Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comments on the Syntheses of the Complexes
2.2. Spectroscopic Characterization in Brief
2.3. Description of Structures
3. Experimental Section
3.1. Materials and Spectrocopic- Physical Measurements
3.2. Preparation of the Complexes
3.3. Single-Crystal X-ray Crystallography
4. Conclusions in Brief
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, T.; Liu, C.; Kong, B.; Sun, J.; Gorig, Y.; Liu, K.; Xie, J.; Pei, A.; Cui, Y. Amidoxime-functionalized macroporous carbon self-refreshed electrode materials for rapid and high-capacity removal of heavy metal from water. ACS Cent. Sci. 2019, 5, 719–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anfar, Z.; Amedlous, A.; Majdoub, M.; Fakir, A.A.E.; Zbair, M.; Ahsaine, H.A.; Jada, A.; Alem, N.E. New amino group functionalized porous carbon for strong chelation ability towards heavy metals. RSC Adv. 2020, 10, 31087–31100. [Google Scholar] [CrossRef]
- Kumar Pobi, K.; Mondal, B.; Nayek, S.; Patra, A.K.; Saha, R. Efficient removal of Hg2+, Cd2+ and Pb2+ from aqueous solution and mixed industrial wastewater using a designed chelating ligand, 2–pyridyl–N-(2′–methylthiophenyl) methyleneimine (PMTPM). Water Sci. Technol. 2019, 7, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Nordin, N.A.; Rahman, N.A.; Abdullah, A.H. Effective removal of Pb(II) ions by electrospun PAN/Sago lignin-based activated carbon nanofibers. Molecules 2020, 25, 3081. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Elgarahy, A.M.; Khan, Z.A.; Almugnamisi, M.S.; Al-Bogami, A.S. Perspectives regarding metal/mineral–incorporating materials for water purification: With special focus on Cr(VI) removal. Mater. Adv. 2020, 1, 1546–1574. [Google Scholar] [CrossRef]
- Yu, C.-X.; Wang, K.-Z.; Li, X.-J.; Liu, D.; Ma, L.-F.; Liu, L.-L. Highly efficient and facile removal of Pb2+ from water by using a negatively charged azoxy-functionalized metal-organic framework. Cryst. Growth Des. 2020, 20, 5251–5260. [Google Scholar] [CrossRef]
- Barzaga, R.; Lestón-Sánchez, L.; Aguilar-Galindo, F.; Estévez-Iternández, O.; Diaz-Tendero, S. Synergy effects in heavy metal ion chelation with aryl- and aroyl–substituted thiourea derivatives. Inorg. Chem. 2021, 60, 11984–12000. [Google Scholar] [CrossRef]
- Senel, G.; Ergun, O.N.; Coruh, S.A. Comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal. J. Hazard. Mater. 2010, 180, 486–492. [Google Scholar]
- Gao, H.; Zhao, S.; Cheng, X.; Wang, X.; Zheng, L. Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem. Eng. J. 2013, 223, 84–90. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Z.; Liu, J.; Jiang, G. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. J. Hazard. Mater. 2011, 192, 277–283. [Google Scholar] [CrossRef]
- Kirupha, S.D.; Kalaivani, S.; Vidhyadevi, T. Effective removal of heavy metal ions from aqueous solutions using a new chelating resin poly [2,5-(1,3,4-thiadiazole)-benzalimine]: Kinetic and thermodynamic study. J. Water Reuse Desalin. 2016, 6, 310–324. [Google Scholar] [CrossRef] [Green Version]
- Yordanov, A.T.; Roundhill, D.M. Solution extraction of transition and post-transition heavy and precious metals by chelate and macrocyclic ligands. Coord. Chem. Rev. 1998, 170, 93–124. [Google Scholar] [CrossRef]
