrossRef]
- Gu, M.; Chen, H.-P.; Zhao, M.M.; Wang, X.; Yang, B.; Ren, J.Y. Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. LWT Food Sci. Technol. 2015, 60, 213–220. [Google Scholar] [CrossRef]
- Liu, J.; Jin, Y.; Lin, S.; Jones, G.S.; Chen, F. Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities. Food Chem. 2015, 175, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, S.; Nazeer, R.A. Structural characterization of an Indian squid antioxidant peptide and its protective effect against cellular reactive oxygen species. J. Funct. Foods 2015, 14, 502–512. [Google Scholar] [CrossRef]
- Tenore, G.C.; Ritieni, A.; Campiglia, P.; Stiuso, P.; Di Maro, S.; Sommella, E.; Pepe, G.; D’Urso, E.; Novellino, E. Antioxidant peptides from “Mozzarella di Bufala Campana DOP” after simulated gastrointestinal digestion: In vitro intestinal protection, bioavailability, and anti-haemolytic capacity. J. Funct. Foods 2015, 15, 365–375. [Google Scholar] [CrossRef]
- Zeng, W.C.; Zhang, W.H.; Qiang, H.; Bi, S. Purification and characterization of a novel antioxidant peptide from bovine hair hydrolysates. Process Biochem. 2015, 50, 948–954. [Google Scholar] [CrossRef]
- González-García, E.; Marina, M.L.; García, M.C. Plum (Prunus Domestica L.) by-product as a new and cheap source of bioactive peptides: Extraction method and peptides characterization. J. Funct. Foods 2014, 11, 428–437. [Google Scholar] [CrossRef]
- Herrera-Chalé, F.G.; Ruiz-Ruiz, J.C.; Acevedo-Fernández, J.J.; Betancur-Ancona, D.A.; Segura-Campos, M.R. ACE inhibitory, hypotensive and antioxidant peptide fractions from Mucuna pruriens proteins. Process Biochem. 2014, 49, 1691–1698. [Google Scholar] [CrossRef]
- Ji, N.; Sun, C.; Zhao, Y.; Xiong, L.; Sun, Q. Purification, and identification of antioxidant peptides from peanut protein isolate hydrolysates using UHR-Q-TOF mass spectrometer. Food Chem. 2014, 161, 148–154. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, H.; Li, X.; Lai, F.; Xiao, X. Purification, and characterization of high antioxidant peptides from duck egg white protein hydrolysates. Biochem. Biophys. Res. Commun. 2014, 452, 888–894. [Google Scholar] [CrossRef]
- Zarei, M.; Ebrahimpour, A.; Abdul-Hamid, A.; Anwar, F.; Bakar, F.A.; Philip, R.; Saari, N. Identification and characterization of papain-generated antioxidant peptides from palm kernel cake proteins. Food Res. Int. 2014, 62, 726–734. [Google Scholar] [CrossRef]
- Gómez, L.J.; Figueroa, O.A.; Zapata, J.E. Actividad antioxidante de hidrolizados enzimáticos de plasma bovino obtenidos por efecto de Alcalasa® 2.4 L. Inf. Tecnol. 2013, 24, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Moure, A.; Domínguez, H.; Parajó, J. Antioxidant properties of ultrafiltration recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 2006, 41, 447–456. [Google Scholar] [CrossRef]
- Qian, Z.J.; Jung, W.K.; Kim, S.K. Free radical scavenging activity of a novel Antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana shaw. Bioresour. Technol. Rep. 2008, 99, 1690–1698. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Chen, H.M.; Shiau, C.Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 2003, 36, 949–957. [Google Scholar] [CrossRef]
- Xiong, Y.L. Antioxidant peptides. In Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals; Wiley-Blackwell: Oxford, UK, 2010; pp. 29–42. [Google Scholar] [CrossRef]
