The Changes in Bioactive Compounds and Antioxidant Activity of Chia (Salvia hispanica L.) Herb under Storage and Different Drying Conditions: A Comparison with Other Species of Sage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Basic Chemical Composition
2.3. Determination of Total Carotenoids
2.4. Preparation of the Extracts
2.5. Determination of Total Polyphenols
2.6. Determination of Polyphenol Profile
2.7. Determination of Antioxidant Activity
2.8. Statistical Analysis
3. Results
3.1. Basic Chemical Composition
3.2. The Content of Total Carotenoids
3.3. The Content of Total Polyphenols
3.4. Polyphenol Profile
3.5. Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- World Health Organization; Department of Technical Cooperation for Essential Drugs and Traditional. WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. Medicine; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Yun, J.W. Possible anti-obesity therapeutics from nature—A review. Phytochemistry 2010, 71, 1625–1641. [Google Scholar] [CrossRef] [PubMed]
- Sergent, T.; Vanderstraeten, J.; Winand, J.; Beguin, P.; Schneider, Y.J. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem. 2012, 135, 68–73. [Google Scholar] [CrossRef]
- Walker, J.B.; Sytsma, K.J.; Treutlein, J.; Wink, M. Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am. J. Bot. 2004, 91, 1115–1125. [Google Scholar] [CrossRef]
- Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; Rosselli, S.; Bruno, M. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem. Toxicol. 2013, 55, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Stagos, D.; Portesis, N.; Spanou, C.; Mossialos, D.; Aligiannis, N.; Chaita, E.; Panagoulis, C.; Reri, E.; Skaltsounis, L.; Tsatsakis, A.M.; et al. Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species. Food Chem. Toxicol. 2012, 50, 4115–4124. [Google Scholar] [CrossRef]
- Douglas, T.E.L.; Kumari, S.; Dziadek, K.; Dziadek, M.; Abalymov, A.; Cools, P.; Brackman, G.; Coenye, T.; Morent, R.; Mohan, M.K.; et al. Titanium surface functionalization with coatings of chitosan and polyphenol-rich plant extracts. Mater. Lett. 2017, 196, 213–216. [Google Scholar] [CrossRef]
- Dziadek, M.; Dziadek, K.; Checinska, K.; Zagrajczuk, B.; Golda-Cepa, M.; Brzychczy-Wloch, M.; Menaszek, E.; Kopec, A.; Cholewa-Kowalska, K. PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation. Bioact. Mater. 2021, 6, 1811–1826. [Google Scholar] [CrossRef]
- Dziadek, M.; Dziadek, K.; Zagrajczuk, B.; Menaszek, E.; Cholewa-Kowalska, K. Poly(ε-caprolactone)/bioactive glass composites enriched with polyphenols extracted from sage (Salvia officinalis L.). Mater. Lett. 2016, 183, 386–390. [Google Scholar] [CrossRef]
- Oudjedi, K.; Manso, S.; Nerin, C.; Hassissen, N.; Zaidi, F. New active antioxidant multilayer food packaging films containing Algerian Sage and Bay leaves extracts and their application for oxidative stability of fried potatoes. Food Control 2019, 98, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Baricevic, D.; Sosa, S.; Della Loggia, R.; Tubaro, A.; Simonovska, B.; Krasna, A.; Zupancic, A. Topical anti-inflammatory activity of Salvia officinalis L. leaves: The relevance of ursolic acid. J. Ethnopharmacol. 2001, 75, 125–132. [Google Scholar] [CrossRef]
- Longaray Delamare, A.P.; Moschen-Pistorello, I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigaray, S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Gniewosz, M.; Kraśniewska, K.; Węglarz, Z.; Przybył, J.L. The Comparison of Antimicrobial Properties of Ethanolic and Aqueous Extracts from Sage (Salvia officinalis L.). Bromatol. Chem. Toksykol. 2012, XLV, 743–748. [Google Scholar]
- Kelen, M.; Tepe, B. Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Bioresour. Technol. 2008, 99, 4096–4104. [Google Scholar] [CrossRef] [PubMed]
- Seol, G.H.; Shim, H.S.; Kim, P.J.; Moon, H.K.; Lee, K.H.; Shim, I.; Suh, S.H.; Min, S.S. Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. J. Ethnopharmacol. 2010, 130, 187–190. [Google Scholar] [CrossRef]
- Taârit, M.B.; Msaada, K.; Hosni, K.; Marzouk, B. Fatty acids, phenolic changes and antioxidant activity of clary sage (Salvia sclarea L.) rosette leaves grown under saline conditions. Ind. Crop. Prod. 2012, 38, 58–63. [Google Scholar] [CrossRef]
- Rajabi, Z.; Ebrahimi, M.; Farajpour, M.; Mirza, M.; Ramshini, H. Compositions and yield variation of essential oils among and within nine Salvia species from various areas of Iran. Ind. Crop. Prod. 2014, 61, 233–239. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & HealthCare (EDQM). European Pharmacopoeia, 10th ed.; EDQM-European Directorate for the Quality of Medicines, Council of Europe: Strasbourg, France, 2011. [Google Scholar]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Mediani, A.; Abas, F.; Tan, C.P.; Khatib, A. Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of cosmos caudatus. Antioxidants 2014, 3, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, U.; Cummins, E. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int. 2013, 50, 497–506. [Google Scholar] [CrossRef]
- Compaore, A.; Dissa, A.O.; Rogaume, Y.; Putranto, A.; Chen, X.D.; Mangindaan, D.; Zoulalian, A.; Rémond, R.; Tiendrebeogo, E. Application of the reaction engineering approach (REA) for modeling of the convective drying of onion. Dry. Technol. 2017, 35, 500–508. [Google Scholar] [CrossRef]
- Hii, C.L.; Ong, S.P.; Yap, J.Y.; Putranto, A.; Mangindaan, D. Hybrid drying of food and bioproducts: A review. Dry. Technol. 2021, 39, 1554–1576. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind. Crop. Prod. 2011, 34, 1366–1371. [Google Scholar] [CrossRef]
- Marineli, R.d.S.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT-Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Sandoval-Oliveros, M.R.; Paredes-López, O. Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J. Agric. Food Chem. 2013, 61, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.; Caruso, M.C.; Guzzo, F.; Galgano, F.; Commisso, M.; Bochicchio, R.; Labella, R.; Favati, F. Nutritional quality of seeds and leaf metabolites of Chia (Salvia hispanica L.) from Southern Italy. Eur. Food Res. Technol. 2015, 241, 615–625. [Google Scholar] [CrossRef]
- da Silva Marineli, R.; Lenquiste, S.A.; Moraes, É.A.; Maróstica Jr, M.R. Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats. Food Res. Int. 2015, 76, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.G.; Gai, F. Fatty acid and nutritive quality of chia (Salvia hispanica L.) seeds and plant during growth. Anim. Feed Sci. Technol. 2009, 148, 267–275. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Offcial Analitical Chemists International: Gaintersburg, MD, USA, 2006. [Google Scholar]
- Sadowska, U.; Kopeć, A.; Kourimska, L.; Zarubova, L.; Kloucek, P. The effect of drying methods on the concentration of compounds in sage and thyme. J. Food Process. Preserv. 2017, 41, e13286. [Google Scholar] [CrossRef]
- Przetwory Owocowe i Warzywne—Przygotowanie Próbek i Metody Badań Fizykochemicznych—Oznaczanie Zawartości Sumy Karotenoidów i Beta-Karotenu. PN-A-75101-12. 1990. Available online: https://sklep.pkn.pl/pn-a-75101-03-1990p.html (accessed on 1 February 2022).