- Tasker, P.A.; Tong, C.C.; Westra, A.N. Co-extraction of cations and anions in base metal recovery. Coord. Chem. Rev. 2007, 251, 1868–1877. [Google Scholar] [CrossRef]
- Mazarakioti, E.C.; Beobide, A.S.; Angelidou, V.; Efthymiou, C.G.; Terzis, A.; Psycharis, V.; Voyiatzis, G.A.; Perlepes, S.P. Modeling the solvent extraction of cadmium(II) from aqueous chloride solutions by 2-pyridyl ketoximes: A coordination chemistry approach. Molecules 2019, 24, 2219. [Google Scholar] [CrossRef] [Green Version]
- Tarakina, N.V.; Verberck, B. A portrait of cadmium. Nature Chem. 2016, 9, 96. [Google Scholar] [CrossRef]
- Frost, J.M.; Kobera, L.; Pialat, A.; Zhang, Y.; Southern, S.A.; Gabidullin, B.; Bryce, D.L.; Murugesu, M. From discrete molecule, to polymer, to MOF: Mapping the coordination chemistry of CdII using 113Cd solid-state NMR. Chem. Commun. 2016, 52, 10680–10683. [Google Scholar] [CrossRef] [PubMed]
- Manahan, S.E. Environmental Chemistry, 6th ed.; Lewis Publishers: Boca Raton, FL, USA, 1994. [Google Scholar]
- Watson, J.S. Separation Methods for Waste and Environmental Applications; Marcel Dekker: New York, NY, USA, 1999. [Google Scholar]
- Kefalas, E.T.; Dakanali, M.; Panagiotidis, P.; Raptopoulou, C.P.; Terzis, A.; Mavromoustakos, T.; Kyrikou, I.; Karligiano, N.; Bino, A.; Salifoglou, A. pH-specific aqueous synthetic chemistry in the binary cadmium(II)–citrate system. Gaining insight into cadmium(II)–citrate speciation with relevance to cadmium toxixity. Inorg. Chem. 2005, 44, 4818–4828. [Google Scholar] [CrossRef] [PubMed]
- Montero-Jiménez, M.; Fernández, L.; Alvarado, J.; Criollo, M.; Jadán, M.; Chuquer, D.; Espinoza-Montero, P. Evaluation of the cadmium accumulation in Tamarillo cells (Solanum betaceum) by indirect electrochemical detection of cysteine-rich peptides. Molecules 2019, 24, 2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraishi, T.; Tamada, M.; Saito, K.; Sugo, T. Recovery of cadmium from waste of scallop processing with amidoxime adsorbent synthesized by graft-polymerization. Radiat. Phys. Chem. 2003, 66, 43–47. [Google Scholar] [CrossRef]
- Alizadeh, T.; Sharifi, A.R.; Canjali, M.R. A new bio-compatible Cd2+-selective nanostructured fluorescent imprinted polymer for cadmium ion sensing in aqueous media and its application in bio imaging in Vero cells. RSC Adv. 2020, 10, 4110–4117. [Google Scholar] [CrossRef] [Green Version]
- Waalkes, M.P. Cadmium carcinogenesis. Mutat. Res. 2003, 533, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, M.; Borowiak-Resterna, A.; Olszanowski, A. Cadmium extraction from chloride solutions with model N-alkyl and N,N-dialkyl-pyridine-carboxamides. Hydrometallurgy 2007, 85, 116–126. [Google Scholar] [CrossRef]
- Parus, A.; Wieszczycka, K.; Olszanowski, A. Solvent extraction of cadmium(II) from chloride solutions by pyridyl ketoximes. Hydrometallurgy 2011, 105, 284–289. [Google Scholar] [CrossRef]
- Klonowska-Wieszczycka, K.; Olszanowski, A.; Parus, A.; Zydorczak, B. Removal of copper(II) from chloride solutions using hydrophobic pyridyl ketone oximes. Solvent Extr. Ion Exch. 2009, 27, 50–62. [Google Scholar] [CrossRef]