- Gallegos Tintoré, S.; Chel Guerrero, L.; Corzo Ríos, L.J.; Martínez Ayala, A.L. Péptidos con actividad antioxidante de proteínas vegetales. In Bioactividad de Péptidos Derivados de Proteínas Alimentarias; Segura Campos, M.L., Guerrero, C., Betancur Ancona, D., Eds.; OmniaScience: Barcelona, Spain, 2013; pp. 111–122. [Google Scholar] [CrossRef]
- Walrant, A.; Bauzá, A.; Girardet, C.; Alves, I.D.; Lecomte, S.; Illien, F. Ionpair-π 1581 interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183098. [Google Scholar] [CrossRef]
- Ningappa, M.B.; Srinivas, L. Purification and characterization of ~35 kDa antioxidant protein from curry leaves (Murraya koenigii L.). Toxicol. Vitr. 2008, 22, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Cian, R.E.; Vioque, J.; Drago, S.R. Structure–mechanism relationship of antioxidant and ACE I inhibitory peptides from wheat gluten hydrolysate fractionated by pH. Food Res. Int. 2015, 69, 216–223. [Google Scholar] [CrossRef]
- Saito, K.; Jin, D.H.; Ogawa, T.; Muramoto, K.; Hatakeyama, E.; Yasuhara, T. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 2003, 51, 3668–3674. [Google Scholar] [CrossRef]
- Bulet, P.; Stöcklin, R. Insect antimicrobial peptides: Structures, properties and gene regulation. Protein Pept. Lett. 2005, 12, 3–11. [Google Scholar] [CrossRef]
- Guerreiro, C.I.; Fontes, C.M.; Gama, M.; Domigues, L. Escherichia coli expresion and purification of our antimicrobial peptides fused to a family 3 cabohydrate-binding module (CBM) from Clostridium thermocellum. Protein Expr. Purif. 2008, 59, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhu, M.; Zhang, A.; Yang, F.; Chen, P. Synthesis and secretoory expression of hybrid antimicrobial peptide CecA-mag and its mutants in Pichia Pastoris. Exp. Biol. Med. 2012, 237, 312–317. [Google Scholar] [CrossRef]
- Shabir, U.; Ali, S.; Magray, A.R.; Ganai, B.A.; Firdous, P.; Hassan, T.; Nazir, R. Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review. Microb. Pathog. 2018, 114, 50–56. [Google Scholar] [CrossRef]
- Barbosa-Pelegrini, P.; Del Sarto, R.P.; Silva, O.N.; Franco, O.L.; Grossi-de-Sa, M.F. Antibacterial peptides from plants: What they are and how they probably work. Biochem. Res. Int. 2011, 2011, 250349. [Google Scholar] [CrossRef] [Green Version]
- Lopes, J.L.; Nobre, T.M.; Siano, A.; Humpola, V.; Bossolan, N.R.; Zaniquelli, M.E. Disruption of Saccharomyces cerevisiae by Plantaricin 149 and investigation of its mechanism of action with biomembrane model systems. Biochim. Biophys. Acta 2009, 1788, 2252–2258. [Google Scholar] [CrossRef] [PubMed]
- Jean-Francois, F.; Elezgaray, J.; Berson, P.; Vacher, P.; Dufourc, E.J. Pore formation induced by an antimicrobial peptide: Electrostatic effects. Biophys. J. 2008, 95, 5748–5756. [Google Scholar] [CrossRef] [Green Version]
- Scocchi, M.; Mardirossian, M.; Runti, G.; Benincasa, M. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr. Top. Med. Chem. 2016, 16, 76–88. [Google Scholar] [CrossRef]
- Kim, C.; Spano, J.; Park, E.K.; Wi, S. Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3. Biochim. Biophys. Acta 2009, 1788, 1482–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihajlovic, M.; Lazaridis, T. Antimicrobial peptides bind more strongly to membrane pores. Biochim. Biophys. Acta 2010, 1798, 1494–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozelli, J.C., Jr.; Sasahara, E.T.; Pinto, M.R.; Nakaie, C.R.; Schreier, S. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Chem. Phys. Lipids 2012, 165, 365–373. [Google Scholar] [CrossRef]