- Dziadek, K.; Kopeć, A.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Witkowicz, R.; Bystrowska, B.; Francik, R. Identification of polyphenolic compounds and determination of antioxidant activity in extracts and infusions of buckwheat leaves. Eur. Food Res. Technol. 2018, 244, 333–343. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Czaplicki, S. The petioles and leaves of sweet cherry (Prunus avium L.) as a potential source of natural bioactive compounds. Eur. Food Res. Technol. 2018, 244, 1415–1426. [Google Scholar] [CrossRef]
- Bandana, N.; Bala, N.; Verma, A. Utilization of locally available mint leaves concentrates for development of micronutrient rich food products. World J. Pharm. Pharm. Sci. 2015, 4, 1171–1177. [Google Scholar]
- Sangwan, A.; Kawatra, A.; Sehgal, S. Nutrient composition of mint powder prepared from various drying methods. Nutr. Food Sci. 2012, 42, 21–25. [Google Scholar] [CrossRef]
- Sulieman, A.M.E.; Abdelrahman, S.E.; Abdel Rahim, A.M. Phytochemical Analysis of Local Spearmint (Mentha spicata) Leaves and Detection of the Antimicrobial Activity of its Oil. J. Microbiol. Res. 2012, 1, 1–4. [Google Scholar] [CrossRef]
- Daly, T.; Jiwan, M.A.; O’Brien, N.M.; Aherne, S.A. Carotenoid content of commonly consumed herbs and assessment of their Bioaccessibility using an in vitro digestion model. Plant Foods Hum. Nutr. 2010, 65, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Cvitkovi, D.; Repaji, M.; Pedisi, S. Composition and Antioxidant Properties of Pigments of Extraction Methods. Foods 2021, 10, 2477. [Google Scholar] [CrossRef] [PubMed]
- Murkovic, M.; Gams, K.; Draxl, S.; Pfannhauser, W. Development of an Austrian carotenoid database. J. Food Compos. Anal. 2000, 13, 435–440. [Google Scholar] [CrossRef]
- Martins, F.; Oliveira, I.; Barros, A.; Amaral, C.; Afonso, S.; Ferreira, H.; Gonçalves, B. Leaf age, seasonal and annual variations in Salvia officinalis L. Var. purpurascens biochemical characteristics. J. Appl. Bot. Food Qual. 2016, 89, 299–306. [Google Scholar]
- Lisiewska, Z.; Kmiecik, W.; Korus, A. Content of vitamin C, carotenoids, chlorophylls and polyphenols in green parts of dill (Anethum graveolens L.) depending on plant height. J. Food Compos. Anal. 2006, 19, 134–140. [Google Scholar] [CrossRef]
- Cardoso, W.S.; Borém, A.; Karam, D.; de Almeida Rios, S.; Paes, M.C.D. Influence of the moisture at harvest and drying process of the grains on the level of carotenoids in maize (Zea mays). Food Sci. Technol. 2015, 35, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Sojak, M.; Jaros, M.; Janaszek-Mańkowska, M.; Trajer, J.; Głowacki, S.; Ratajski, A. The effect of drying and long-term storage on colour and carotenoids content of giant pumpkin (Cucurbita maxima). Tech. Sci./Univ. Warm. Maz. Olsztyn 2016, 19, 295–312. [Google Scholar]
- Moreno G, D.C.; Díaz-Moreno, A.C. Efecto del proceso de secado por aire caliente en las características fisicoquímicas, antioxidantes y microestructurales de tomate cv. Chonto. Agron. Colomb. 2017, 35, 100–106. [Google Scholar]
- Asgar, A. Effect of storage temperature and type of packaging on physical and chemical quality of carrot. IOP Conf. Ser. Earth Environ. Sci. 2020, 443, 012002. [Google Scholar] [CrossRef]
- Jeshvaghani, Z.A.; Rahimmalek, M.; Talebi, M.; Goli, S.A.H. Comparison of total phenolic content and antioxidant activity in different Salvia species using three model systems. Ind. Crop. Prod. 2015, 77, 409–414. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crop. Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Dent, M.; Dragović-Uzelac, V.; Penić, M.; Brñić, M.; Bosiljkov, T.; Levaj, B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Atanassova, M.; Georgieva, S.; Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Univ. Chem. Technol. Metall. 2011, 46, 81–88. [Google Scholar]
- Dent, M.; Kovačević, D.B.; Bosiljkov, T.; Dragović-Uzelac, V. Polyphenolic composition and antioxidant capacity of indigenous wild dalmatian sage (Salvia officinalis L.). Croat. Chem. Acta 2017, 90, 451–459. [Google Scholar] [CrossRef]
- Ben Farhat, M.; Chaouch-Hamada, R.; Sotomayor, J.A.; Landoulsi, A.; Jordán, M.J. Antioxidant potential of Salvia officinalis L. residues as affected by the harvesting time. Ind. Crop. Prod. 2014, 54, 78–85. [Google Scholar] [CrossRef]
