Synthesis and Fluorescent Properties of Aminopyridines and the Application in “Click and Probing”
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Fluorescent Properties of Multisubstituted Aminopyridines
2.2. Synthesis and Fluorescent Properties of 6-Phenyl Substituted Aminopyridine Derivatives
2.3. Synthesis and Fluorescent Properties of Pre-Fluorescence Aminopyridine
2.4. Kinetic Experiments of the Click Reaction of Pre-Fluorescence Aminopyridine
2.5. In Vitro “Clicking and Probing” on Conjugated BSA
3. Materials and Methods
3.1. General
3.2. Experimental Procedures for the Synthesis of 1–17
3.3. Characterization Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gonçalves, T.; Sameiro, M. Fluorescent labeling of biomolecules with organic probes. Chem. Rev. 2009, 109, 190–212. [Google Scholar] [CrossRef] [PubMed]
- Grammel, M.; Hang, H.C. Chemical reporters for biological discovery. Nat. Chem. Biol. 2013, 9, 475–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, K.; Chin, J.W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 2014, 114, 4764–4806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.; Zhang, H.; Xu, H. Design and application of receptor-targeted fluorescent probes based on small molecular fluorescent Dyes. Bioconjug. Chem. 2021, 32, 4–24. [Google Scholar] [CrossRef]
- Algar, W.R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K.D.; Darwish, G.H.; Peveler, W.J.; Xiao, Z.; Tsai, H.-Y.; Gupta, R.; et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 2021, 121, 9243–9358. [Google Scholar] [CrossRef]
- Patterson, D.M.; Nazarova, L.A.; Prescher, J.A. Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 2014, 9, 592–605. [Google Scholar] [CrossRef]
- Ji, X.; Pan, Z.; Yu, B.; Cruz, L.K.D.L.; Zheng, Y.; Ke, B.; Wang, B. Click and release: Bioorthogonal approaches to “on-demand” activation of prodrugs. Chem. Soc. Rev. 2019, 48, 1077–1094. [Google Scholar] [CrossRef]
- Zhang, F.-G.; Chen, Z.; Tang, X.; Ma, J.-A. Triazines: Syntheses and inverse electron-demand diels–alder reactions. Chem. Rev. 2021, 121, 14555–14593. [Google Scholar] [CrossRef]
- Jewett, J.C.; Bertozzi, C.R. Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry. Org. Lett. 2011, 13, 5937–5939. [Google Scholar] [CrossRef] [Green Version]
- Shieh, P.; Dien, V.T.; Beahm, B.J.; Castellano, J.M.; Wyss-Coray, T.; Bertozzi, C.R. Calfluors: A universal motif for fluorogenic azide probes across the visible spectrum. J. Am. Chem. Soc. 2015, 137, 7145–7151. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Ji, K.; Chittavong, V.; Aghoghovbia, R.E.; Zhu, M.; Wang, B. Click and fluoresce: A bioorthogonally activated smart probe for wash-free fluorescent labeling of biomolecules. J. Org. Chem. 2017, 82, 1471–1476. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Abdullah, M.A.A.; Yang, L.; Wang, J. Fast affinity induced reaction sensor based on a fluorogenic click reaction for quick detection of protein biomarkers. Anal. Chem. 2020, 92, 647–653. [Google Scholar] [CrossRef]
- Sivakumar, K.; Xie, F.; Cash, B.M.; Long, S.; Barnhill, H.N.; Wang, Q. A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoimarins and acetylences. Org. Lett. 2004, 6, 4603–4606. [Google Scholar] [CrossRef]
- Shieh, P.; Hangauer, M.J.; Bertozzi, C.R. Fluorogenic azidofluoresceins for biological imaging. J. Am. Chem. Soc. 2012, 134, 17428–17431. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Cho, W.; Sung, J.; Kim, E.; Park, S.B. Monochromophoric design strategy for tetrazine-based colorful bioorthogonal probes with a single fluorescent core skeleton. J. Am. Chem. Soc. 2018, 140, 974–983. [Google Scholar] [CrossRef] [Green Version]
- Eaton, D.F. Reference materials for fluorescence measurement. Pure Appl. Chem. 1988, 60, 1107–1114. [Google Scholar] [CrossRef]
- Zonouzi, A.; Izakian, Z.; Weng Ng, S. Novel synthesis of some new fluorescent 2-amino-3-cyanopyridines. Heterocycles 2012, 85, 2713. [Google Scholar] [CrossRef]
- Li, H.; Petersen, J.L.; Wang, K.K. Cascade cyclizations via N,4-didehydro-2-(phenylamino)pyridine biradicals/zwitterions generated from enyne-carbodiimides. J. Org. Chem. 2003, 68, 5512–5518. [Google Scholar] [CrossRef]
- Shi, F.; Tu, S.; Fang, F.; Li, T. One-pot synthesis of 2-amino-3-cyanopyridine derivatives under microwave irradiation without solvent. Arkivoc 2005, 2005, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Londregan, A.T.; Jennings, S.; Wei, L. General and mild preparation of 2-aminopyridines. Org. Lett. 2010, 12, 5254–5257. [Google Scholar] [CrossRef]