- Anunthawan, T.; De la Fuente-Núñez, C.; Hancock, R.E.; Klaynongsruang, S. Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim. Biophys. Acta. 2015, 1848, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Valdés Rodríguez, Y.C.; Bilbao Díaz, M.; León Álvarez, J.L.; Merchán González, F. Origen e importancia de la fosfolipasa A2 de secreción. Rev. Cuba. Farm. 2002, 36, 121–128. [Google Scholar]
- Subbalakshmi, C.; Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 1998, 160, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Brodgen, K.A. Antimicrobial Peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- De Lucca, A.J.; Bland, J.M.; Jacks, T.J.; Grimm, C.; Walsh, T.J. Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Med. Mycol. 1998, 36, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef] [Green Version]
- Wachinger, M.; Kleinschmidt, A.; Winder, D.; Von Pechmann, N.; Ludvigsen, A.; Neumann, M.; Holle, R.; Salmons, B.; Erfle, V.; Brack-Werner, R. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J. Gen. Virol. 1998, 79, 731–740. [Google Scholar] [CrossRef]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2001, 55, 27–55. [Google Scholar] [CrossRef] [Green Version]
- Pálffy, R.; Gardlík, R.; Behuliak, M.; Kadasi, L.; Turna, J.; Celec, P. On the physiology and pathophysiology of antimicrobial peptides. Mol. Med. 2009, 15, 51–59. [Google Scholar] [CrossRef]
- Diz, M.S.S.; Carvalho, A.O.; Rodrigues, R.; Neves-Ferreira, A.G.C.; Da Cunha, M.; Alves, E.W. Antimicrobial peptides from chili pepper seeds causes yeast plasma membrane permeabilization and inhibits the acidification of the medium by yeast cells. Biochim. Biophys. Acta 2006, 1760, 1323–1332. [Google Scholar] [CrossRef]
- Leung, E.H.W.; Ng, T.B. A relatively stable antifungal peptide from buckwheat seeds with antiproliferative activity toward cancer cells. J. Pept. Sci. 2007, 13, 762–767. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Giordano, D.; Costantini, M.; Coppola, D.; Lauritano, C.; Núñez Pons, L.; Ruocco, N.; Verde, C. Biotechnological Applications of Bioactive Peptides from Marine Sources. Adv. Microb. Physiol. 2018, 73, 171–220. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ma, Y.F.; Wang, X.; Liang, J.G.; Zhang, C.X.; Zhang, K.Y.; Lin, G.O.; Lai, R. The first antimicrobial peptide from sea amphibian. Mol. Immunol. 2008, 45, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Sable, R.; Parajuli, P.; Jois, S. Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications. Mar. Drugs 2017, 15, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jemil, I.; Abdelhedi, O.; Nasri, R.; Mora, L.; Jridi, M.; Aristoy, M.-C.; Toldrá, F.; Nasri, M. Novel bioactive peptides from enzymatic hydrolysate of Sardinelle (Sardinella aurita) muscle proteins hydrolysed by Bacillus subtilis A26 proteases. Food Res. Int. 2017, 100, 121–133. [Google Scholar] [CrossRef]
- Anaya, K.; Podszun, M.; Franco, O.L.; De Almeida Gadelha, C.A.; Frank, J. The Coconut Water Antimicrobial Peptide CnAMP1 Is Taken up into Intestinal Cells but Does Not Alter P-Glycoprotein Expression and Activity. Plant Foods Hum. Nutr. 2020, 75, 396–403. [Google Scholar] [CrossRef]
- Tang, S.-S.; Prodhan, Z.H.; Biswas, S.K.; Le, C.-F.; Sekaran, S.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 2018, 154, 94–105. [Google Scholar] [CrossRef]