- Hamrouni-Sellami, I.; Rahali, F.Z.; Rebey, I.B.; Bourgou, S.; Limam, F.; Marzouk, B. Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food Bioprocess Technol. 2013, 6, 806–817. [Google Scholar] [CrossRef]
- Nawirska, A.; Figiel, A.; Kucharska, A.Z.; Sokół-Łetowska, A.; Biesiada, A. Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. J. Food Eng. 2009, 94, 14–20. [Google Scholar] [CrossRef]
- Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon 2019, 5, e03044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rababah, T.M.; Al-U’ Datt, M.; Alhamad, M.; Al-Mahasneh, M.; Ereifej, K.; Andrade, J.; Altarifi, B.; Almajwal, A.; Yang, W. Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. Int. J. Agric. Biol. Eng. 2015, 8, 145–150. [Google Scholar]
- Kayahan, S.; Saloglu, D. Comparison of Phenolic Compounds and Antioxidant Activities of Raw and Cooked Turkish Artichoke Cultivars. Front. Sustain. Food Syst. 2021, 5, 761145. [Google Scholar] [CrossRef]
Species | Ash [g∙100 g−1 DW] | Protein [g∙100 g−1 DW] | Crude Fat [g∙100 g−1 DW] | Digestible Carbohydrates [g∙100 g−1 DW] | Dietary Fiber [g∙100 g−1 DW] |
---|---|---|---|---|---|
Salvia hispanica | 11.73 ± 0.26 b | 9.43 ± 0.28 a | 1.67 ± 0.04 a | 30.26 ± 1.21 b | 46.90 ± 1.40 b |
Salvia officinalis | 8.76 ± 0.25 a | 9.38 ± 0.06 a | 4.06 ± 0.06 c | 24.82 ± 2.41 a | 52.98 ± 2.10 c |
Salvia sclarea | 18.39 ± 0.24 c | 14.49 ± 0.32 b | 1.99 ± 0.11 b | 28.17 ± 1.36 b | 36.96 ± 1.20 a |
Species | Total Carotenoids [mg∙100 g−1 DW] | Total Polyphenols [g∙100 g−1 DW] | Antioxidant Activity [µmol Trolox∙g−1 DW] |
---|---|---|---|
Salvia hispanica | 103.02 ± 0.10 b | 9.76 ± 0.52 b | 713.26 ± 36.72 b |
Salvia officinalis | 63.48 ± 0.19 a | 9.47 ± 0.15 b | 651.48 ± 30.87 ab |
Salvia sclarea | 109.06 ± 1.05 c | 4.95 ± 0.30 a | 568.49 ± 42.99 a |
Species | Drying Method | Storage | |||||||
---|---|---|---|---|---|---|---|---|---|
Directly after Drying | After 3 Months | After 6 Months | After 12 Months | ||||||
Total Carotenoids [mg∙100 g−1 DW] | Changes * [%] | Total Carotenoids [mg∙100 g−1 DW] | Changes ** [%] | Total Carotenoids [mg∙100 g−1 DW] | Changes ** [%] | Total Carotenoids [mg∙100 g−1 DW] | Changes ** [%] | ||
Salvia hispanica | freeze-drying | 64.87 ± 0.68 l, D | −37.03 | 54.90 ± 1.07 h, C | −15.36 | 41.38 ± 0.26 h, B | −36.21 | 29.24 ± 1.15 h, A | −54.92 |
natural drying | 37.48 ± 0.91 f, D | −63.62 | 24.76 ± 0.57 e, C | −33.93 | 19.63 ± 0.30 d, B | −47.63 | 13.94 ± 0.23 cd, A | −62.81 | |
drying at 30 °C | 27.93 ± 0.18 b, C | −72.89 | 16.43 ± 0.37 a, B | −41.16 | 14.26 ± 0.09 b, A | −48.95 | 14.10 ± 0.09 de, A | −49.50 | |
drying at 40 °C | 29.41 ± 0.08 c, C | −71.46 | 21.04 ± 0.07 c, B | −28.45 | 21.10 ± 0.10 e, B | −28.25 | 20.22 ± 0.09 g, A | −31.25 | |
drying at 50 °C | 33.79 ± 0.27 e, D | −67.20 | 23.09 ± 0.22 d, C | −31.67 | 18.73 ± 0.87 d, B | −44.57 | 12.64 ± 0.42 c, A | −62.60 | |
Salvia officinalis | freeze-drying | 57.98 ± 1.27 k, C | −8.66 | 54.14 ± 0.08 h, B | −6.63 | 41.82 ± 0.67 h, A | −27.88 | 41.21 ± 1.00 j, A | −28.93 |
natural drying | 45.85 ± 0.18 hi, C | −27.77 | 39.51 ± 0.52 g, B | −13.83 | 39.06 ± 0.93 g, B | −14.80 | 35.17 ± 1.36 i, A | −23.29 | |
drying at 30 °C | 23.60 ± 0.08 a, C | −62.82 | 19.80 ± 0.32 b, B | −16.10 | 19.38 ± 0.28 d, AB | −17.91 | 18.32 ± 0.65 f, A | −22.38 | |
drying at 40 °C | 31.44 ± 0.08 d, D | −50.47 | 29.40 ± 0.95 f, C | −6.47 | 24.82 ± 0.09 f, B | −21.04 | 15.42 ± 0.41 e, A | −50.97 | |
drying at 50 °C | 31.79 ± 0.26 d, D | −49.92 | 23.56 ± 0.17 d, C | −25.89 | 14.60 ± 0.18 b, B | −54.08 | 11.04 ± 0.13 b, A | −65.28 | |
Salvia sclarea | freeze-drying | 71.04 ± 0.23 m, D | −34.86 | 54.63 ± 1.11 h, C | −23.10 | 49.60 ± 0.17 i, B | −30.18 | 28.85 ± 0.19 h, A | −59.38 |
natural drying | 46.68 ± 0.55 ij, D | −57.20 | 23.62 ± 0.07 d, C | −49.40 | 19.56 ± 0.09 d, B | −58.10 | 14.78 ± 0.83 de, A | −68.35 | |
drying at 30 °C | 42.24 ± 0.78 g, D | −61.27 | 20.98 ± 0.14 c, C | −50.34 | 19.71 ± 0.18 d, B | −53.35 | 17.56 ± 0.19 f, A | −58.42 | |
drying at 40 °C | 47.38 ± 0.53 j, C | −56.56 | 22.41 ± 0.26 d, B | −52.71 | 17.08 ± 0.53 c, A | −63.95 | 16.91 ± 0.53 f, A | −64.31 | |
drying at 50 °C | 45.16 ± 1.42 h, D | −58.59 | 23.39 ± 0.07 d, C | −48.20 | 9.14 ± 0.00 a, B | −79.77 | 5.85 ± 0.00 a, A | −87.05 |