- Efthymiou, C.G.; Cunha-Silva, L.; Perlepes, S.P.; Brechin, E.K.; Inglis, R.; Evangelisti, M.; Papatriantafyllopoulou, C. In search of molecules displaying ferromagnetic exchange: Multiple-decker Ni12 and Ni16 complexes from the use of pyridine-2-amidoxime. Dalton Trans. 2016, 45, 17409–17419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahra, M.; Zulfigar, S.; Skene, W.G.; Sarwar, M.I. Efficient uptake of Cd(II) and Pb(II) ions by aromatic polyamidoximes. Ind. Eng. Chem. Res. 2018, 57, 15243–15253. [Google Scholar] [CrossRef]
- Milios, C.J.; Stamatatos, T.C.; Perlepes, S.P. The coordination chemistry of pyridyl oximes. Polyhedron 2006, 25, 134–194. [Google Scholar] [CrossRef]
- Konidaris, K.F.; Polyzou, C.D.; Kostakis, G.E.; Tasiopoulos, A.J.; Roubeau, O.; Teat, S.J.; Manessi-Zoupa, E.; Powell, A.K.; Perlepes, S.P. Metal ion-assisted transformations of 2-pyridinealdoxime and hexafluorophosphate. Dalton Trans. 2012, 41, 2862–2865. [Google Scholar] [CrossRef]
- Tsantis, S.T.; Zagoraiou, E.; Savvidou, A.; Raptopoulou, C.P.; Psycharis, V.; Holynska, M.; Perlepes, S.P. Binding of oxime group to uranyl ion. Dalton Trans. 2016, 45, 9307–9319. [Google Scholar] [CrossRef]
- Polyzou, C.D.; Koumousi, E.S.; Lada, Z.G.; Raptopoulou, C.P.; Psycharis, V.; Rouzières, M.; Tsipis, A.C.; Mathonière, C.; Clérac, R.; Perlepes, S.P. “Switching on” the single-molecule magnet properties within a series of dinuclear cobalt(III)-dysposium(III) 2-pyridyloximate complexes. Dalton Trans. 2017, 46, 14812–14825. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Stamatatos, T.C.; Wernsdorfer, W.; Teat, S.J.; Tasiopoulos, A.J.; Escuer, A.; Perlepes, S.P. Combining azide, carboxylate and 2-pyridyloximate ligands in transition-metal chemistry: Ferromagnetic NiII5 clusters with a bowtie skeleton. Inorg. Chem. 2010, 49, 10486–10496. [Google Scholar] [CrossRef]
- Nikolaou, H.; Terzis, A.; Raptopoulou, C.P.; Psycharis, V.; Bekiari, V.; Perlepes, S.P. Unique dinuclear, tetrakis (nitrato–O,O′)-bridged lanthanide(III) complexes from the use of pyridine-2-amidoxime: Synthesis, structural studies and spectroscopic characterization. J. Surf. Interfaces Mater. 2014, 2, 311–318. [Google Scholar] [CrossRef]
- Anastasiadis, N.C.; Polyzou, C.D.; Kostakis, G.E.; Bekiari, V.; Lan, Y.; Perlepes, S.P.; Konidaris, K.F.; Powell, A.K. Dinuclear lanthanide(III)/zinc(II) complexes with methyl 2-pyridyl ketone oxime. Dalton Trans. 2015, 44, 19791–19795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatatos, T.C.; Foguet-Albiol, D.; Lee, S.-C.; Stoumpos, C.C.; Raptopoulou, C.P.; Terzis, A.; Wernsdorfer, W.; Hill, S.O.; Perlepes, S.P.; Christou, G. “Switching on” the properties of single-molecule magnetism in triangular manganese(III) complexes. J. Am. Chem. Soc. 2007, 129, 9484–9499. [Google Scholar] [CrossRef]
- Polyzou, C.D.; Lada, Z.G.; Terzis, A.; Raptopoulou, C.P.; Psycharis, V.; Perlepes, S.P. The fac diastereoisomer of tris (2-pyridinealdoximato)cobalt(III) and a cationic cobalt(III) complex containing both the neutral and and anionic forms of the ligand: Synthetic, structural and spectroscopic studies. Polyhedron 2014, 79, 29–36. [Google Scholar] [CrossRef]