- Ennaas, N.; Hammami, R.; Beaulieu, L.; Fliss, I. Purification and characterizationof four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochem. Biophys. Res. Commun. 2015, 462, 195–200. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, H.; Wang, L.; Qian, H.; Qi, X. Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chem. 2015, 168, 115–123. [Google Scholar] [CrossRef]
- Rozek, T.; Bowie, J.H.; Wallace, J.C.; Tyler, M.J. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis. Part 2. Sequence determination using electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 2002–2011. [Google Scholar] [CrossRef]
- Rozek, T.; Wegener, K.L.; Bowie, J.H.; Olver, I.N.; Carver, J.A.; Wallace, J.C.; Tyler, M.J. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis. Eur. J. Biochem. 2000, 267, 5330–5341. [Google Scholar] [CrossRef]
- Da Mata, É.C.G.; Mourão, C.B.F.; Rangel, M.; Schwartz, E.F. Antiviral activity of animal venom peptides and related compounds. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niidome, T.; Kobayashi, K.; Arakawa, H.; Hatakeyama, T.; Aoyagi, H. Structure–activity relationship of an antibacterial peptide, maculatin 1.1, from the skin glands of the tree frog, Litoria genimaculata. J. Pept. Sci. 2004, 10, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, E.; Greber, K.; Rodziewicz-Motowidło, S.; Szultka, Ł.; Łukasiak, J.; Kamysz, W. Synthesis and antimicrobial activity of truncated fragments and analogs of citropin 1.1: The solution structure of the SDS micelle-bound citropin-like peptides. J. Struct. Biol. 2009, 168, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: Family of antimicrobial peptides: A review. Mol. Biol. Rep. 2012, 39, 10957–10970. [Google Scholar] [CrossRef] [Green Version]
- Tincu, J.A.; Taylor, S.W. Antimicrobial peptides from marine invertebrates. Antimicrob. Agents Chemother. 2004, 48, 3645–3654. [Google Scholar] [CrossRef] [Green Version]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- Yang, D.; Biragyn, A.; Kwak, L.W.; Oppenheim, J.J. Mammalian defensins in immunity: More than just microbicidal. Trends Immunol. 2002, 23, 291–296. [Google Scholar] [CrossRef]
- Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003, 3, 710–720. [Google Scholar] [CrossRef]
- Abidi, F.; Aissaoui, N.; Gaudin, J.C.; Chobert, J.M.; Haertl, T.; Marzouki, M.N. MS analysis and molecular characterization of Botrytis cinerea protease Prot-2. Use in bioactive peptides production. Appl. Biochem. Biotechnol. 2013, 170, 231–247. [Google Scholar] [CrossRef]
- Cao, J.; De la Fuente-Nunez, C.; Ou, W.R.; Torres, T.M.D.; Pande, G.S.; Sinskey, J.A.; Lu, T.K. Yeast based synthetic biology platform for antimicrobial peptide production. ACS Synth. Biol. 2018, 7, 896–902. [Google Scholar] [CrossRef]
- Martínez, O.; Martínez, E. Proteínas y péptidos en nutrición enteral. Nutr. Hosp. 2006, 21, 1–14. [Google Scholar]
- Shimizu, M. Food-derived peptides and intestinal functions. Biofactors 2004, 21, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Santiago, E. Péptidos Antihipertensivos de Proteínas de Amaranto. Estudio de Emulsiones y Galletitas Como Sistemas Funcionales. Ph.D. Thesis, Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos, La Plata, Argentina, 2018. [Google Scholar]
- Hernández-Ledesma, B.; Miguel, M.; Amigo, L.; Aleixandre, M.A.; Recio, I. Effect of simulated gastrointestinal digestion on the antihypertensive properties of synthetic β-lactoglobulin peptide sequences. J. Dairy Res. 2007, 74, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.L.G. Transmucosal passage on intact peptides in mamalian metabolism. In Tissue Utilization and Clinical Targeting; Grimble, G.K., Backwell, F.R.G., Eds.; Portland Press Ltd.: London, UK, 1998. [Google Scholar] [CrossRef] [Green Version]