- Vamos, M.; Cosford, N.D.P. 2-Aminopyridines via reaction of pyridine N-oxides and activated isocyanides. J. Org. Chem. 2014, 79, 2274–2280. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Shang, Y.; Yu, Z.; Fang, M.; Zhou, Y.; Han, G.; Wu, F.J. FeCl3-catalyzed four-component nucleophilic addition/intermolecular cyclization yielding polysubstituted pyridine derivatives. J. Org. Chem. 2014, 79, 8882–8888. [Google Scholar] [CrossRef]
- Weng, Y.; Kuai, C.; Lv, W.; Cheng, G. Synthesis of 2-aminopyridines via a base-promoted cascade reaction of N-propargylic β-enaminones with formamides. J. Org. Chem. 2018, 83, 5002–5008. [Google Scholar] [CrossRef]
- Kumar, D.; Vemula, S.R.; Cook, G.R. Merging C–H bond functionalization with amide alcoholysis: An route to 2-aminopyridines. ACS Catal. 2016, 6, 3531–3536. [Google Scholar] [CrossRef]
- Li, Z.; Huo, T.; Li, L.; Feng, S.; Wang, Q.; Zhang, Z.; Pang, S.; Zhang, Z.; Wang, P.; Zhang, Z. Rh-catalyzed reaction of vinyl azides with isonitriles and alkynes/benzynes. Org. Lett. 2018, 20, 7762–7765. [Google Scholar] [CrossRef]
- Yang, M.; Meng, X.H.; Wang, Z.; Gong, Y.; Zhao, Y.L. Rhodium/copper-cocatalyzed coupling-cyclization of o-alkenyl arylisocyanides with vinyl azides: One-pot synthesis of α-carbolines. Org. Chem. Front. 2020, 7, 3493–3498. [Google Scholar] [CrossRef]
- Optically dilute measurements withrefractive-index corrections, maximal absorption of the solutions 0.04. Calibrated spectrometer (Perkin Elmer LS 50B); measurements referenced to 9,10-diphenylanthracene (Φ = 0.95). In Principles of Fluorescence Spectroscopy, 2nd ed.; Lakowicz, J.R. (Ed.) Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999. [Google Scholar]
- Hong, V.; Presolski, S.I.; Ma, C.; Finn, M.G. Analysis and optimization of copper-catalyzed azide–alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 2009, 48, 9879–9883. [Google Scholar] [CrossRef] [Green Version]
- del Amo, D.S.; Wang, W.; Jiang, H.; Besanceney, C.; Yan, A.C.; Levy, M.; Liu, Y.; Marlow, F.L.; Wu, P. Biocompatible Copper(I) Catalysts for in Vivo Imaging of Glycans. J. Am. Chem. Soc. 2010, 132, 16893–16899. [Google Scholar] [CrossRef] [Green Version]
- Besanceney, C.; Jiang, H.; Zheng, T.; Feng, L.; del Amo, D.S.; Wang, W.; Klivansky, L.M.; Marlow, F.L.; Liu, Y.; Wu, P. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: A comparative study. Angew. Chem. Int. Ed. 2011, 50, 8051–8056. [Google Scholar] [CrossRef]
- Bevilacqua, V.; King, M.; Chaumontet, M.; Nothisen, M.; Gabillet, S.; Buisson, D.; Puente, C.; Wagner, A.; Taran, F. Copper-chelating azides for efficient click conjugation reactions in complex media. Angew. Chem. Int. Ed. 2014, 53, 5872–5876. [Google Scholar] [CrossRef]
- Su, Y.; Li, L.; Wang, H.; Wang, X.; Zhang, Z. All-in-One azides: Empowered click reaction for in vivo labeling and imaging of biomolecules. Chem. Commun. 2016, 52, 2185–2188. [Google Scholar] [CrossRef] [PubMed]
Entry | Structure (with Isolated Yield) | λA/nm 1 | λex/nm | λem/nm 2 | ϕ 3 |
---|---|---|---|---|---|
1 | 1 (71%) | 270 | 390 | 480 | 0.34 |
2 | 2 (24%) | 270 | 390 | 480 | 0.31 |
3 | 3 (65%) | 270 | 390 | 480 | 0.44 |
4 | 4 (52%) | 270 | 390 | 485 | 0.31 |
5 | 5 (60%) | 270 | 390 | 485 | 0.27 |
6 | 6 (52%) | 270 | 390 | 485 | 0.32 |
7 | 7 (53%) | 270 | 390 | 485 | 0.22 |
8 | 8 (17%) | 258 | 345 | 455 | 0.02 |
9 | 9 (67%) | 270 | 390 | 480 | 0.35 |
10 | 10 (57%) | 270 | 390 | 480 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, Y.; Chang, W.; Pang, S.; Li, X.; Duan, L.; Zhang, Z. Synthesis and Fluorescent Properties of Aminopyridines and the Application in “Click and Probing”. Molecules 2022, 27, 1596. https://doi.org/10.3390/molecules27051596
Li Z, Li Y, Chang W, Pang S, Li X, Duan L, Zhang Z. Synthesis and Fluorescent Properties of Aminopyridines and the Application in “Click and Probing”. Molecules. 2022; 27(5):1596. https://doi.org/10.3390/molecules27051596
Chicago/Turabian StyleLi, Zongyang, Yaxuan Li, Wenxu Chang, Sen Pang, Xuefeng Li, Liusheng Duan, and Zhenhua Zhang. 2022. "Synthesis and Fluorescent Properties of Aminopyridines and the Application in “Click and Probing”" Molecules 27, no. 5: 1596. https://doi.org/10.3390/molecules27051596
APA StyleLi, Z., Li, Y., Chang, W., Pang, S., Li, X., Duan, L., & Zhang, Z. (2022). Synthesis and Fluorescent Properties of Aminopyridines and the Application in “Click and Probing”. Molecules, 27(5), 1596. https://doi.org/10.3390/molecules27051596