Species | Drying Method | Storage | |||||||
---|---|---|---|---|---|---|---|---|---|
Directly after Drying | After 3 Months | After 6 Months | After 12 Months | ||||||
Total Polyphenols [g∙100 g−1 DW] | Changes * [%] | Total Polyphenols [g∙100 g−1 DW] | Changes ** [%] | Total Polyphenols [g∙100 g−1 DW] | Changes ** [%] | Total Polyphenols [g∙100 g−1 DW] | Changes ** [%] | ||
Salvia hispanica | freeze-drying | 11.84 ± 1.68 hi, A | 21.30 | 10.83 ± 0.58 i, A | −8.46 | 10.40 ± 0.54 i, A | −12.14 | 10.71 ± 0.24 f, A | −9.49 |
natural drying | 10.79 ± 0.07 gh, B | 10.59 | 10.71 ± 0.24 hi, B | −0.73 | 9.25 ± 0.12 gh, A | −14.30 | 9.23 ± 0.47 e, A | −14.44 | |
drying at 30 °C | 9.73 ± 0.14 fg, C | −0.28 | 9.16 ± 0.06 g, B | −7.50 | 8.82 ± 0.10 g, A | −10.99 | 8.57 ± 0.14 d, A | −13.51 | |
drying at 40 °C | 9.66 ± 0.02 f, D | −0.97 | 9.25 ± 0.20 g, C | −4.29 | 8.73 ± 0.05 g, B | −9.68 | 8.34 ± 0.10 d, A | −13.68 | |
drying at 50 °C | 5.49 ± 0.15 a, C | −43.78 | 4.71 ± 0.05 a, B | −14.07 | 4.58 ± 0.01 a, B | −16.55 | 4.09 ± 0.04 a, A | −25.42 | |
Salvia officinalis | freeze-drying | 12.89 ± 0.63 i, B | 36.11 | 12.09 ± 0.25 j, AB | −6.22 | 11.91 ± 0.50 j, AB | −7.60 | 10.94 ± 0.69 f, A | −15.14 |
natural drying | 12.03 ± 0.60 i, C | 27.02 | 10.09 ± 0.61 h, B | −16.09 | 9.59 ± 0.38 h, B | −20.25 | 8.17 ± 0.33 ds, A | −32.11 | |
drying at 30 °C | 7.90 ± 0.16 de, B | −16.58 | 7.32 ± 0.54 de, AB | −7.35 | 6.81 ± 0.00 f, A | −13.74 | 6.64 ± 0.10 c, A | −16.01 | |
drying at 40 °C | 7.13 ± 0.05 bcd, C | −24.72 | 7.15 ± 0.01 d, C | 0.27 | 6.19 ± 0.16 cde, B | −13.23 | 5.59 ± 0.19 b, A | −21.66 | |
drying at 50 °C | 6.11 ± 0.07 ab, A | −35.49 | 6.11 ± 0.47 bc, A | 0.07 | 5.95 ± 0.04 cd, A | −2.66 | 5.94 ± 0.13 b, A | −2.80 | |
Salvia sclarea | freeze-drying | 8.14 ± 0.01 de, C | 64.50 | 7.89 ± 0.15 ef, C | −3.05 | 6.12 ± 0.21 cd, B | −24.79 | 5.89 ± 0.33 b, A | −27.63 |
natural drying | 8.52 ± 0.01 e, B | 72.15 | 8.04 ± 0.16 f, B | −5.63 | 6.74 ± 0.01 ef, A | −20.86 | 5.83 ± 0.42 b, A | −31.55 | |
drying at 30 °C | 7.69 ± 0.13 cde, B | 55.51 | 6.70 ± 0.16 cd, A | −12.89 | 6.51 ± 0.50 def, A | −15.33 | 5.92 ± 0.34 b, A | −23.04 | |
drying at 40 °C | 6.97 ± 0.11 bcd, D | 40.90 | 5.66 ± 0.04 b, C | −18.83 | 5.14 ± 0.04 ab, B | −26.27 | 4.49 ± 0.18 a, A | −35.63 | |
drying at 50 °C | 6.70 ± 0.27 bc, B | 35.45 | 6.33 ± 0.05 bc, B | −5.53 | 5.70 ± 0.10 bc, A | −14.99 | 5.74 ± 0.01 b, A | −14.29 |
Polyphenolic Compounds | Fresh | Directly after Drying | After 12 Months of Storage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Freeze-Drying | Natural Drying | Drying at 30 °C | Drying at 40 °C | Drying at 50 °C | Freeze-Drying | Natural Drying | Drying at 30 °C | Drying at 40 °C | Drying at 50 °C | ||
mg∙100 g−1 DW | |||||||||||
Phenolic Acids: | |||||||||||
4-Hydroxybenzoic acid | nd | 22.74 ± 0.22 h | 7.44 ± 0.08 c | 16.19 ± 0.02 f | 12.61 ± 0.00 e | 5.40 ± 0.00 b | 17.90 ± 0.11 g | 4.89 ± 0.10 a | 11.32 ± 0.21 d | 12.63 ± 0.19 e | 4.62 ± 0.04 a |
Caffeic acid | 17.11 ± 0.06 h | 16.51 ± 0.06 g | 22.15 ± 0.00 i | 13.97 ± 0.00 f | 14.05 ± 0.06 f | 9.50 ± 0.00 c | 12.01 ± 0.23 e | 8.02 ± 0.04 b | 11.51 ± 0.06 d | 11.56 ± 0.00 d | 6.85 ± 0.00 a |
Chlorogenic acid | 14.88 ± 0.00 e | 23.74 ± 0.16 j | 7.01 ± 0.04 c | 19.38 ± 0.08 g | 15.67 ± 0.02 f | 6.36 ± 0.00 a | 22.31 ± 0.32 i | 6.85 ± 0.50 bc | 20.92 ± 0.02 h | 10.00 ± 0.63 d | 6.95 ± 0.02 bc |
Ferulic acid | nd | 11.25 ± 0.30 f | 3.92 ± 0.00 b | 11.64 ± 0.25 f | 6.51 ± 0.38 c | 2.39 ± 0.02 a | 7.28 ± 0.21 d | 2.79 ± 0.17 a | 7.79 ± 0.06 e | 6.53 ± 0.04 c | 2.47 ± 0.04 a |
Gallic acid | 13.13 ± 0.00 c | 4.84 ± 0.04 b | 17.19 ± 0.16 d | nd | nd | nd | 3.66 ± 0.06 a | 3.64 ± 0.04 a | nd | nd | nd |
p-Coumaric acid | 33.49 ± 0.06 c | 48.97 ± 0.04 k | 43.62 ± 0.00 j | 41.44 ± 0.04 i | 40.63 ± 0.06 h | 34.03 ± 0.02 e | 40.36 ± 0.00 g | 22.73 ± 0.03 a | 33.74 ± 0.04 d | 39.15 ± 0.06 f | 30.48 ± 0.02 b |
Rosmarinic acid | 1358.80 ± 1.18 g | 1783.30 ± 0.91 k | 1769.02 ± 1.88 j | 1458.40 ± 1.10 h | 1315.27 ± 1.68 f | 200.31 ± 0.21 b | 1558.61 ± 1.04 i | 636.47 ± 1.63 c | 1139.64 ± 0.43 e | 905.93 ± 1.82 d | 170.86 ± 0.29 a |