- Ziv, E.; Bendayan, M. Intestinal absorption of peptides through the enterocytes. Microsc. Res. Technol. 2000, 49, 346–352. [Google Scholar] [CrossRef]
- Rubas, W.; Grass, G.M. Gastrointestinal lymphatic absorption of peptides and proteins. Adv. Drug Deliv. Rev. 1991, 7, 15–69. [Google Scholar] [CrossRef]
- Shimizu, M.; Tsunogai, M.; Arai, S. Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2. Peptides 1997, 18, 681–687. [Google Scholar] [CrossRef]
- Grimble, G.K. The significance of peptides in clinical nutrition. Annu. Rev. Nutr. 1994, 14, 419–447. [Google Scholar] [CrossRef]
- Roberts, P.R.; Burney, J.D.; Black, K.W.; Zaloga, G.P. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Digestion 1999, 60, 332–337. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Barrio, D.; Carpio, C.; García-Ruiz, A.; Rúales, J.; Hernández-Ledesma, B.; Carrillo, W. Digestibility of Quinoa (Chenopodium quinoa Willd.) Protein Concentrate and Its Potential to Inhibit Lipid Peroxidation in the Zebrafish Larvae Model. Plant Foods Hum. Nutr. 2017, 72, 294–300. [Google Scholar] [CrossRef]
- Carrillo, W.; Gómez-Ruiz, J.A.; Miralles, B. Identification of antioxidant peptides of hen egg-white lysozyme and evaluation of inhibition of lipid peroxidation and cytotoxicity in the Zebrafish model. Eur Food Res Technol. 2016, 242, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Horner, K.; Drummond, E.; Brennan, L. Bioavailability of milk protein-derived bioactive peptides: A glycaemic management perspective. Nutr. Res. Rev. 2016, 29, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Activity | Source | Protein of Origin | Bioactive Peptide o Sequence |
---|---|---|---|
Inhibition of angiotensin-converting enzyme (ACE) and antihypertensive | Soy | Soy protein | NMGPLV |
Fish | Muscle protein | LKP, IKP (derived from sardines, mackerel, tuna, squid) | |
Meat | Muscle protein | IKW, LKP | |
Milk | α-LA, β-LG α-, β, ƙ-CN | Lactokinins (WLAHK, LRP, LKP) | |
Egg | Ovotransferrin Ovalbumin | Ovokinin (FRADHPPL), Ovokinin (2–7) (KVREGTTY) | |
Wheat | Gliadins | Casokinins (FFVAP, FALPQY, VVP) | |
Broccoli | Encrypted protein | IAP | |
Chicken skin | Collagen | YPK | |
Chicken legs | Collagen | GAHpGLHpGP | |
Immunomodulator | Rice | Rice albumin | Orizatensinin (GYPMYPLR) |
Egg | Ovalbumin | Unspecified peptides | |
Milk | α-β-ƙ-CN α-LA | Immunopeptides (αs 1 TTMPLW) | |
Wheat | Gluten | Immunopeptides | |
Cytomodulator | Milk | α-β-CN | A-casomorphin (HIQKED (V)), β- casomorphin-7 (YPFPGP) |
Opioid agonist | Milk | α-LA, β-LG α-, β-CN | α-lactorfin, β- lactorfin Casomorphin |
Wheat | Gluten | Gluten exorphins A4, A5 (GYYPT), B4, B5 and C (YPISL) | |
Opioid antagonist | Milk | Lactoferrin ƙ-CN | Lactoferricin Caxosines |
Antimicrobial | Egg | Ovotransferrin | OTAP-92 (f109-200) |
Milk | Lysozyme α-β-ƙ-CN | Unspecified peptides | |
Bovine cruor | Lactoferrin | Lactoferricin Caxosines TSKYR | |
Guava seeds | Glycine | Pg-AMP1 | |
Vicia faba seeds | Hydrolysate seed proteins | LSPGDVLVIPAGYPVAIK, EEYDEEKEQGEEEIR | |
Tomato pomace | Hydrolysate proteins | Unspecified peptides | |
Rice bran | Rice bran proteins | KVDHFPL | |