- Stamatatos, T.C.; Escuer, A.; Abboud, K.A.; Raptopoulou, C.P.; Perlepes, S.P.; Christou, G. Unusual structural types in nickel cluster chemistry from the use of pyridyl oximes: Ni5, Ni12Na2, and Ni14 clusters. Inorg. Chem. 2008, 47, 11825–11838. [Google Scholar] [CrossRef]
- Polyzou, C.D.; Nikolaou, H.; Raptopoulou, C.P.; Konidaris, K.F.; Bekiari, V.; Psycharis, V.; Perlepes, S.P. Dinuclear lanthanide(III) complexes from the use of methyl 2-pyridyl ketoxime: Synthetic, structural and physical studies. Molecules 2021, 26, 1622. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Kostakis, G.E.; Raptopoulou, C.P.; Terzis, A.; Perlepes, S.P.; Plakatouras, J.C. Investigation of the MSO4·xH2O (M = Zn, x = 7; M = Cd, x = 8/3)/methyl 2-pyridyl ketone oxime reaction system: A novel Cd(II) coordination polymer versus mononuclear and dinuclear Zn(II) complexes. Inorg. Chim. Acta 2009, 362, 2361–2370. [Google Scholar] [CrossRef]
- Stamatatos, T.C.; Katsoulakou, E.; Nastopoulos, V.; Raptopoulou, C.P.; Manessi-Zoupa, E.; Perlepes, S.P. Cadmium carboxylate chemistry: Preparation, crystal structure, and thermal and spectroscopic characterization of the one-dimensional polymer [Cd(O2CMe)(O2CPh)(H2O)2]n. Z. Nat. B 2003, 58, 1045–1054. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Raptopoulou, C.P.; Terzis, A.; Janssens, J.F.; Manessi-Zoupa, E.; Perlepes, S.P.; Plakatouras, J.C. Assembly of a helical zinc(II) chain and a two-dimensional cadmium(II) coordination polymer using picolinate and sulfate anions as bridging ligands. Polyhedron 2007, 26, 4053–4064. [Google Scholar] [CrossRef]
- Katsoulakou, E.; Konidaris, K.F.; Raptopoulou, C.P.; Psycharis, V.; Manessi-Zoupa, E.; Perlepes, S.P. Synthesis, X-ray structure and characterization of catena-bis (benzoate) bis {N,N-bis(2-hydroxyethyl)-glycinate}cadmium(II). Bioinorg. Chem. Applic. 2010, 2010, 281932. [Google Scholar]
- Katsoulakou, E.; Konidaris, K.F.; Terzis, A.; Raptopoulou, C.P.; Perlepes, S.P.; Manessi-Zoupa, E.; Kostakis, G.E. One-dimensional cadmium(II)/bicinate(−1) complexes: The role of the alkali metal ion used in the reaction medium. Polyhedron 2011, 30, 397–404. [Google Scholar] [CrossRef]
- Katsoulakou, E.; Bekiari, V.; Raptopoulou, C.P.; Terzis, A.; Manessi-Zoupa, E.; Powell, A.; Perlepes, S.P. Simultaneous coordination of a ketone by two cadmium(II) ions and conversion to its gem-diolate(−1) form. Inorg. Chem. Commun. 2011, 14, 1057–1060. [Google Scholar] [CrossRef]
- Bolotin, D.S.; Bokach, N.A.; Kukushkin, V.Y. Coordination chemistry and metal-involving reactions of amidoximes: Relevance to the chemistry of oximes and oxime ligands. Coord. Chem. Rev. 2016, 313, 62–93. [Google Scholar] [CrossRef] [Green Version]
- Bellamy, L.J. The Infrared Spectra of Complex Molecules; Methyen: London, UK, 1966; p. 249. [Google Scholar]
- Dolish, F.R.; Fateley, W.G.; Bentley, F.F. Characteristic Raman Frequencies of Organic Compounds; John Wiley and Sons: New York, NY, USA, 1974; pp. 135–137. [Google Scholar]
- Suvitha, A.; Periandy, S.; Boomadevi, S.; Govindarajan, M. Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime. Spectrochim. Acta Part A 2014, 117, 216–224. [Google Scholar] [CrossRef]