Sinapinic acid | 196.71 ± 0.00 h | 11.81 ± 0.65 f | 258.92 ± 0.16 i | 10.27 ± 0.04 e | 6.56 ± 0.00 c | 2.80 ± 0.10 a | 9.53 ± 0.02 d | 35.02 ± 0.03 g | 6.12 ± 0.19 bc | 5.77 ± 0.25 b | 2.80 ± 0.00 a |
Syringic acid | nd | 11.48 ± 0.06 h | 5.71 ± 0.08 e | 8.79 ± 0.12 g | 4.60 ± 0.02 b | 4.95 ± 0.02 c | 5.51 ± 0.11 d | 3.10 ± 0.11 a | 6.68 ± 0.02 f | 4.74 ± 0.04 b | 4.60 ± 0.02 b |
Vanillic acid | 5.78 ± 0.00 f | 5.30 ± 0.02 d | 7.50 ± 0.00 i | 6.14 ± 0.04 g | 6.53 ± 0.02 h | 5.42 ± 0.00 e | 4.33 ± 0.04 c | 3.88 ± 0.02 b | 6.18 ± 0.02 g | 6.44 ± 0.12 h | 3.45 ± 0.00 a |
Flavonoids: | |||||||||||
Apigenin | 2.93 ± 0.06 h | 1.38 ± 0.02 g | 1.04 ± 0.00 e | 0.57 ± 0.02 d | 0.48 ± 0.04 c | 0.28 ± 0.02 b | 1.22 ± 0.04 f | 0.62 ± 0.04 d | 0.33 ± 0.02 b | 0.12 ± 0.00 a | 0.15 ± 0.00 a |
Epicatechin | nd | 15.26 ± 1.30 d | 26.19 ± 0.82 g | 50.90 ± 0.70 j | 34.18 ± 1.31 i | 28.62 ± 0.29 h | 10.34 ± 0.32 a | 17.47 ± 0.90 e | 21.90 ± 0.06 f | 12.02 ± 0.50 ab | 12.89 ± 0.13 c |
Hesperidin | 70.21 ± 0.87 a | 288.22 ± 0.40 h | 231.92 ± 7.51 g | 96.31 ± 2.30 d | 96.24 ± 1.58 d | 70.98 ± 1.17 a | 165.28 ± 10.76 f | 110.83 ± 8.20 e | 93.85 ± 2.87 cd | 84.09 ± 4.38 bc | 79.87 ± 0.87 ab |
Hispidulin | nd | 14.24 ± 0.13 f | nd | 6.42 ± 0.02 c | 5.79 ± 0.06 a | 9.61 ± 0.04 d | 13.81 ± 0.02 e | nd | 6.06 ± 0.23 b | 5.99 ± 0.02 ab | 9.74 ± 0.04 d |
Isorhamnetin | 15.80 ± 0.06 c | 0.99 ± 0.06 ab | 17.02 ± 1.39 d | 0.51 ± 0.04 a | 0.44 ± 0.00 a | 0.71 ± 0.04 a | 0.67 ± 0.02 a | 1.89 ± 0.22 b | 0.16 ± 0.02 a | 0.38 ± 0.04 a | 0.09 ± 0.00 a |
Kaempferol | nd | 5.26 ± 0.00 h | 2.37 ± 0.24 b | 3.70 ± 0.00 e | 3.73 ± 0.04 e | 4.99 ± 0.04 g | 4.97 ± 0.02 g | 1.89 ± 0.01 a | 3.41 ± 0.06 d | 3.15 ± 0.02 c | 4.53 ± 0.00 f |
Luteolin | 9.28 ± 0.37 e | 19.79 ± 0.13 j | 12.40 ± 0.41 f | 13.19 ± 0.08 g | 14.14 ± 0.04 h | 14.98 ± 0.08 i | 4.40 ± 0.08 c | 8.73 ± 0.01 d | 2.82 ± 0.16 a | 3.54 ± 0.10 b | 3.92 ± 0.08 b |
Myricetin | 25.91 ± 0.00 b | 73.43 ± 0.14 h | 34.44 ± 0.08 c | 36.29 ± 0.00 d | 34.84 ± 1.13 c | 41.41 ± 0.10 f | 67.58 ± 0.04 g | 23.47 ± 0.05 a | 34.24 ± 0.21 c | 34.84 ± 0.02 c | 39.29 ± 0.11 e |
Naringin | 199.07 ± 0.87 d | 309.70 ± 0.26 h | 294.69 ± 10.28 g | 223.92 ± 5.62 f | 225.10 ± 0.08 f | 212.95 ± 0.91 e | 291.40 ± 0.34 g | 143.23 ± 3.08 a | 173.93 ± 7.07 b | 175.57 ± 0.23 bc | 184.91 ± 0.04 c |
Quercetin | nd | 4.10 ± 0.27 c | 8.83 ± 0.73 e | 6.43 ± 0.04 d | 9.82 ± 0.06 f | 4.79 ± 0.42 c | 2.18 ± 0.12 a | 4.17 ± 0.05 c | 3.32 ± 0.04 b | 5.98 ± 0.21 d | 4.31 ± 0.10 c |
Rutin | 197.59 ± 0.74 c | 314.09 ± 1.73 g | 317.42 ± 3.59 g | 272.39 ± 4.98 e | 266.05 ± 1.66 e | 175.21 ± 1.93 b | 291.36 ± 4.33 f | 143.86 ± 4.57 a | 262.91 ± 6.59 e | 231.90 ± 10.99 d | 168.51 ± 0.42 b |
Phenolic diterpenes: | |||||||||||
Carnosic acid | 17.90 ± 0.19 c | 34.29 ± 0.23 g | 53.42 ± 2.77 h | 20.92 ± 1.10 d | 29.26 ± 0.23 f | 16.37 ± 0.37 c | 24.63 ± 0.93 e | 10.03 ± 1.55 b | 7.92 ± 0.17 ab | 18.61 ± 1.01 cd | 5.69 ± 0.31 a |
Carnosol | 128.60 ± 0.12 h | 47.82 ± 0.65 g | 41.31 ± 0.16 de | 44.30 ± 0.27 f | 42.11 ± 0.43 e | 40.12 ± 0.91 cd | 42.61 ± 0.49 e | 33.04 ± 1.11 b | 41.46 ± 0.65 e | 39.89 ± 0.12 c | 22.67 ± 0.04 a |
Polyphenolic Compounds | Fresh | Directly after Drying | After 12 Months of Storage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Freeze-Drying | Natural Drying | Drying at 30 °C | Drying at 40 °C | Drying at 50 °C | Freeze-Drying | Natural Drying | Drying at 30 °C | Drying at 40 °C | Drying at 50 °C | ||
mg∙100 g−1 DW | |||||||||||
Phenolic Acids: | |||||||||||
4-Hydroxybenzoic acid | 5.86 ± 0.12 ef | 31.01 ± 1.26 h | 30.09 ± 0.83 h | 6.28 ± 0.08 f | 4.02 ± 0.02 bcd | 4.98 ± 0.02 de | 10.22 ± 0.08 g | 4.71 ± 0.29 cd | 2.09 ± 0.02 a | 3.36 ± 0.00 b | 3.68 ± 0.04 bc |
Caffeic acid | 33.97 ± 0.24 f | 80.07 ± 2.25 i | 45.83 ± 0.58 h | 36.79 ± 0.11 g | 24.53 ± 0.04 d | 23.72 ± 0.06 cd | 36.52 ± 0.19 g | 18.16 ± 0.02 a | 29.80 ± 0.02 e | 22.55 ± 0.04 bc | 21.5 ± 0.52 b |
Chlorogenic acid | 44.23 ± 0.12 e | 62.72 ± 3.35 g | 56.84 ± 2.57 f | 15.04 ± 0.06 c | 11.68 ± 0.02 b | 12.55 ± 0.76 bc | 26.99 ± 0.04 d | 13.60 ± 0.49 bc | 12.08 ± 0.19 bc | 11.42 ± 0.04 b | 5.54 ± 0.06 a |
Ferulic acid | 12.24 ± 0.00 a | 58.59 ± 0.15 h | 23.77 ± 0.33 d | 48.33 ± 0.04 g | 28.35 ± 0.10 e | 24.31 ± 0.16 d | 25.09 ± 1.28 d | 14.91 ± 1.00 b | 33.33 ± 0.14 f | 19.57 ± 0.00 c | 19.04 ± 1.04 c |