Bovine hemoglobine | Hemoglobine | (F)VNFKLLSHSLL, (L)TSKYR, (F)KLLSHSL, (L)QADFQKVVAGVANALAHRYH, MLTAEEKAAVTAFWGKVKVDEVGGEALGRL | |
Antithrombotic | Milk | ƙ-CN (glycomacropeptide) | ƙ-CN (f106-116) a, casoplatelin |
Mineral-carrying Anticarcinogenic | Milk | ƙ-CN (glycomacropeptide) | ƙ-CN (f106-116) a, casoplatelin |
Hypocholesterolemic | Soy | Glycinin/conglycinin | LPYPR |
Milk | β-LG | IIAEK | |
Antioxidant | Sardine | Sardine muscle | MY |
Wheat | Wheat germ protein | Unspecified peptides | |
Milk | α-LA, β-LG | MHIRL, YVEEL, WYSLAMAASDI | |
Tuna | Tuna bones | VKAGFAWTANQQLS | |
Oyster | Oyster by-products | PVMGD | |
Leatherjacket | Leatherjacket heads | EHGV | |
Salmon | Salmon by-products | WEGPK, GPP, GVPLT | |
Soy | Glycinin /conglycinin | LLPHH, VNHDHQN, LVNHDHQN, LLPHH | |
Rice endosperm | Rice protein | FRDEHKK, KHDRGDEF |
Database | Web Address | Content | Reference |
---|---|---|---|
AHTPDB * | http://crdd.osdd.net/raghava/ahtpdb/ | Antihypertensive peptides | [136] |
AntiTbPdb | http://webs.iiitd.edu.in/raghava/antitbpdb | Antitubercular and mycobacterial peptides | [137] |
APD | http://aps.unmc.edu/AP/main.html | Antimicrobial and anticancer peptides | [138] |
AVPdb | http://crdd.osdd.net/servers/avpdb/ | Antiviral peptides | [139] |
BaAMPs | http://www.baamps.it/ | Antimicrobial peptides tested against microbial films | [140] |
BactPepDB | http://bactpepdb.rpbs.univ-paris-diderot.fr/cgi-bin/home.pl | Bacterial peptides | [141] |
BIOPEP-UWMTM * | http://www.uwm.edu.pl/biochemia | Bioactive peptides/sensory peptides and amino acids | [142] |
Brainpeps | http://brainpeps.ugent.be/ | Blood–brain barrier passing peptides | [143] |
CAMPR3 | http://www.camp.bicnirrh.res.in/ | Antimicrobial peptides | [144] |
CancerPPD | http://crdd.osdd.net/raghava/cancerppd/index.php | Anticancer peptides and proteins | [145] |
CPPSite 2.0 | http://crdd.osdd.net/raghava/cppsite/ | Cell-penetrating peptides | [146] |
DBAASP | https://dbaasp.org/ | Antimicrobial peptides | [147] |
EROP-Moscow | http://erop.inbi.ras.ru/ | Bioactive peptides | [148] |
Hemolytik | http://crdd.osdd.net/raghava/hemolytik/ | Hemolytic and non-hemolytic peptides | [149] |
MBPDB * | http://mbpdb.nws.oregonstate.edu/ | Milk protein-derived bioactive peptides | [150] |
NeuroPep | http://isyslab.info/NeuroPep/ | Neuropeptides | [151] |
PepBank | http://pepbank.mgh.harvard.edu/ | Bioactive peptides | [152] |
Quorumpeps | http://quorumpeps.ugent.be/ | Quorum sensing signaling peptides | [153] |
SATPdb | http://crdd.osdd.net/raghava/satpdb/links.php | A metabase of therapeutic peptides | [154] |
StraPep | http://isyslab.info/StraPep/ | Structures of bioactive peptides | [155] |
THPdb | http://crdd.osdd.net/raghava/thpdb/index.html | FDA-approved therapeutic peptides | [137] |
TumorHoPe | http://crdd.osdd.net/raghava/tumorhope/ | Tumor homing peptides | [156] |
YADAMP | http://yadamp.unisa.it/about.aspx | Antimicrobial peptides | [157] |
Source | Characteristics | Procurement and Identification | Activity | Reference |
---|---|---|---|---|
Muscle of miiuy corvina (Miichthis miiuy) | YASVV, NFWWP, FWKVV, TWKVV, FMPLH, YFLWP, VIAPW, WVWWW, MWKVW and IRWWW | UF/RP-HPLC | Radical scavenging of DPPH and ABTS. | [172] |
Finger millet | TSSSLNMAVRGGLTR and STTVGLGISMRSASVR | Trypsin, pepsin MALDI-TOF/TOF–MS/MS | Capture of hydroxyl radicals, DPPH, ABTS and chelating activity. | [173] |