- Lopez-Garriga, J.J.; Babcock, G.T.; Harrison, J.F. Factors influencing the C=N stretching frequency in neutral and protonated Schiff’s bases. J. Am. Chem. Soc. 1986, 108, 7241–7251. [Google Scholar] [CrossRef]
- Nordquest, K.W.; Phelps, D.W.; Little, W.F.; Hodgson, D.J. Metal-metal interactions in linear chains. The structure and characterization of bis (pyridine-2-carboxaldoximinato)platinum(II) dihydrate. J. Am. Chem. Soc. 1976, 98, 1104–1107. [Google Scholar] [CrossRef]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Nieuwenhuyzen, M.; Wen, H.; Wilkins, C.J. Cadmium iodide complexes with dimethylsulphoxide, and their crystal structures. Z. Anorg. Allg. Chem. 1992, 615, 143–148. [Google Scholar] [CrossRef]
- Coxall, R.A.; Harris, S.G.; Henderson, D.K.; Parsons, S.; Tasker, P.A.; Winpenny, R.E.P. Inter-ligand reactions: In situ formation of new polydentate ligands. J. Chem. Soc. Dalton Trans. 2000, 2349–2356. [Google Scholar] [CrossRef]
- Shirvan, S.A.; Dezfuli, S.H. Bis(acetate-κO)bis(2-pyridinealdoxime-κ2N,N′)cadmium. Acta Cryst. E. 2012, 68, m1080–m1081. [Google Scholar] [CrossRef]
- Croitor, L.; Coropceanu, E.B.; Masunov, A.E.; Rivera-Jacquez, H.J.; Siminel, A.V.; Zelentsov, V.I.; Datsko, T.Y.; Fonari, M.S. Polymeric luminescent Zn(II) and Cd(II) dicarboxylates decorated by oxime ligands: Tuning the dimensionality and adsorption capacity. Cryst. Growth Des. 2014, 14, 3935–3948. [Google Scholar] [CrossRef]
- Croitor, L.; Coropseanu, E.B.; Masunov, A.E.; Rivera-Jacquez, H.J.; Siminel, A.V.; Fonari, M.S. Mechanism of nonlinear optical enhancement and supramolecular isomerism in 1D polymeric Zn(II) and Cd(II) sulfates with pyridine-4-aldoxime ligands. J. Phys. Chem. C 2014, 118, 9217–9227. [Google Scholar] [CrossRef]
- Coropseanu, E.B.; Croitor, L.; Siminel, A.V.; Fonari, M.S. Preparation, structural characterization and luminescence studies of mono- and binuclear Zn(II) and Cd(II) acetates with pyridine-4-aldoxime and pyridine-4-amidoxime ligands. Polyhedron 2014, 75, 73–80. [Google Scholar] [CrossRef]
- Croitor, L.; Coropceanu, E.B.; Siminel, A.V.; Masunov, A.E.; Fonari, M.S. From discrete molecules to one-dimensional coordination polymers containing Mn(II), Zn(II) or Cd(II) pyridine-2-aldoxime building unit. Polyhedron 2013, 60, 140–150. [Google Scholar] [CrossRef]
- Croitor, L.; Coropceanu, E.B.; Duca, G.; Siminel, A.V.; Fonari, M.S. Nine Mn(II), Zn(II) and Cd(II) mixed-ligand coordination networks with rigid dicarboxylate and pyridine-n-aldoxime ligands. Impact of the second ligand in the structures’ dimensionality and solvent capacity. Polyhedron 2017, 129, 9–21. [Google Scholar] [CrossRef]
- Bacuom, E.I.; Drago, R.S. Nickel(II) and nickel(IV) complexes of 2,6-diacetylpyridine dioxime. J. Am. Chem. Soc. 1971, 93, 6469–6475. [Google Scholar] [CrossRef]
- Pearse, G.A., Jr.; Bovenzi, B.A. The synthesis and crystal structures of pyridine-2,6-dicarboxamide oxime, C7H9N5O2, and its nickel(II) and copper(II) co-ordination compounds. J. Chem. Soc. Dalton Trans. 1997, 2793–2797. [Google Scholar] [CrossRef]
- CrystalClear; Rigaku: The Woodlands, TX, USA; MSC Inc.: The Woodlands, TX, USA, 2005.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Diamond, Crystal and Molecular Structure Visualization; Version 3.1; Crystal Impact: Bonn, Germany, 2018.