Gallic acid | 11.47 ± 0.24 a | 63.88 ± 0.75 g | 16.74 ± 0.00 b | 30.06 ± 0.02 cd | 31.70 ± 0.06 d | 45.70 ± 2.69 e | 59.62 ± 0.04 f | 15.91 ± 0.14 b | 30.16 ± 0.44 cd | 29.25 ± 0.10 c | 44.64 ± 0.02 e |
p-Coumaric acid | 4.83 ± 0.00 de | 5.22 ± 0.39 ef | 5.62 ± 0.50 f | 5.03 ± 0.02 de | 3.54 ± 0.08 c | 2.15 ± 0.02 a | 3.35 ± 0.21 bc | 2.05 ± 0.07 a | 4.69 ± 0.00 d | 2.94 ± 0.00 b | 2.13 ± 0.02 a |
Rosmarinic acid | 1488.28 ± 17.50 f | 3479.39 ± 1.66 i | 2016.88 ± 28.89 h | 1341.99 ± 1.46 e | 1231.21 ± 0.78 d | 1167.06 ± 0.04 c | 1832.81 ± 77.86 g | 913.8 ± 0.55 a | 1177.83 ± 0.65 cd | 1078.66 ± 0.34 b | 1123.51 ± 15.71 bc |
Sinapinic acid | 10.09 ± 0.00 d | 52.80 ± 0.11 h | 17.21 ± 1.16 f | 19.46 ± 0.10 g | 11.63 ± 0.10 e | 9.17 ± 0.10 d | 9.49 ± 0.56 d | 9.27 ± 0.31 d | 7.21 ± 0.02 c | 4.68 ± 0.12 b | 3.72 ± 0.02 a |
Syringic acid | 19.66 ± 0.24 b | 49.23 ± 0.06 i | 49.40 ± 2.81 i | 30.83 ± 0.04 g | 25.82 ± 0.43 ef | 27.55 ± 0.65 f | 44.69 ± 1.34 h | 13.13 ± 0.09 a | 23.82 ± 0.04 de | 21.11 ± 0.02 bc | 23.10 ± 0.00 cd |
Vanillic acid | 11.98 ± 0.00 d | 31.08 ± 0.17 h | 15.80 ± 0.66 e | 16.56 ± 0.15 f | 11.04 ± 0.06 c | 11.43 ± 0.04 c | 17.90 ± 0.08 g | 7.78 ± 0.05 a | 11.10 ± 0.06 c | 9.80 ± 0.02 b | 10.11 ± 0.23 b |
Flavonoids: | |||||||||||
Acacetin | 26.98 ± 0.24 g | 0.77 ± 0.06 a | 1.05 ± 0.00 a | 10.17 ± 0.15 f | 8.29 ± 0.06 e | 5.49 ± 0.29 d | nd | 1.09 ± 0.15 a | 1.60 ± 0.08 b | 1.09 ± 0.02 a | 2.12 ± 0.00 c |
Apigenin | nd | 0.22 ± 0.02 a | nd | 0.77 ± 0.00 c | 0.91 ± 0.02 d | 0.46 ± 0.00 b | nd | 0.78 ± 0.01 c | nd | nd | nd |
Catechin | nd | 56.75 ± 3.47 f | 69.37 ± 2.40 g | 26.00 ± 0.48 d | 26.95 ± 0.02 d | 22.20 ± 1.10 c | 49.94 ± 0.36 e | 16.38 ± 1.92 a | 18.63 ± 0.02 ab | 17.24 ± 0.32 ab | 20.08 ± 0.18 bc |
Epicatechin | 191.69 ± 2.87 e | 267.19 ± 13.52 f | 42.32 ± 1.41 d | 21.52 ± 0.4 abc | 17.49 ± 0.00 ab | 15.79 ± 0.06 a | 29.93 ± 0.29 c | 25.91 ± 0.04 bc | 17.34 ± 0.86 ab | 14.25 ± 0.66 a | 15.06 ± 0.59 a |
Hesperidin | 346.43 ± 15.30 d | 23.97 ± 1.51 bc | 3.92 ± 0.25 a | 33.89 ± 0.33 c | 22.7 ± 0.08 b | 20.92 ± 0.21 b | 14.05 ± 0.06 ab | 3.55 ± 0.12 a | 14.75 ± 0.27 ab | 9.54 ± 0.10 a | 8.78 ± 0.04 a |
Hispidulin | nd | 0.93 ± 0.02 a | 17.62 ± 0.75 c | 0.73 ± 0.02 a | 0.06 ± 0.00 a | 1.91 ± 0.00 b | nd | nd | nd | nd | nd |
Isorhamnetin | 18.75 ± 0.91 d | 4.53 ± 0.21 c | 4.45 ± 0.33 c | 0.71 ± 0.02 ab | 0.68 ± 0.02 ab | 0.69 ± 0.02 ab | 0.96 ± 0.02 b | nd | 0.09 ± 0.00 a | 0.06 ± 0.00 a | 0.58 ± 0.04 ab |
Kaempferol | 24.57 ± 1.83 c | 39.56 ± 0.04 d | 1.46 ± 0.08 a | 2.21 ± 0.02 ab | 2.08 ± 0.02 ab | 1.85 ± 0.04 a | 3.20 ± 0.23 b | 1.69 ± 0.03 a | 1.80 ± 0.02 a | 1.68 ± 0.08 a | 1.66 ± 0.02 a |
Luteolin | 15.82 ± 0.79 e | 5.47 ± 0.25 c | 22.77 ± 0.41 f | 12.56 ± 0.08 d | 5.53 ± 0.06 c | 3.54 ± 0.02 ab | 5.24 ± 0.17 c | 5.12 ± 0.13 c | 3.91 ± 0.00 ab | 4.06 ± 0.02 b | 3.28 ± 0.19 a |
Myricetin | 20.86 ± 0.24 h | 11.13 ± 0.06 g | 10.83 ± 0.25 f | 1.37 ± 0.04 c | 1.42 ± 0.04 c | 0.68 ± 0.02 b | 3.44 ± 0.10 e | 2.45 ± 0.18 d | 1.27 ± 0.08 c | 0.22 ± 0.02 a | 0.25 ± 0.02 a |
Naringin | 523.85 ± 23.71 ef | 691.17 ± 2.68 h | 683.18 ± 47.10 h | 550.60 ± 1.22 f | 402.84 ± 0.41 cd | 440.54 ± 0.47 d | 596.81 ± 25.89 g | 304.06 ± 2.51 a | 494.46 ± 1.00 e | 350.50 ± 0.95 b | 396.56 ± 10.59 c |
Quercetin | 9.74 ± 0.12 g | 10.92 ± 0.23 h | 10.95 ± 0.58 h | 8.70 ± 0.17 f | 7.95 ± 0.37 e | 7.09 ± 0.18 d | 9.18 ± 0.37 fg | 5.41 ± 0.09 c | 4.21 ± 0.06 b | 5.49 ± 0.02 c | 3.37 ± 0.23 a |
Rutin | 317.77 ± 7.68 h | 27.01 ± 0.69 ef | 54.32 ± 4.80 g | 20.54 ± 0.19 cde | 17.55 ± 0.13 cd | 7.78 ± 0.65 ab | 24.40 ± 1.22 de | 33.30 ± 7.21 f | 15.22 ± 0.08 bc | 6.23 ± 0.10 a | 3.78 ± 0.08 a |
Phenolic diterpenes: | |||||||||||
Carnosic acid | 22.63 ± 1.77 abc | 235.33 ± 1.40 gh | 249.48 ± 13.41 h | 225.95 ± 14.83 g | 196.02 ± 1.60 f | 132.17 ± 5.08 e | 36.51 ± 3.25 c | 98.80 ± 5.33 d | 26.63 ± 0.20 bc | 14.54 ± 0.50 ab | 10.52 ± 0.44 a |
Carnosol | 151.86 ± 1.77 e | 381.79 ± 0.02 h | 133.87 ± 7.20 d | 273.13 ± 0.02 f | 302.41 ± 0.37 g | 275.11 ± 0.29 f | 27.84 ± 0.08 a | 120.38 ± 0.21 c | 39.20 ± 2.15 b | 40.71 ± 0.15 b | 37.80 ± 0.77 b |
Polyphenolic Compounds | Fresh | Directly after Drying | After 12 Months of Storage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Freeze-Drying | Natural Drying | Drying at 30 °C | Drying at 40 °C | Drying at 50 °C | Freeze-Drying | Natural Drying | Drying at 30 °C | Drying at 40 °C | Drying at 50 °C | ||