Salmon jelly | PP, GF, GPVA, GGPAGPAV, R,Y | Alcalase, Flavourzyme 500 L, Corolase PP, Promod RP-HPLC/UPLC–MS/MS | Inhibitor of dipeptidyl peptidase IV (DPP-IV) and reactive oxygen species (ORAC). | [174] |
Shells from shrimp discard processing | SYELPDGQVITIGNER, YPIEHGIITNWDDMEK, EEYDESGPGIVHR, EVDRLEDELVNEK, ALSNAEGEVAALNR, NLNDEIAHQDELINK, LEQTLDELEDSLER | Trypsin, α-chymotrypsin, pepsin GPC NANO LC–LTQ MS | ABTS, DPPH and hydroxyl radical scavenging, reducing power and chelating capacity of ferrous ions, inhibition of β-carotene bleaching, peroxidation of cholesterol and peroxyl and hydroxyl radicals. | [175] |
Salmon trimmings | GPAV, VC Y FF | Alcalase, Flavourzyme 500 L, Corolase PP, Promod RP-HPLC/ UPLC–MS/MS | Inhibitor of dipeptidyl peptidase IV (DPP-IV) and reactive oxygen species (ORAC). | [176] |
Donkey milk | EWFTFLKEAGQGAKDMWR, GQGAKDMWR, REWFTFLK, MPFLKSPIVPF | MDLC micro-HPLC-Orbitrap–MS | Antioxidant capacity and inhibitory activity of angiotensin-converting enzyme. | [177] |
Goat milk | Serum: 883.47–1697.82 Da Casein: 794.44–1956.95 Da Presence of P and H residues. | Pepsin HPLC RP-HPLC | DPPH and superoxide radical scavenging activity. | [178] |
Palm kernel | <3 kDa VVG-G-D-G-D-V VPVTST LTTLDSE | Pepsin, pancreatin. UF RP-HPLC | Radical scavenging activity ABTS. Iron-reducing power. | [179] |
Cod muscle | MW fractions < 1 kDa | Pepsin, trypsin, chymotrypsin RP-HPLC | Capture of oxygen radicals and DPPH. Superoxide and hydroxyl scavenging activity. Chelating activity of iron. Inhibition of the oxidation of linoleic acid Dose-dependent. | [171] |
Juglans sigillata seeds | Peptides with 2–4 aa residues rich in Y, C | Pancreatin GPC RP-HPLC | Radical scavenging activity DPPH, ABTS, oxygen. Iron chelation. Protective activity in PC12 cells against H2O2-induced cytotoxicity. | [180] |
Egg white powder | DHTKE 628.64 Da FFEFH 630.71 Da MPDAHL 684.1 Da | Alcalase UF GPC | 628.64 Da. Better oxygen radical absorption capacity. 630.71 and 684.1 Da. DPPH radical scavenging activity. Acidic, hydrophobic and low-molecular weight peptides showed higher antioxidant activity. | [181] |
Squid | WCTSVS 682.5 Da | α-chymotrypsin IC GPC | Free radical scavenging activity (DPPH, hydroxyl, superoxide). Chelation of metals (Fe). Avoids DNA damage. Inhibits lipid peroxidation (linoleic acid). | [182] |
Campana buffalo mozzarella cheese | CKYVCTCKMS 1326.5 Da | Gastrointestinal digestion in vitro GPC HPLC | Gut protection against induced oxidative stress (CaCo2 cells). | [183] |
Bovine hair | CERPTCCEHS 1325.4 Da | Alcalase GPC SEC | ABTS and hydroxyl radical scavenging activity. Inhibition of erythrocyte hemolysis and lipid peroxidation. Protection of DNA and PC12 cells against hydrogen peroxide-induced oxidative damage. | [184] |
Plum (Prunus domestica L.) | MLPSLPK, HLPLL, NLPLL, HNLPLL, KGVL, HLPLLR, HGVLQ, GLYSPH, LVRVQ, YLSF, DQVPR, LPLLR, VKPVAPF. | High-intensity focused ultrasound. Alcalase RP-HPLC-ESI-Q-TOF | Antioxidant and antihypertensive activity. | [185] |
Velvet bean (Mucuna pruriens) | <1 kDa, 1–3 kDa | Sequential hydrolysis Alcalase–Flavourzyme, pepsin–pancreatin UF | Radical scavenging activity DPPH. Iron-reducing power. | [186] |
Peanut seed | TPA (286 kDa) I/LPS (315 kDa) SP (202 kDa) | Alcalase UF GPC HPLC | Peptides with MW < 3 kDa showed greater reducing power than those with PM > 3 kDa. | [187] |
Duck egg (egg white) | 202.1 294.1 382.1 426.3 514.4 Da | Sequential hydrolysis (alcalase and specific hydrolase for egg protein (SEEP)) GPC IC | Oxygen and hydroxyl radical absorption capacity. | [188] |