Parameter | [CdI2(2paoH)2] (1) | {[CdI2(3paoH)2]}n (2) | {[CdI2(4paoH)2]}n (3) | [CdI2(dapdoH2)]·2EtOH (4·2EtOH) | [CdI2(L′H2)] (5) |
---|---|---|---|---|---|
Empirical formula | C12H12CdI2N4O2 | C12H12CdI2N4O2 | C12H12CdI2N4O2 | C13H23CdI2N3O4 | C11H15CdI2N3O2 |
Formula weight | 610.46 | 610.46 | 610.46 | 651.54 | 587.46 |
Crystal system | monoclinic | Monoclinic | monoclinic | triclinic | orthorhombic |
Space group | C2/c | C2/m | C2/m | P | Pcnb |
Color | colorless | Colorless | colorless | colorless | colorless |
Crystal size, mm | 0.41 × 0.20 × 0.17 | 0.21 × 0.21 × 0.06 | 0.23 × 0.13 × 0.05 | 0.35 × 0.18 × 0.13 | 0.35 × 0.19 × 0.08 |
a, Å | 7.9245(2) | 25.0595(11) | 24.8525(7) | 8.0032(19) | 6.4986(3) |
b, Å | 13.7155(2) | 4.1616(2) | 4.1618(10) | 9.824(2) | 15.0095(6) |
c, Å | 15.6259(2) | 7.9660(4) | 8.1913(3) | 14.215(3) | 17.7360(7) |
α, ° | 90.0 | 90.0 | 90.0 | 81.439(6) | 90.0 |
β, ° | 101.35(1) | 98.413(1) | 98.223(1) | 78.146(5) | 90.0 |
γ, ° | 90.0 | 90.0 | 90.0 | 74.771(6) | 90.0 |
Volume, Å3 | 1665.13(8) | 821.82(7) | 838.52(4) | 1050.0(4) | 1729.98(13) |
Z | 4 | 2 | 2 | 2 | 4 |
Temperature, K | 160 | 170 | 160 | 160 | 160 |
Radiation, Å/2θmax | Cu Kα (1.54178)/130.0 | Cu Kα (1.54178)/129.8 | Mo Kα (0.71073)/54.0 | Mo Kα (0.71073)/54.0 | Mo Kα (0.71073)/54.0 |
Calculated density, g·cm−3 | 2.435 | 2.467 | 2.418 | 2.061 | 2.256 |
Absorption coefficient, mm−1 | 39.71 | 40.23 | 4.99 | 4.00 | 4.83 |
Number of measured, independent, and observed [I > 2σ(I)] reflections | 10,738, 1385, 1333 | 5658, 718, 661 | 10,187, 1042, 988 | 32,407, 4564, 4189 | 35,910, 1875, 1753 |
Number of parameters | 98 | 65 | 65 | 216 | 89 |
Final R indices [I > 2σ(Ι)] a | R1 = 0.0384, wR2 = 0.0902 | R1 = 0.0499, wR2 = 0.1079 | R1 = 0.0166, wR2 = 0.0398 | R1 = 0.0224, wR2 = 0.0570 | R1 = 0.0337, wR2 = 0.0707 |
Goodness-of-fit on F2 | 1.06 | 1.10 | 1.05 | 1.02 | 1.11 |
Largest differences peak and hole (e Å−3) | 1.28/−1.66 | 1.22/−1.20 | 0.66/−0.52 | 0.53/−0.74 | 0.50/−0.84 |
Bond Lengths (Å) | Bond Angles (°) | ||
---|---|---|---|
Cd1-I1 | 2.829(1) | I1-Cd1-I1 ′ | 103.4(1) |
Cd1-N1 | 2.457(6) | I1-Cd1-N1 | 114.8(1) |
Cd1-N2 | 2.402(5) | I1-Cd1-N1 ′ | 86.8(1) |
C1-N1 | 1.253(8) | I1-Cd1-N2 | 89.8(1) |
N1-O1 | 1.398(7) | I1-Cd1-N2 ′ | 153.6(1) |
N1-Cd1-N1 ′ | 145.8(2) | ||
N1-Cd1-N2 | 66.9(2) | ||
N1-Cd1-N2 ′ | 88.2(2) | ||
N2-Cd1-N2 ′ | 87.8(2) |
Interatomic Distances (Å) | Interatomic Angles (°) | ||
---|---|---|---|
Cd1-N2/N2 ′ | 2.353(9) | N2-Cd1-N2 ′ = I1-Cd1-I1 ′′ = I1 ′-Cd1-I1 * | 180.0(1) |
Cd1-I1/I1 ′′ | 2.986(1) | I1-Cd1-I1 ′ = I1 *-Cd1-I1 ** | 91.6(1) |
Cd1…Cd1 ′′ | 4.162(1) | I1-Cd1-I1 * = I1 ′-Cd1-I1 ** | 88.4(2) |