mg∙100 g−1 DW | |||||||||||
Phenolic Acids | |||||||||||
4-Hydroxybenzoic acid | 57.28 ± 0.17 k | 20.11 ± 0.12 j | 18.09 ± 0.00 i | 6.59 ± 0.11 e | 6.26 ± 0.02 d | 9.73 ± 0.04 h | 7.74 ± 0.04 f | 5.53 ± 0.00 c | 5.09 ± 0.04 a | 5.28 ± 0.00 b | 8.03 ± 0.02 g |
Caffeic acid | 31.94 ± 0.00 i | 42.61 ± 0.00 k | 15.47 ± 0.00 e | 17.48 ± 0.04 g | 19.57 ± 0.02 h | 33.61 ± 0.02 j | 15.04 ± 0.00 d | 8.94 ± 0.03 a | 12.51 ± 0.00 c | 11.93 ± 0.00 b | 15.62 ± 0.10 f |
Chlorogenic acid | 70.61 ± 0.34 i | 54.28 ± 0.08 h | 34.98 ± 0.17 f | 27.12 ± 0.23 d | 34.38 ± 0.04 e | 35.54 ± 0.02 g | 35.49 ± 0.04 g | 19.89 ± 0.04 c | 27.11 ± 0.02 d | 4.71 ± 0.19 b | 3.87 ± 0.08 a |
Ferulic acid | 7.57 ± 0.51 a | 17.28 ± 0.76 f | 27.55 ± 0.25 h | 20.36 ± 0.02 g | 20.20 ± 0.48 g | 13.70 ± 0.00 c | 13.77 ± 0.00 c | 8.79 ± 0.14 b | 15.94 ± 0.08 e | 15.10 ± 0.04 d | 8.54 ± 0.00 b |
Gallic acid | 40.71 ± 0.51 a | 699.97 ± 0.10 k | 293.84 ± 0.25 c | 453.90 ± 0.29 g | 421.89 ± 0.27 e | 604.09 ± 0.31 i | 648.01 ± 0.08 j | 252.22 ± 0.58 b | 424.33 ± 0.02 f | 416.35 ± 0.48 d | 563.42 ± 2.65 h |
p-Coumaric acid | nd | 2.09 ± 0.02 d | nd | 1.86 ± 0.02 b | 2.16 ± 0.10 d | 2.07 ± 0.00 cd | 1.36 ± 0.02 a | nd | 1.94 ± 0.02 bc | 1.91 ± 0.02 b | 1.95 ± 0.10 bc |
Rosmarinic acid | 346.32 ± 1.02 a | 2167.94 ± 0.23 i | 1839.50 ± 0.59 g | 1730.68 ± 0.33 g | 1891.31 ± 1.66 h | 2368.20 ± 1.49 j | 382.38 ± 0.41 b | 1101.51 ± 0.10 c | 1108.78 ± 0.76 d | 1203.75 ± 0.04 e | 1296.03 ± 0.64 f |
Sinapinic acid | 20.65 ± 0.34 d | 25.81 ± 0.49 e | 10.23 ± 0.17 b | 18.09 ± 1.90 c | 20.93 ± 0.04 d | 29.88 ± 0.04 f | 3.74 ± 0.00 a | 9.41 ± 0.46 b | 3.33 ± 0.00 a | 3.24 ± 0.10 a | 18.13 ± 0.04 c |
Syringic acid | 7.81 ± 0.17 a | 29.07 ± 0.02 h | 63.36 ± 0.08 i | 24.51 ± 0.02 g | 23.6 ± 0.00 f | 29.31 ± 0.00 h | 18.15 ± 0.04 c | 13.66 ± 0.01 b | 19.49 ± 0.02 d | 19.85 ± 0.33 e | 24.43 ± 0.02 g |
Vanillic acid | 11.29 ± 0.34 g | 2.62 ± 0.06 cde | 3.81 ± 0.00 f | 2.70 ± 0.06 de | 2.82 ± 0.04 e | 2.51 ± 0.04 cd | 2.51 ± 0.04 cd | 1.59 ± 0.08 a | 2.42 ± 0.02 bc | 2.40 ± 0.04 bc | 2.17 ± 0.02 b |
Flavonoids | |||||||||||
Acacetin | nd | 11.59 ± 0.04 g | 3.81 ± 0.00 e | 2.25 ± 0.00 c | 2.84 ± 0.02 d | 1.13 ± 0.04 b | 6.83 ± 0.02 f | 0.76 ± 0.01 a | nd | nd | nd |
Apigenin | 6.72 ± 0.34 c | nd | 3.33 ± 0.17 b | nd | nd | nd | nd | 0.45 ± 0.03 a | nd | nd | nd |
Epicatechin | 89.34 ± 0.34 d | 131.06 ± 0.04 g | 128.69 ± 0.25 f | 97.95 ± 0.31 e | 145.49 ± 0.27 h | 211.60 ± 0.31 j | 87.21 ± 0.60 c | 86.06 ± 0.07 b | 15.65 ± 0.02 a | 15.01 ± 0.17 a | 180.71 ± 0.55 i |
Hesperidin | 33.02 ± 0.17 g | 122.87 ± 0.08 i | 131.6 ± 0.17 j | 161.50 ± 0.08 k | 11.28 ± 0.08 d | 85.56 ± 0.04 h | 7.95 ± 0.10 a | 25.76 ± 0.01 f | 18.57 ± 0.11 e | 8.43 ± 0.06 b | 10.83 ± 0.10 c |
Isorhamnetin | 61.48 ± 1.70 e | 4.36 ± 0.04 bc | 30.46 ± 0.84 d | 3.67 ± 0.02 b | 4.11 ± 0.02 b | 3.92 ± 0.08 b | 3.34 ± 0.02 b | 5.43 ± 0.10 c | 0.39 ± 0.04 a | 0.62 ± 0.00 a | 0.55 ± 0.04 a |
Kaempferol | nd | 9.33 ± 0.04 f | nd | 2.71 ± 0.04 a | 4.19 ± 0.04 d | 8.35 ± 0.02 e | 3.78 ± 0.02 c | nd | 3.24 ± 0.04 b | nd | nd |
Luteolin | 31.7 ± 0.34 g | 5.41 ± 0.02 de | 17.67 ± 1.26 f | 4.62 ± 0.29 cd | 3.71 ± 0.08 bc | 5.81 ± 0.06 e | 4.08 ± 0.02 bc | 4.47 ± 0.14 cd | 2.72 ± 0.15 a | 2.29 ± 0.08 a | 3.15 ± 0.12 ab |
Myricetin | nd | 31.33 ± 0.10 e | 11.66 ± 0.17 b | 37.63 ± 0.02 h | 36.22 ± 0.25 g | 12.25 ± 0.02 c | 28.46 ± 0.04 d | 1.22 ± 0.09 a | 32.32 ± 0.00 f | nd | nd |
Naringin | 30.26 ± 1.70 a | 186.74 ± 0.19 f | 252.37 ± 1.68 i | 271.53 ± 1.53 j | 300.27 ± 0.17 k | 128.11 ± 0.08 d | 148.44 ± 0.31 e | 108.01 ± 0.15 b | 247.12 ± 0.14 h | 237.02 ± 0.19 g | 120.52 ± 0.04 c |
Quercetin | nd | 3.12 ± 0.19 c | nd | 5.33 ± 0.14 e | 6.13 ± 0.06 f | 3.54 ± 0.14 d | 1.36 ± 0.02 a | nd | 2.90 ± 0.15 c | 3.43 ± 0.08 d | 1.98 ± 0.02 b |
Rutin | 127.41 ± 0.85 e | 207.67 ± 0.11 g | 52.77 ± 2.27 d | 236.58 ± 0.04 h | 8.55 ± 0.02 b | 146.97 ± 0.04 f | 7.46 ± 0.14 b | 46.17 ± 0.17 c | 5.23 ± 0.13 b | 4.88 ± 0.06 a | 8.04 ± 0.16 b |
Phenolic diterpenes | |||||||||||
Carnosol | 296.72 ± 10.70 f | 108.71 ± 4.33 de | 76.03 ± 0.67 b | 91.84 ± 0.00 c | 116.73 ± 0.23 e | 115.40 ± 6.26 de | 93.59 ± 0.27 c | 65.92 ± 4.48 a | 73.74 ± 0.25 ab | 107.78 ± 0.23 de | 106.56 ± 0.08 d |