Palm oil extraction residue | AWFS 509.56 Da WAF 422.48 Da LPWRPATNVF 1200.41 Da | Papain Fractionation based on isoelectric point RP-HPLC | Radical scavenging activity of DPPH. Iron chelation. | [189] |
Sweet potato | YYIVS 643.2 Da TYQTF 659.4 Da SGQYFL 713.2 Da YYDPL 669.3 Da | Alcalase UF RP-HPLC | Hydroxyl radical scavenging activity. | [110] |
Bovine plasma | Alcalase UF IC RP-HPLC | Free radical scavenging capacity. High reductive power. | [190] |
Amino Acid | Mechanism of Action | Example | Reference |
---|---|---|---|
Cysteine | SH groups are radical scavengers, protect tissues from oxidative stress and improve glutathione peroxidase activity. | Tripeptides with C. | [197,199] |
Hydrophobic amino acids | Increase solubility of peptides in lipids, facilitating access to hydrophobic radical species and polyunsaturated fatty acids. | P, H or T, within sequences and V or L at N-terminus in peptides. Terminal amino acids such as L or V and G and P residues in gluten peptide sequences. | [77,162,192] |
Acidic and basic amino acids | The carboxyl and amino groups of the side chains chelate metal ions due to their ability to dissociate and be proton donors. | A (acidic amino acid) and H (basic amino acid). | [103] |
Aromatic amino acids (Y, H, W, and F) | They stabilize radicals by donating electrons, maintaining their own stability via the resonance of their structure. | H at N-terminus. H at C-terminus. Tripeptides with W or Y at C-terminus. | [162] |
Source | Antimicrobial Peptide | Reference |
---|---|---|
Green coconut water (Cocos nucifera L). | CnAMP1, CnAMP2 CnAMP3 | [227] |
Stems, seeds, and leaves of plants | Thionins Defensins Snakins | [228] |
Sardinella prepared by treatment with Bacillus subtilis A26 protease | Sardinella protein hydrolysate (SPH), | [226] |
Atlantic mackerel (Scomber scombrus) Protamex protein hydrolysate | SIFIQRFTT, RKSGDPLGR, AKPGDGAGSGPR GLPGPLGPAGPK | [229] |
Protein hydrolysate of anchovy cooking wastewater | GLSRLFTALK | [230] |
Frogs | Aurein 1–2 Brevinin 1 Maculatins Citropin | [231,232,233,234,235] |
Insects | Cecropin | [236] |
Horse Crab | Tachyplesins Polyphemusin | [237,238] |
Pigs | Protegrins Tritrpticin | [236] |
Bovine | Cathelicidin Indolicidin | [236] |
Cow | Bactenecin 1 b-defensin Bac 5 Indolicidin | [238] |
Mammals | α defensins β defensins | [239,240] |
Honeybee | Apidaecin | [238] |
Trypsin digested Botrytis cinerea protease | FPGSAD, SCVGTDLNR, VAHLT VQGGDAYYLNR SGSTASAVGASLCR | [241] |
Lactococcus lactis, Bacillus subtilis, and Bacillus brevis | Nisin Gramicidin | [242] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-García, G.; Dublan-García, O.; Arizmendi-Cotero, D.; Gómez Oliván, L.M. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022, 27, 1343. https://doi.org/10.3390/molecules27041343
López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules. 2022; 27(4):1343. https://doi.org/10.3390/molecules27041343
Chicago/Turabian StyleLópez-García, Guadalupe, Octavio Dublan-García, Daniel Arizmendi-Cotero, and Leobardo Manuel Gómez Oliván. 2022. "Antioxidant and Antimicrobial Peptides Derived from Food Proteins" Molecules 27, no. 4: 1343. https://doi.org/10.3390/molecules27041343
APA StyleLópez-García, G., Dublan-García, O., Arizmendi-Cotero, D., & Gómez Oliván, L. M. (2022). Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules, 27(4), 1343. https://doi.org/10.3390/molecules27041343