N1-O1 = N1 ′-O1 ′ = N1 ′′-O1 ′′ = N1 ′′′-O1 ′′′ | 1.423(14) | I1 ′-Cd1-N2 = I1-Cd1-N2 ′ = I1 *-Cd1-N2 ′ = I1 **-Cd1-N2 | 90.9(2) |
I1-Cd1-N2 = I1 ′-Cd1-N2 ′ = I1 *-Cd1-N2 = I1 ′′-Cd1-N2 ′ | 89.1(2) | ||
Cd1-I1-Cd1 ′′ | 88.4(2) |
Interatomic Distances (Å) | Interatomic Angles (°) | ||
---|---|---|---|
Cd1-N2/N2 ′ | 2.353(2) | N2-Cd1-N2 ′ = I1-Cd1-I1 ′′ = I1 ′-Cd1-I1 * | 180.0(1) |
Cd1-I1/I1 ′/I1 */I1 ** | 2.991(1) | I1-Cd1-I1 ′ = I1 *-Cd1-I1 ′′ | 91.8(1) |
Cd1…Cd1 ′′′ | 4.162(1) | I1-Cd1-I1 * = I1 ′-Cd1-I1 ′′ | 88.2(1) |
N1-O1=N1 ′-O1 ′ | 1.403(4) | I1-Cd1-N2 ′ = I1 ′-Cd1-N2 = I1 *-Cd1-N2 ′ = I1 **-Cd1-N2 | 90.7(1) |
I1-Cd1-N2 = I1 ′-Cd1-N2 ′ = I1 *-Cd1-N2 = I1 **-Cd1-N2 ′ | 89.3(1) | ||
Cd1-I1-Cd1 ′′′ | 88.2(1) |
Bond Lengths (Å) | Bond Angles (°) | ||
---|---|---|---|
Cd-I1 | 2.722(1) | I1-Cd-I2 | 126.7(1) |
Cd-I2 | 2.733(1) | I1-Cd-N1 | 100.2(1) |
Cd-N1 | 2.421(2) | I1-Cd-N2 | 117.8(1) |
Cd-N2 | 2.333(2) | I1-Cd-N3 | 98.8(1) |
Cd-N3 | 2.443(2) | I2-Cd-N1 | 101.0(1) |
C2-N1 | 1.279(4) | I2-Cd-N2 | 115.4(1) |
N1-O1 | 1.380 (3) | I2-Cd-N3 | 99.6(1) |
C8-N3 | 1.275(3) | N1-Cd-N2 | 67.5(1) |
N3-O2 | 1.384(3) | N1-Cd-N3 | 134.9(1) |
N2-Cd-N3 | 67.5(1) |
Bond Lengths (Å) | Bond Angles (°) | ||
---|---|---|---|
Cd1-I1 | 2.738(1) | I1-Cd1-I1 ′ | 119.4(1) |
Cd1-N1 | 2.423(4) | I1-Cd1-N1 | 100.7(1) |
Cd1-N2 | 2.344(5) | I1-Cd1-N2 | 120.3(1) |
C3-N1 | 1.268(6) | I1-Cd1-N1 ′ | 100.9(1) |
C3-O1 | 1.335(6) | N1-Cd1-N2 | 68.2(1) |
O1-C2 | 1.451(6) | N1-Cd1-N1 ′ | 136.4(1) |
C1-C2 | 1.489(7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Routzomani, A.; Lada, Z.G.; Angelidou, V.; P. Raptopoulou, C.; Psycharis, V.; Konidaris, K.F.; Chasapis, C.T.; Perlepes, S.P. Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants. Molecules 2022, 27, 1619. https://doi.org/10.3390/molecules27051619
Routzomani A, Lada ZG, Angelidou V, P. Raptopoulou C, Psycharis V, Konidaris KF, Chasapis CT, Perlepes SP. Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants. Molecules. 2022; 27(5):1619. https://doi.org/10.3390/molecules27051619
Chicago/Turabian StyleRoutzomani, Anastasia, Zoi G. Lada, Varvara Angelidou, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantis F. Konidaris, Christos T. Chasapis, and Spyros P. Perlepes. 2022. "Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants" Molecules 27, no. 5: 1619. https://doi.org/10.3390/molecules27051619
APA StyleRoutzomani, A., Lada, Z. G., Angelidou, V., P. Raptopoulou, C., Psycharis, V., Konidaris, K. F., Chasapis, C. T., & Perlepes, S. P. (2022). Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants. Molecules, 27(5), 1619. https://doi.org/10.3390/molecules27051619