Carnosic acid | 53.44 ± 0.51 f | 113.04 ± 5.55 h | 56.46 ± 2.94 f | 76.75 ± 2.08 g | 46.33 ± 2.07 e | 35.25 ± 1.42 d | 35.55 ± 2.37 d | 1.53 ± 0.10 a | 9.16 ± 0.48 bc | 6.69 ± 0.44 b | 13.99 ± 0.57 c |
Species | Drying Method | Storage | |||||||
---|---|---|---|---|---|---|---|---|---|
Directly after Drying | After 3 Months | After 6 Months | After 12 Months | ||||||
Antioxidant Capacity [µmol Trolox∙g−1 DW] | Changes * [%] | Antioxidant Capacity [µmol Trolox∙g−1 DW] | Changes ** [%] | Antioxidant Capacity [µmol Trolox∙g−1 DW] | Changes ** [%] | Antioxidant Capacity [µmol Trolox∙g−1 DW] | Changes ** [%] | ||
Salvia hispanica | freeze-drying | 1069.05 ± 33.52 h, C | 49.88 | 869.48 ± 34.27 hi, B | −18.67 | 639.10 ± 10.29 h, A | −40.22 | 621.54 ± 21.09 g, A | −41.86 |
natural drying | 1074.27 ± 10.56 h, D | 50.61 | 897.15 ± 10.33 i, C | −16.49 | 681.72 ± 5.16 i, B | −36.54 | 614.79 ± 10.49 g, A | −42.77 | |
drying at 30 °C | 840.23 ± 10.67 e, B | 17.80 | 811.02 ± 7.92 h, B | −3.48 | 520.08 ± 18.23 f, A | −38.10 | 506.33 ± 8.00 f, A | −39.74 | |
drying at 40 °C | 849.28 ± 10.32 ef, C | 19.07 | 816.21 ± 44.56 h, C | −3.89 | 522.63 ± 12.90 f, B | −38.46 | 420.40 ± 2.65 e, A | −50.50 | |
drying at 50 °C | 507.94 ± 15.76 a, C | −28.79 | 361.70 ± 2.60 a, B | −28.79 | 125.97 ± 2.60 a, A | −75.20 | 118.31 ± 7.79 a, A | −76.71 | |
Salvia officinalis | freeze-drying | 903.76 ± 23.36 fg, C | 38.72 | 880.35 ± 23.52 i, BC | −2.59 | 797.19 ± 36.59 j, B | −11.79 | 696.57 ± 34.02 h, A | −22.92 |
natural drying | 925.10 ± 68.11 g, B | 42.00 | 880.64 ± 57.63 i, B | −4.81 | 837.41 ± 10.49 k, B | −9.48 | 698.27 ± 13.12 h, A | −24.52 | |
drying at 30 °C | 761.31 ± 25.67 d, B | 16.86 | 728.49 ± 42.77 g, B | −4.31 | 516.25 ± 2.57 f, A | −32.19 | 491.67 ± 33.68 f, A | −35.42 | |
drying at 40 °C | 684.65 ± 20.86 c, D | 5.09 | 585.95 ± 10.38 ef, C | −14.42 | 472.21 ± 5.19 de, B | −31.03 | 379.18 ± 10.65 d, A | −44.62 | |
drying at 50 °C | 502.64 ± 28.70 a, B | −22.85 | 421.65 ± 18.44 b, A | −16.11 | 425.38 ± 18.44 bc, A | −15.37 | 382.54 ± 21.07 d, A | −23.89 | |
Salvia sclarea | freeze-drying | 623.16 ± 23.58 b, D | 9.62 | 579.74 ± 18.73 ef, C | −6.97 | 504.06 ± 2.68 ef, B | −19.11 | 321.65 ± 2.61 c, A | −48.38 |
natural drying | 661.59 ± 21.30 bc, C | 16.38 | 627.05 ± 26.76 f, BC | −5.22 | 582.52 ± 15.98 g, B | −11.95 | 364.53 ± 7.87 d, A | −44.90 | |
drying at 30 °C | 606.23 ± 29.43 b, C | 6.64 | 552.12 ± 21.29 de, C | −8.93 | 461.04 ± 34.12 cd, B | −23.95 | 306.36 ± 13.34 c, A | −49.46 | |
drying at 40 °C | 544.32 ± 18.56 a, D | −4.25 | 507.08 ± 7.96 cd, C | −6.84 | 461.79 ± 5.32 cd, B | −15.16 | 249.15 ± 2.66 b, A | −54.23 | |
drying at 50 °C | 500.07 ± 7.96 a, C | −12.04 | 459.19 ± 10.50 bc, BC | −8.18 | 420.82 ± 29.17 b, B | −15.85 | 227.92 ± 15.67 b, A | −54.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziadek, K.; Kopeć, A.; Dziadek, M.; Sadowska, U.; Cholewa-Kowalska, K. The Changes in Bioactive Compounds and Antioxidant Activity of Chia (Salvia hispanica L.) Herb under Storage and Different Drying Conditions: A Comparison with Other Species of Sage. Molecules 2022, 27, 1569. https://doi.org/10.3390/molecules27051569
Dziadek K, Kopeć A, Dziadek M, Sadowska U, Cholewa-Kowalska K. The Changes in Bioactive Compounds and Antioxidant Activity of Chia (Salvia hispanica L.) Herb under Storage and Different Drying Conditions: A Comparison with Other Species of Sage. Molecules. 2022; 27(5):1569. https://doi.org/10.3390/molecules27051569
Chicago/Turabian StyleDziadek, Kinga, Aneta Kopeć, Michał Dziadek, Urszula Sadowska, and Katarzyna Cholewa-Kowalska. 2022. "The Changes in Bioactive Compounds and Antioxidant Activity of Chia (Salvia hispanica L.) Herb under Storage and Different Drying Conditions: A Comparison with Other Species of Sage" Molecules 27, no. 5: 1569. https://doi.org/10.3390/molecules27051569
APA StyleDziadek, K., Kopeć, A., Dziadek, M., Sadowska, U., & Cholewa-Kowalska, K. (2022). The Changes in Bioactive Compounds and Antioxidant Activity of Chia (Salvia hispanica L.) Herb under Storage and Different Drying Conditions: A Comparison with Other Species of Sage. Molecules, 27(5), 1569. https://doi.org/10.3390/molecules27051569